Sains Malaysiana 52(6)(2023): 1811-1820
http://doi.org/10.17576/jsm-2023-5206-16
The Effect of Lunasin on Inhibition of KI67,
BCL-2 and C-MYC Expression in Azoxymethane and
Dextran Sodium Sulfate Induced Mice Colon
(Kesan Lunasin terhadap Perencatan Ekspresi KI67, BCL-2 dan C-MYC dalam Kolon Tikus Terinduksi Azoksimetana dan Dektran Natrium Sulfat)
KUSMARDI KUSMARDI1,2,3,4,*, AHMAT REDIANSYA PUTRA5 & RIA
KODARIAH1
1Department of Anatomical pathology,
Faculty of Medicine, Universitas Indonesia, Jakarta,
Indonesia
2Drug
Development Research Cluster, Indonesian Medical Education and Research
Institute, Universitas Indonesia, Jakarta, Indonesia
3Human
Cancer Research Cluster, Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, Indonesia
4Doctoral
Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
5Graduate Student,
Master’s Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya No 6, Jakarta, Indonesia
Received: 26 July 2022/Accepted: 2
June 2023
Abstract
Treatment of cancer using
medicinal-plant based has been important due to minimal side effects, high
efficiency and low cost. Lunasin from soybean is
known as potential chemopreventive agent. This study
aimed to study and investigate the proteins involved in the mechanisms of
action of lunasin underlie its chemopreventive effects in Azoxymethane (AOM) and Dextran Sodium Sulfate (DSS) induced mice. A total 30 BLAB/c mice were
separated into six groups. In five of the groups - a negative control group,
positive control group, and three intervention groups - carcinogenesis was
induced with AOM and DSS; the sixth group received no interventions. Lunasin were given in different doses of Low Dose Lunasin (75 mg/kgBW), Moderate
Dose Lunasin (150 mg/kgBW),
and High Dose Lunasin (200 mg/kgBW)
to intervention groups. Immunohistochemistry was conducted to measure Ki67, C-myc, and Bcl-2 expressions from the distal colons of mice
that had been sacrificed. The samples were microscopically assessed and
photographed, and cell counts were performed using the Image J application.
Further, the H-score method was used to quantify of Ki67, C-myc and Bcl-2 expressions. The results of this show that there is significant differences between the negative control and the intervention
groups were found at the 75 mg/kgBW and 150 mg/kgBW (p < 0.05) lunasin dosage
levels. This demonstrates that Lunasin inhibits
proliferation and induces apoptosis in the colon mice induced by AOM and DSS.
Keywords: AOM; Bcl-2; C-myc;
DSS; Ki67
Abstrak
Rawatan kanser berasaskan tumbuhan ubatan adalah penting kerana kesan sampingan yang minimum, kecekapan tinggi dan kos yang rendah. Lunasin daripada kacang soya dikenali sebagai agen kemohalang yang berpotensi. Penyelidikan ini bertujuan untuk mengkaji protein yang terlibat dalam mekanisme tindakan lunasin yang mendasari kesan kemohalangnya pada tikus yang disebabkan oleh Azoksimetana (AOM) dan Dektran Natrium Sulfat (DSS). Sebanyak 30 tikus BLAB/c dipisahkan kepada enam kumpulan. Dalam lima daripada kumpulan kawalan negatif, kumpulan kawalan positif dan tiga kumpulan intervensi-karsinogenesis telah diinduksi dengan AOM dan DSS; kumpulan keenam tidak menerima campur tangan. Lunasin diberikan dalam dos berbeza Lunasin Dos Rendah (75 mg/kgBW), Lunasin Dos Sederhana (150 mg/kgBW) dan Lunasin Dos Tinggi (200 mg/kgBW) kepada kumpulan intervensi. Imunohistokimia telah dijalankan untuk mengukur ekspresi Ki67, C-myc dan Bcl-2 daripada kolon distal tikus yang telah dikorbankan. Sampel telah dinilai secara mikroskopik dan difoto dan kiraan sel dilakukan menggunakan aplikasi Image J. Selanjutnya, kaedah H-skor digunakan untuk mengukur ungkapan Ki67, C-myc dan Bcl-2. Keputusan ini menunjukkan terdapat perbezaan yang signifikan antara kawalan negatif dan kumpulan intervensi didapati pada tahap dos lunasin 75 mg/kgBW dan 150 mg/kgBW (p < 0.05). Ini menunjukkan bahawa Lunasin menghalang percambahan dan mendorong apoptosis dalam tikus kolon yang disebabkan oleh AOM dan DSS.
