Sains Malaysiana 52(6)(2023):
1795-1810
http://doi.org/10.17576/jsm-2023-5206-15
Exploring the Antidiabetic Effect of Lupenone in Rats with Type 1 Diabetes and Its Underlying
Mechanism Based on Network Pharmacology
(Mengkaji Kesan Antidiabetes Lupenon pada Tikus dengan Diabetes Jenis 1 dan Mekanisme Asasnya Berdasarkan Farmakologi Rangkaian)
HONGMEI WU1,
XULONG HUANG1, FENG XU1, XIAOFEN LI1, YUQING
LIANG1, LIUBO YANG1 & XIANGPEI WANG2,*
1Department of Pharmacy, Guizhou University of Traditional Chinese Medicine,
Guiyang City, Guizhou Province, Guiyang 550002, PR
China
2School of Ethnic-Minority
Medicine, Guizhou Minzu University, Guiyang City, Guizhou Province, Guiyang
550002, PR China
Received:
16 December 2021/Accepted: 16 March 2023
Abstract
Lupenone has been reported to possess numerous
medicinal values and gives a positive antidiabetic effect. But the mechanism of
preventing and treating type 1 diabetes has not been elucidated in type 1
diabetic rats. This study investigated the effects and mechanism of action of lupenone in preventing and treating type 1 diabetes by
network pharmacology and diabetic rats. The blood glucose, glycosylated
hemoglobin (HbA1c), insulin, and inflammatory
factors in the pancreas
of rats with type 1 diabetes were measured, and histopathological changes were
observed after treatment with lupenone. The
pharmacological network of ‘component-target-disease’ was constructed on
diabetic rats. Gene function enrichment, the Kyoto Encyclopedia of Genes and
Genomes pathway analysis, and molecular docking were performed. The results
showed that lupenone can decrease fasting blood
glucose and HbA1c levels, increase insulin content and interleukin (IL)-4,
IL-10, and decrease IL-6, transforming growth factor β and tumor necrosis
factor α levels in the pancreas. Furthermore, ten targets were
identified, and 50 signal pathways closely related to type
1 diabetes and inflammation were screened by network pharmacology, including
insulin resistance, type II diabetes, type I diabetes, insulin signal pathway,
mitogen activated protein kinase (MAPK) signal pathway, and tumor necrosis
factor (TNF) signal pathway. The docking affinity of potential targets and lupenone were between -3.3 and -9.8, among which caspase-3
(CASP3), cyclin-dependent kinase 4 (CDK4), inhibitor of kappaB kinase beta (IKBKB), transforming growth factor beta-1 (TGFB1), and TNF had
high binding abilities. Thus, lupenone has the
potential to be developed as a new drug for treating type 1 diabetes.
Keywords: Inflammatory factors; lupenone;
mechanism; network pharmacology; type 1 diabetes
Abstrak
Lupenon telah dilaporkan mempunyai banyak nilai perubatan dan memberikan kesan antidiabetes yang positif. Tetapi mekanisme mencegah dan merawat diabetes jenis 1 belum dijelaskan dalam tikus diabetes jenis 1. Penyelidikan ini mengkaji kesan dan mekanisme tindakan lupenone dalam mencegah dan merawat diabetes jenis 1 oleh farmakologi rangkaian dan tikus diabetes. Glukosa darah, hemoglobin glikosilasi (HbA1c), insulin dan faktor keradangan dalam pankreas tikus dengan diabetes jenis 1 diukur dan perubahan histopatologi diperhatikan selepas rawatan dengan lupenon. Rangkaian farmakologi ‘komponen-sasaran-penyakit’ telah dibina pada tikus diabetes. Pengayaan fungsi gen, analisis laluan Ensiklopedia Gen dan Genom Kyoto serta dok molekul telah dilakukan. Keputusan menunjukkan bahawa lupenon boleh mengurangkan tahap glukosa darah puasa dan HbA1c, meningkatkan kandungan insulin dan interleukin
(IL)-4, IL-10 serta mengurangkan IL-6, mengubah faktor pertumbuhan β dan tahap tumor nekrosis faktor α dalam pankreas. Tambahan pula, sepuluh sasaran telah dikenal pasti dan 50 laluan isyarat yang berkait rapat dengan diabetes jenis 1 dan keradangan telah disaring oleh farmakologi rangkaian, termasuk rintangan insulin, diabetes jenis II, diabetes jenis I, laluan isyarat insulin, laluan isyarat mitogen diaktifkan protein kinase (MAPK) dan laluan isyarat tumor nekrosis faktor (TNF). Perkaitan dok sasaran berpotensi dan lupenon adalah antara -3.3 dan -9.8, antaranya caspase-3
(CASP3), kinase 4 (CDK4 yang bergantung kepada cyclin), perencat kappaB kinase beta (IKBKB), mengubah faktor pertumbuhan beta-1
(TGFB1) dan TNF mempunyai kebolehan mengikat yang tinggi. Oleh itu, lupenone mempunyai potensi untuk dibangunkan sebagai ubat baharu untuk merawat diabetes jenis 1.
