Sains Malaysiana 52(6)(2023): 1795-1810

http://doi.org/10.17576/jsm-2023-5206-15

 

Exploring the Antidiabetic Effect of Lupenone in Rats with Type 1 Diabetes and Its Underlying Mechanism Based on Network Pharmacology

(Mengkaji Kesan Antidiabetes Lupenon pada Tikus dengan Diabetes Jenis 1 dan Mekanisme Asasnya Berdasarkan Farmakologi Rangkaian)

 

HONGMEI WU1, XULONG HUANG1, FENG XU1, XIAOFEN LI1, YUQING LIANG1, LIUBO YANG1 & XIANGPEI WANG2,*

 

1Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, Guiyang 550002, PR China

2School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang City, Guizhou Province, Guiyang 550002, PR China

 

Received: 16 December 2021/Accepted: 16 March 2023

 

Abstract

Lupenone has been reported to possess numerous medicinal values and gives a positive antidiabetic effect. But the mechanism of preventing and treating type 1 diabetes has not been elucidated in type 1 diabetic rats. This study investigated the effects and mechanism of action of lupenone in preventing and treating type 1 diabetes by network pharmacology and diabetic rats. The blood glucose, glycosylated hemoglobin (HbA1c), insulin, and inflammatory factors in the pancreas of rats with type 1 diabetes were measured, and histopathological changes were observed after treatment with lupenone. The pharmacological network of ‘component-target-disease’ was constructed on diabetic rats. Gene function enrichment, the Kyoto Encyclopedia of Genes and Genomes pathway analysis, and molecular docking were performed. The results showed that lupenone can decrease fasting blood glucose and HbA1c levels, increase insulin content and interleukin (IL)-4, IL-10, and decrease IL-6, transforming growth factor β and tumor necrosis factor α levels in the pancreas. Furthermore, ten targets were identified, and 50 signal pathways closely related to type 1 diabetes and inflammation were screened by network pharmacology, including insulin resistance, type II diabetes, type I diabetes, insulin signal pathway, mitogen activated protein kinase (MAPK) signal pathway, and tumor necrosis factor (TNF) signal pathway. The docking affinity of potential targets and lupenone were between -3.3 and -9.8, among which caspase-3 (CASP3), cyclin-dependent kinase 4 (CDK4), inhibitor of kappaB kinase beta (IKBKB), transforming growth factor beta-1 (TGFB1), and TNF had high binding abilities. Thus, lupenone has the potential to be developed as a new drug for treating type 1 diabetes.

 

Keywords: Inflammatory factors; lupenone; mechanism; network pharmacology; type 1 diabetes

 

Abstrak

Lupenon telah dilaporkan mempunyai banyak nilai perubatan dan memberikan kesan antidiabetes yang positif. Tetapi mekanisme mencegah dan merawat diabetes jenis 1 belum dijelaskan dalam tikus diabetes jenis 1. Penyelidikan ini mengkaji kesan dan mekanisme tindakan lupenone dalam mencegah dan merawat diabetes jenis 1 oleh farmakologi rangkaian dan tikus diabetes. Glukosa darah, hemoglobin glikosilasi (HbA1c), insulin dan faktor keradangan dalam pankreas tikus dengan diabetes jenis 1 diukur dan perubahan histopatologi diperhatikan selepas rawatan dengan lupenon. Rangkaian farmakologikomponen-sasaran-penyakittelah dibina pada tikus diabetes. Pengayaan fungsi gen, analisis laluan Ensiklopedia Gen dan Genom Kyoto serta dok molekul telah dilakukan. Keputusan menunjukkan bahawa lupenon boleh mengurangkan tahap glukosa darah puasa dan HbA1c, meningkatkan kandungan insulin dan interleukin (IL)-4, IL-10 serta mengurangkan IL-6, mengubah faktor pertumbuhan β dan tahap tumor nekrosis faktor α dalam pankreas. Tambahan pula, sepuluh sasaran telah dikenal pasti dan 50 laluan isyarat yang berkait rapat dengan diabetes jenis 1 dan keradangan telah disaring oleh farmakologi rangkaian, termasuk rintangan insulin, diabetes jenis II, diabetes jenis I, laluan isyarat insulin, laluan isyarat mitogen diaktifkan protein kinase (MAPK) dan laluan isyarat tumor nekrosis faktor (TNF). Perkaitan dok sasaran berpotensi dan lupenon adalah antara -3.3 dan -9.8, antaranya caspase-3 (CASP3), kinase 4 (CDK4 yang bergantung kepada cyclin), perencat kappaB kinase beta (IKBKB), mengubah faktor pertumbuhan beta-1 (TGFB1) dan TNF mempunyai kebolehan mengikat yang tinggi. Oleh itu, lupenone mempunyai potensi untuk dibangunkan sebagai ubat baharu untuk merawat diabetes jenis 1.