Kata kunci: AOM;
Bcl-2; C-myc; DSS; Ki67
REFERENCES
Amalia, A.W., Kusmardi, Elya, B. & Arsianti, A. 2017. Inhibition of
carcinogenesis by seed and soybean meal extract in colon of mice: Apoptosis and
dysplasia. Asian Journal of Pharmaceutical and Clinical Research 10(4):
123-128.
American, C.S.
2017. Colorectal
Cancer Facts & Figures 2017-2019. Atlanta: American Cancer
Society.
Bagher, M., Hesar, A.R., Sarabi, P.Z., Rahimi, H.R., Maryam, B. & Ghasem, F. 2018. Antiproliferative effect of aspirin on colorectal cancer cell line. Iran Journal
of Toxicology 12(5): 3-6.
Dia, V.P. & Mejia, E.G. 2011. Lunasin potentiates the effect of oxaliplatin preventing
outgrowth of colon cancer metastasis, binds to a5b1
integrin and suppresses. Cancer Letters 313: 167-180.
He, W.L., Weng, X.T., Wang, J.L., Lin, Y.K., Liu, T.W. & Zhou, Q.Y. 2018. Association
between c-Myc and colorectal cancer prognosis: A
meta-analysis. Frontier in Physiology 9: 1-9.
Hirano, T., Hirayama, D., Wagatsuma, K., Yamakawa, T., Yokoyama, Y. & Hiroshi, N. 2020. Immunological
mechanisms in inflammation-Associated colon
carcinogenesis. International Journal of Molecular Science 21(9): 3062.
Hsieh, C.C.,
Hernández-Ledesma, B., Jeong, H.J., Park, J.H. & De Lumen, B.O. 2010. Complementary roles in cancer prevention: Protease
inhibitor makes the cancer preventive peptide Lunasin bioavailable. PLoS ONE 5(1): e8890.
Ibadawy, M., Usui, T., Yamawaki, H. & Sasaki, K. 2019. Emerging
roles of C-myc in cancer stem cell-related signaling
and resistance to cancer chemotherapy: A potential therapeutic target against
colorectal cancer. International Journal of Molecular Science 20(9): 2340.
Jia, S., Zhang, S., Yuan, H. & Chen, N. 2015. Lunasin inhibits cell proliferation via apoptosis and reduces the production of proinflammatory cytokines in cultured rheumatoid arthritis
synovial fibroblasts. Biomedic Research International 2015: 346839.
Jiang, Q., Pan, Y.U., Cheng, Y., Li, H., Liu, D. & Li, H. 2016. Lunasin suppresses
the migration and invasion of breast cancer cells by inhibiting matrix
metalloproteinase-2/-9 via the FAK/Akt/ERK and NF-κB signaling pathways. Oncology Reports 10: 253-262.
Kim, E.R. & Chang, D.K. 2014.
Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis,
prevention and diagnosis. World
Journal of Gastroenterology 20(29): 9872-9881.
Kumar, V., Abbas, K.A. & Aster, C.J. 2013. Robbin
Basic Pathology. 9th ed. Singapore: Elsevier Pte Ltd.
Kusmardi, Karenina, V., Estuningtyas, A. & Tedjo, A. 2019a. Effect of lunasin-rich soybean extract upon TNF-α expression on
colon epithelial cells of mice induced by azoxymethane/dextrane sodium sulfate. International Journal of
Applied Pharmaceutics 11(6): 12-16.
Kusmardi, Karenina, V., Estuningtyas, A. & Tedjo, A. 2019b. Inhibition of COX-2
expression by lunasin-rich soybean extract on
colorectal cancer. International Journal of Applied Pharmaceutics 11(6):
116-121.
Kusmardi, Rosa, T., Tarigan, S., Estuningtyas, A. & Tedjo, A. 2019c. Effect of lunasin-enriched soy extract on histone deacetylase
expression in distal colon epithelial cells from AOM/DSS-induced mice. International
Journal of Applied Pharmaceutics 11(6): 111-115.