Kata kunci: Diabetes jenis 1; faktor keradangan; farmakologi rangkaian; lupenon; mekanisme
REFERENCES
Abid, A.
2017. Impact of TGF β1 level and single nucleotide
polymorphism in gall bladder inflammation. Journal of Global Pharma Technology 10(9): 431-437.
Adeyemi, W.J.
& Olayaki, L.A. 2018. Diabetes escalates knee
osteoarthritis in rats: Evidence of adaptive mechanism. Environmental Toxicology & Pharmacology 61: 1-7.
Ajay,
K.S. & Neetu, D. 2011. An overview: On phytochemical
and pharmacological studies of Butea monosperma. International
Journal of PharmTech Research 3(2): 864-871.
American
Diabetes Association. 2014. Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl.1): S81-S90.
Babar,
G., Clements, M., Dai, H. & Raghuveer, G. 2019.
Assessment of biomarkers of inflammation and premature atherosclerosis in
adolescents with type-1 diabetes mellitus. Journal
of Pediatric Endocrinology & Metabolism 32(2): 109-113.
Böni-Schnetzler, M. &
Meier, D.T. 2019. Islet inflammation in type 2 diabetes. Seminars in Immunopathology 41(4): 501-513.
Campbell,
I.L., Cutri, A., Wilson, A. & Harrison, L.C.
1989. Evidence for IL-6 production by and effects on the pancreatic beta-cell. Journal of Immunology 143(4): 1188-1191.
Cheng, Q.
2011. Research Methodology of
Pharmacology of Traditional Chinese Medicine. People's Medical Publishing
House. p. 1176-1180.
Choi,
S.E., Choi, K.M., Yoon, I.H., Shin, J.Y., Kim, J.S., Park, W.Y., Han, D.J.,
Kim, S.C., Ahn, C., Kim, J.Y., Hwang, E.S., Cha,
C.Y., Szot, G.L., Yoon, K.H. & Park, C.G. 2004.
IL-6 protects pancreatic islet beta cells from pro-inflammatory
cytokines-induced cell death and functional impairment in vitro and in vivo.
Transplant Immunology 3(1): 43-53.
Duncan,
B.B., Schmidt, M.I., Pankow, J.S., Ballantyne, C.M.,
Couper, D., Vigo, A., Hoogeveen, R., Folsom, A.R., Heiss, G. & Atherosclerosis Risk in Communities Study.
2003. Low-grade systemic inflammation and the development of type 2 diabetes:
The atherosclerosis risk in communities study. Diabetes 52(7): 1799-1805.
Eguchi, K.
& Nagai, R. 2017. Islet inflammation in type 2 diabetes and physiology. The Journal of Clinical Investigation 127(1): 14-23.
Ferretti, C. & La Cava, A. 2016. Adaptive
immune regulation in autoimmune diabetes. Autoimmun. Rev. 15(3): 236-241.
Harjutsalo, V., Sjöberg, L. & Tuomilehto, J.
2008. Time trends in the incidence of type 1 diabetes in Finnish children: A
cohort study. Lancet 371(9626):
1777-1782.
Helal, I.,
Fick-Brosnahan, G.M., Reed-Gitomer,
B. & Schrier, R.W. 2012. Glomerular hyperfiltration: Definitions, mechanisms and clinical
implications. Nature Reviews Nephrology 8(5): 293-300.
Hopkins,
A.L. 2007. Network pharmacology. Nature
Biotechnology 25(10): 1110-1111.
Hull,
C.M., Peakman, M. & Tim, T. 2017. Regulatory T
cell dysfunction in type 1 diabetes: What's broken and how can we fix it? Diabetologia 60:
1839-1850.