 

Kata kunci: Diabetes jenis 1; faktor keradangan; farmakologi rangkaian; lupenon; mekanisme

 

REFERENCES

Abid, A. 2017. Impact of TGF β1 level and single nucleotide polymorphism in gall bladder inflammation. Journal of Global Pharma Technology 10(9): 431-437.

Adeyemi, W.J. & Olayaki, L.A. 2018. Diabetes escalates knee osteoarthritis in rats: Evidence of adaptive mechanism. Environmental Toxicology & Pharmacology 61: 1-7.

Ajay, K.S. & Neetu, D. 2011. An overview: On phytochemical and pharmacological studies of Butea monosperma. International Journal of PharmTech Research 3(2): 864-871.

American Diabetes Association. 2014. Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl.1): S81-S90.

Babar, G., Clements, M., Dai, H. & Raghuveer, G. 2019. Assessment of biomarkers of inflammation and premature atherosclerosis in adolescents with type-1 diabetes mellitus. Journal of Pediatric Endocrinology & Metabolism 32(2): 109-113.

Böni-Schnetzler, M. & Meier, D.T. 2019. Islet inflammation in type 2 diabetes. Seminars in Immunopathology 41(4): 501-513.

Campbell, I.L., Cutri, A., Wilson, A. & Harrison, L.C. 1989. Evidence for IL-6 production by and effects on the pancreatic beta-cell. Journal of Immunology 143(4): 1188-1191.

Cheng, Q. 2011. Research Methodology of Pharmacology of Traditional Chinese Medicine. People's Medical Publishing House. p. 1176-1180.

Choi, S.E., Choi, K.M., Yoon, I.H., Shin, J.Y., Kim, J.S., Park, W.Y., Han, D.J., Kim, S.C., Ahn, C., Kim, J.Y., Hwang, E.S., Cha, C.Y., Szot, G.L., Yoon, K.H. & Park, C.G. 2004. IL-6 protects pancreatic islet beta cells from pro-inflammatory cytokines-induced cell death and functional impairment in vitro and in vivo. Transplant Immunology 3(1): 43-53.

Duncan, B.B., Schmidt, M.I., Pankow, J.S., Ballantyne, C.M., Couper, D., Vigo, A., Hoogeveen, R., Folsom, A.R., Heiss, G. & Atherosclerosis Risk in Communities Study. 2003. Low-grade systemic inflammation and the development of type 2 diabetes: The atherosclerosis risk in communities study. Diabetes 52(7): 1799-1805.

Eguchi, K. & Nagai, R. 2017. Islet inflammation in type 2 diabetes and physiology. The Journal of Clinical Investigation 127(1): 14-23.

 Ferretti, C. & La Cava, A. 2016. Adaptive immune regulation in autoimmune diabetes. Autoimmun. Rev. 15(3): 236-241.

Harjutsalo, V., Sjöberg, L. & Tuomilehto, J. 2008. Time trends in the incidence of type 1 diabetes in Finnish children: A cohort study. Lancet 371(9626): 1777-1782.

Helal, I., Fick-Brosnahan, G.M., Reed-Gitomer, B. & Schrier, R.W. 2012. Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nature Reviews Nephrology 8(5): 293-300.

Hopkins, A.L. 2007. Network pharmacology. Nature Biotechnology 25(10): 1110-1111.

Hull, C.M., Peakman, M. & Tim, T. 2017. Regulatory T cell dysfunction in type 1 diabetes: What's broken and how can we fix it? Diabetologia 60: 1839-1850.