Kusmardi, Nessa, N., Estuningtyas, A. & Tedjo, A. 2018a. The effect of lunasin from
Indonesian soybean extract on histopatologic examination and COX-2 expression in dextran sodium
sulfate-induced mice colon. International Journal of Applied Pharmaceutics 10(6): 154-162.
Kusmardi, Nessa, N., Estuningtyas, A., Tedjo, A. & Wuyung P.E. 2018b. The effect
of lunasin from Indonesian soybean extract on
inducible nitric oxide synthase and β-catenin expression in dextrane sodium sulfate-induced mice colon. International
Journal of Applied Pharmaceutics 11(1): 416-420.
Lin, R., Piao, M., Song, Y. & Liu, C. 2020. Quercetin
suppresses AOM/DSS-induced colon carcinogenesis through its anti-inflammation
effects in mice. Journal of Immunology Research 2020: 9242601.
Lu, Q.L., Abel, P., Foster, C.S. & Lalani, E.N. 1996. Bcl-2: Role in epithelial differentiation and oncogenesis. Human Pathology 27(2): 102-110.
Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. 2008. Cancer-related inflammation. Nature 454(7203) 436-44.
Menon, S.S., Guruvayoorappan, C., Sakthivel, K.M. & Rasmi, R.R. 2019. Ki-67
protein as a tumor proliferation marker. Clinica Chimita Acta491: 39-45.
Meteoglu, I., Erdogdu, I.H., Tuncyurek, P., Coskun, A., Culhaci, N. & Erkus, M. 2018. Nuclear factor kappa B, matrix
metalloproteinase-1, p53, and Ki-67 expressions in the primary tumors and the
lymph node metastases of colorectal cancer cases. Gastroenterology Research Practice 2018: 945392.
Mohan, S., Abdelwahab, S.I., Kamalidehghan, B., Syam, S., May, K.S. & Harmal, N.S.M. 2012. Involvement of NF-κB and Bcl2/Bax signaling pathways in the apoptosis of
MCF7 cells induced by a xanthone compound Pyranocycloartobiloxanthone A. Phytomedicine 19(11): 1007-1015.
Pabona, M.P., Dave, B., Su, Y., Montales,
M.T.E., De Lumen, B.O. & De Mejia, E.G. 2013. The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor
suppressor PTEN: Similarities and distinct actions from soy isoflavone genistein. Genes
and Nutrition 8(1): 79-90.
Patel, M., Horgan, P.G., Mcmillan, D.C. & Edwards, J. 2018. NF-κB pathways in the development and progression of
colorectal cancer. Translational Research 197: 43-56.
Rawla, P., Sunkara, T. & Barsouk, A. 2019. Epidemiology of colorectal
cancer: Incidence, mortality, survival, and risk factors. Gastroenterol. Rev. 14: 89-103.
Robertis, M.D., Massi, E., Poeta, M.L., Carottu, S., Morini, S. & Cecchetelli, L. 2011. The
AOM/DSS murine model for the study of colon carcinogenesis: From pathways to
diagnosis and therapy studies. Journal of Carcinogenesis 10: 9.
Scherr, A-L. 2018. The Role of Anti-Apoptotic Bcl-2
Proteins for Colorectal Cancer Development and Progression. Germany: Ruperto-Carola University of Heidelberg.
Suzuki, R., Kohno, H. & Sugie, S. 2006. Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon
carcinogenesis in mice. Carcinogenesis 27:
162-169.
Tanaka, T., Kohno,
H. & Suzuki, R. 2003. A novel
inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Science 94: 965-973.
Tomlinson, I.P.M., Hanby, A.M., Yao, T., Bodmer, W.F. & Talbot, I.C. 1996. BcI-2 expression in colorectal tumors:
Evidence of different pathways in sporadic and ulcerative-colitis-associated
carcinomas. American Journal of Pathology 149: 1719-1726.
Wan, X., Liu, H., Sun, Y., Zhang, J., Chen, X. & Chen, N. 2017. Lunasin: A promising polypeptide for the prevention and
treatment of cancer (Review). Oncology
Letters 13(6): 3997-4001.
*Corresponding
author; email: kusmardis@gmail.com
|