Huang,
W.J., Wang, S.D., Zhao, J.X., Fu, Q., Gong, Q., Zhang, H., Wu, W.J., Shen,
Z.L., Jia, X. & Zhang, Z.L. 2017. Effects of Yiqi Huoxue Sanjie Method on MCP-1 and TGF-β in kidney tissue of rats with diabetic
nephropathy. World Chinese Medicine 12(1): 16-20.
Hunag, Z.L., Gan, Z.R., Lan, W., Hou, J.T.,
Feng, X.Z. & Han, G.C. 2017. Methods for detection of glycosylated
hemoglobin. Advances in Analytical
Chemistry 7(3): 163-170.
Khodabandehloo, H., Gorgani-Firuzjaee, S., Panahi, G.
& Meshkani, R. 2016. Molecular
and cellular mechanisms linking inflammation to insulin resistance and
β-cell dysfunction. Translational
Research: The Journal of Laboratory and Clinical Medicine 167(1): 228-256.
Li, F.,
Li, X.M. & Wang, B.G. 2010. Chemical constituents of marine mangrove plant Bruguiera gymnorrhiza.
Marine Sciences 34(10): 24-27.
Li, G.Q.,
Zhang, Q.W. & Wang, Y.T. 2010. Puerarin Modern
Research Progress. Global Traditional
Chinese Medicine 35(23): 3156-3159.
Li, S.
& Zhang, B. 2013. Traditional Chinese medicine network pharmacology:
Theory, methodology and application. Chinese
Journal of Natural Medicines 11(2): 110-120.
Li, Y.L.,
Fan, X., Wang, Y.L., Li, Y.L., Xu, S.Y. & Cen, Y.Z. 2010. Studies on the
triterpenoids constituents from Phyllodium elegans. Journal of Chinese Medicine Materials 33(5):
720-721.
Liu, Y.,
Zhou, X. & Gong, X.J. 2009. Studies on chemical constituents of Euonymus alatus (Thunb.) Sieb. West China Journal of Pharmaceutical
Sciences 24(2): 107-109.
Liu, L.Y.
& Liu, A.X. 2019. New progress in pathogenesis and treatment of Type 1
diabetes mellitus. Medical Recapitulate 25(22): 4504-4508.
Lu, B., Kurmi, K., Munoz-Gomez, M., Jacobus Ambuludi,
E.J., Tonne, J.M., Rakshit,
K., Hitosugi, T., Kudva,
Y.C., Matveyenko, A.V. & Ikeda, Y. 2018. Impaired
β-cell glucokinase as an underlying mechanism in
diet-induced diabetes. Disease Models
& Mechanisms 11(6): dmm033316.
Nakanishi,
K., Matsui, K., Kashiwamura, S., Nishioka,
Y., Nomura, J., Nishimura, Y., Sakaguchi, N., Yonehara, S., Higashino, K. & Shinka, S. 1996. IL-4 and anti-CD40 protect against Fas-mediated B cell apoptosis and induce B cell growth and
differentiation. International Immunology 8(5): 791-798.
Na, M.,
Kim, B.Y., Osada, H. & Ahn,
J.S. 2009. Inhibition of protein tyrosine phosphatase 1B by lupeol and lupenone isolated from Sorbus commixta. Journal of Enzyme Inhibition and
Medicinal Chemistry 24(4): 1056-1059.
Pechlivani, N.
& Ajjan, R.A. 2018. Thrombosis and vascular
inflammation in diabetes: Mechanisms and potential therapeutic targets. Frontiers in Cardiovascular Medicine 5:
1-9.
Pouvreau, C., Dayre, A., Butkowski, E.G., Jong,
B. & Jelinek, H.F. 2018. Inflammation and
oxidative stress markers in diabetes and hypertension. Journal of Inflammation Research 11: 61-68.
Pugliese,
A. 2017. Autoreactive T cells in type 1 diabetes. J. Clin. Inves. 127(8): 2881-2891.
Rees,
D.A. & Alcolado, J.C. 2005. Animal models of
diabetes mellitus. Diabetic Medicine 22(4): 359-370.
Romero-Kusabara, I.L., Filho, J.V., Scalissi, N.M., Melo, K.C., Demartino, G., Longui, C.A., Melo, M.R. & Cury, A.N. 2017.
Distinct inflammatory gene expression in extraocular muscle and fat from
patients with Graves' orbitopathy. European Journal of Endocrinology 176(4): 481-488.