Huang, W.J., Wang, S.D., Zhao, J.X., Fu, Q., Gong, Q., Zhang, H., Wu, W.J., Shen, Z.L., Jia, X. & Zhang, Z.L. 2017. Effects of Yiqi Huoxue Sanjie Method on MCP-1 and TGF-β in kidney tissue of rats with diabetic nephropathy. World Chinese Medicine 12(1): 16-20.

Hunag, Z.L., Gan, Z.R., Lan, W., Hou, J.T., Feng, X.Z. & Han, G.C. 2017. Methods for detection of glycosylated hemoglobin. Advances in Analytical Chemistry 7(3): 163-170.

Khodabandehloo, H., Gorgani-Firuzjaee, S., Panahi, G. & Meshkani, R. 2016. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Translational Research: The Journal of Laboratory and Clinical Medicine 167(1): 228-256.

Li, F., Li, X.M. & Wang, B.G. 2010. Chemical constituents of marine mangrove plant Bruguiera gymnorrhiza. Marine Sciences 34(10): 24-27.

Li, G.Q., Zhang, Q.W. & Wang, Y.T. 2010. Puerarin Modern Research Progress. Global Traditional Chinese Medicine 35(23): 3156-3159.

Li, S. & Zhang, B. 2013. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chinese Journal of Natural Medicines 11(2): 110-120.

Li, Y.L., Fan, X., Wang, Y.L., Li, Y.L., Xu, S.Y. & Cen, Y.Z. 2010. Studies on the triterpenoids constituents from Phyllodium elegans. Journal of Chinese Medicine Materials 33(5): 720-721.

Liu, Y., Zhou, X. & Gong, X.J. 2009. Studies on chemical constituents of Euonymus alatus (Thunb.) Sieb. West China Journal of Pharmaceutical Sciences 24(2): 107-109.

Liu, L.Y. & Liu, A.X. 2019. New progress in pathogenesis and treatment of Type 1 diabetes mellitus. Medical Recapitulate 25(22): 4504-4508.

Lu, B., Kurmi, K., Munoz-Gomez, M., Jacobus Ambuludi, E.J., Tonne, J.M., Rakshit, K., Hitosugi, T., Kudva, Y.C., Matveyenko, A.V. & Ikeda, Y. 2018. Impaired β-cell glucokinase as an underlying mechanism in diet-induced diabetes. Disease Models & Mechanisms 11(6): dmm033316.

Nakanishi, K., Matsui, K., Kashiwamura, S., Nishioka, Y., Nomura, J., Nishimura, Y., Sakaguchi, N., Yonehara, S., Higashino, K. & Shinka, S. 1996. IL-4 and anti-CD40 protect against Fas-mediated B cell apoptosis and induce B cell growth and differentiation. International Immunology 8(5): 791-798.

Na, M., Kim, B.Y., Osada, H. & Ahn, J.S. 2009. Inhibition of protein tyrosine phosphatase 1B by lupeol and lupenone isolated from Sorbus commixta. Journal of Enzyme Inhibition and Medicinal Chemistry 24(4): 1056-1059.

Pechlivani, N. & Ajjan, R.A. 2018. Thrombosis and vascular inflammation in diabetes: Mechanisms and potential therapeutic targets. Frontiers in Cardiovascular Medicine 5: 1-9.

Pouvreau, C., Dayre, A., Butkowski, E.G., Jong, B. & Jelinek, H.F. 2018. Inflammation and oxidative stress markers in diabetes and hypertension. Journal of Inflammation Research 11: 61-68.

Pugliese, A. 2017. Autoreactive T cells in type 1 diabetes. J. Clin. Inves. 127(8): 2881-2891.

Rees, D.A. & Alcolado, J.C. 2005. Animal models of diabetes mellitus. Diabetic Medicine 22(4): 359-370.

Romero-Kusabara, I.L., Filho, J.V., Scalissi, N.M., Melo, K.C., Demartino, G., Longui, C.A., Melo, M.R. & Cury, A.N. 2017. Distinct inflammatory gene expression in extraocular muscle and fat from patients with Graves' orbitopathy. European Journal of Endocrinology 176(4): 481-488.

Shang, W.B., Chen, H.B. & Tang, H.Y. 2000. The effect of Euonymus alatus (Thunb.) Sieb. on blood glucose and whole blood viscosity in diabetic mice. Journal of Nanjing University of Traditional Chinese Medicine 16(3): 166-167.

Soldevila, G., Buscema, M., Doshi, M., James, R.F., Bottazzo, G.F. & Pujol-Borrell, R. 1991. Cytotoxic effect of IFN-gamma plus TNF-alpha on human islet cells. Journal of Autoimmunity 4(2): 291-306.

Wang, X.P., Hao, J.J., Xu, S.N. & Wu, H.M. 2012. The chemical constituents in ethyl acetate extraction from the Rhizoma musae. Lishizhen Medicine and Materia Medica Research 3(23): 515-516.

Wang, X.P., Qian, H.B., Hao, J.J., Wu, H.M., Jin, F.Y. & Xu, S.N. 2012. Application of Lupenone in the Preparation of Products for the Prevention or Treatment of Diabetes. Chinese patent: 201210213832. 2. Priority date: 26. June. 2012.

Wang, W., Gao, Y., Chen, D., Wang, C., Feng, X. & Ran, X. 2017. Efficacy and safety of incretin-based drugs in patients with type 1 diabetes mellitus: A systematic review and meta-analysis. Diabetes Research and Clinical Practice 129: 213-223.

Wu, H.M., Xu, F., Hao, J.J., Yang, Y. & Wang, X.P. 2015. Antihyperglycemic activity of banana (Musa nana Lour.) peel and its active ingredients in alloxan-induced diabetic mice. 3rd International Conference on Material, Mechanical and Manufacturing Engineering 2015: 231-238.

Wu, H.M., Xu, F., Wang, Y.M., Qian, H.B. & Wang, X.P. 2017. Influence of general situation, glucose tolerance and insulin tolerance for lupenone in insulin resistance of type 2 diabetes rats. Lishizhen Medicine and Materia Medica Research 28(5): 1035-1037.

Xu, F., Huang, X., Wu, H. & Wang, X. 2018. Beneficial health effects of lupenone triterpene: A review. Biomedicine & Pharmacotherapy 103: 198-203.

Xu, F., Yang, L., Huang, X., Liang, Y., Wang, X. & Wu, H. 2020. Lupenone is a good anti-inflammatory compound based on the network pharmacology. Molecular Diversity 24(1): 21-30.

Yang, Y.H. & Wang, M. 2014. Research progress on the effect of traditional Chinese medicine on inflammatory factors of diabetic nephropathy. Modern Journal of Integrated Traditional Chinese and Western Medicine 23(7): 789-791.

Yue, S.J., Liu, J., Feng, W.W., Zhang, F.L., Chen, J.X., Xin, L.T., Peng, C., Guan, H.S., Wang, C.Y. & Yan, D. 2017. System pharmacology-based dissection of the synergistic mechanism of huangqi and huanglian for diabetes mellitus. Frontiers in Pharmacology 8: 694-699.

Zelová, H. & Hošek, J. 2013. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflammation Research 62(7): 641-651.

Zhang, G.Z., Liu, T., Song, Y., Sheng, C.H., Gao, S., Zheng, D.M., Piao, S.L., Chang, Y. & Sun, Y. 2005. Effects of antioxidant micronutrients on the expression of Th2 cytokines IL-4 and IL-10 in type 1 diabetic rats Influence. Chinese Journal of Immunology 21(7): 4.

Zhu, W.M., Shen, Y.M., Hong, X., Zuo, G.Y., Yang, X.S. & Hao, X.J. 2002. Triterpenoids from the Dai medicinal plant Winchia calophylla. Acta Botanica Sinica 44(3): 354-358.

Zou, D., Hu, T. & Xie, J. 2019. Review of the type 1 diabetes mellitus in children and adolescents. Chinese Journal of Diabetes 27(9): 715-717.

Zou, J.L., Li, A.Y., Wang, Q.M., Zhao, Y. & Yu, J. 2019. Mechanism of Yang-tonifying herbs distributing along kidney meridians in molecular level by network pharmacology. Chinese Traditional and Herbal Drugs 50(8): 1838-1847.

 

*Corresponding author; email: wxp0123@126.com

 

 

 

 

 

 

 

 

 

 

 

 

previous