Shang,
W.B., Chen, H.B. & Tang, H.Y. 2000. The effect of Euonymus alatus (Thunb.) Sieb. on blood glucose and whole blood viscosity in
diabetic mice. Journal of Nanjing
University of Traditional Chinese Medicine 16(3): 166-167.
Soldevila, G., Buscema, M., Doshi, M., James,
R.F., Bottazzo, G.F. & Pujol-Borrell,
R. 1991. Cytotoxic effect of IFN-gamma plus TNF-alpha on human islet cells. Journal of Autoimmunity 4(2): 291-306.
Wang,
X.P., Hao, J.J., Xu, S.N. & Wu, H.M. 2012. The
chemical constituents in ethyl acetate extraction from the Rhizoma musae. Lishizhen Medicine and Materia Medica Research 3(23): 515-516.
Wang,
X.P., Qian, H.B., Hao, J.J., Wu, H.M., Jin, F.Y. & Xu, S.N. 2012. Application of Lupenone in the Preparation of
Products for the Prevention or Treatment of Diabetes. Chinese patent:
201210213832. 2. Priority date: 26. June. 2012.
Wang, W.,
Gao, Y., Chen, D., Wang, C., Feng, X. & Ran, X. 2017. Efficacy and safety
of incretin-based drugs in patients with type 1
diabetes mellitus: A systematic review and meta-analysis. Diabetes Research and Clinical Practice 129: 213-223.
Wu, H.M.,
Xu, F., Hao, J.J., Yang, Y. & Wang, X.P. 2015. Antihyperglycemic activity of banana (Musa nana Lour.) peel and its active
ingredients in alloxan-induced diabetic mice. 3rd International Conference on Material,
Mechanical and Manufacturing Engineering 2015: 231-238.
Wu, H.M.,
Xu, F., Wang, Y.M., Qian, H.B. & Wang, X.P. 2017. Influence of general
situation, glucose tolerance and insulin tolerance for lupenone in insulin resistance of type 2 diabetes rats. Lishizhen Medicine and Materia Medica Research 28(5): 1035-1037.
Xu, F.,
Huang, X., Wu, H. & Wang, X. 2018. Beneficial health effects of lupenone triterpene: A review. Biomedicine & Pharmacotherapy 103: 198-203.
Xu, F.,
Yang, L., Huang, X., Liang, Y., Wang, X. & Wu, H. 2020. Lupenone is a good anti-inflammatory compound based on the network pharmacology. Molecular Diversity 24(1): 21-30.
Yang,
Y.H. & Wang, M. 2014. Research progress on the effect of traditional
Chinese medicine on inflammatory factors of diabetic nephropathy. Modern Journal of Integrated Traditional
Chinese and Western Medicine 23(7): 789-791.
Yue,
S.J., Liu, J., Feng, W.W., Zhang, F.L., Chen, J.X., Xin, L.T., Peng, C., Guan,
H.S., Wang, C.Y. & Yan, D. 2017. System pharmacology-based dissection of
the synergistic mechanism of huangqi and huanglian for diabetes mellitus. Frontiers in Pharmacology 8: 694-699.
Zelová, H.
& Hošek, J. 2013. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflammation Research 62(7): 641-651.
Zhang,
G.Z., Liu, T., Song, Y., Sheng, C.H., Gao, S., Zheng, D.M., Piao,
S.L., Chang, Y. & Sun, Y. 2005. Effects of antioxidant micronutrients on
the expression of Th2 cytokines IL-4 and IL-10 in type 1 diabetic rats
Influence. Chinese Journal of Immunology 21(7): 4.
Zhu,
W.M., Shen, Y.M., Hong, X., Zuo, G.Y., Yang, X.S.
& Hao, X.J. 2002. Triterpenoids from the Dai
medicinal plant Winchia calophylla. Acta Botanica Sinica 44(3): 354-358.
Zou, D.,
Hu, T. & Xie, J. 2019. Review of the type 1
diabetes mellitus in children and adolescents. Chinese Journal of Diabetes 27(9): 715-717.
Zou,
J.L., Li, A.Y., Wang, Q.M., Zhao, Y. & Yu, J. 2019. Mechanism of Yang-tonifying herbs distributing along kidney meridians in
molecular level by network pharmacology. Chinese
Traditional and Herbal Drugs 50(8): 1838-1847.
*Corresponding
author; email: wxp0123@126.com
|