Sains Malaysiana 52(6)(2023): 1821-1833
http://doi.org/10.17576/jsm-2023-5206-17
Effect of Crocodile Oil (Crocodylus siamensis)
on Brain Mitochondrial Protein Expression and Cognition in Male Rats
(Kesan Minyak Buaya (Crocodylus siamensis)
terhadap Pengekspresan Protein Mitokondria Otak dan Kognisi pada Tikus Jantan)
KRITTIKA SRISUKSAI1, KONGPHOP
PARUNYAKUL1, PITCHAYA SANTATIVONGCHAI2, SUMATE AMPAWONG3,
PHITSANU TULAYAKUL4 & WIRASAK FUNGFUANG1,5,*
1Department
of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
2Bio-Veterinary
Science (International Program), Faculty of Veterinary Medicine, Kasetsart
University, Bangkok 10900, Thailand
3Department
of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University,
Bangkok 10400, Thailand
4Department
of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart
University, Bangkok 10900, Thailand
5Kasetsart
University Research and Development Institute, Kasetsart University, Bangkok
10900, Thailand
Received: 7 September 2022/Accepted: 2
June 2023
Abstract
Crocodile oil (CO) is rich in polyunsaturated (PUFAs)
fatty acids. Diets rich in PUFAs can maintain mitochondrial function, which is
important in signal transduction and survival of neuronal cells. We
investigated the effects of CO on brain mitochondrial protein expression and
cognitive function in male rats. Twenty-one rats were randomly divided
into three groups: (1) control, (2) treated with CO (3 mL/kg), and (3) treated
with palm oil (PO; 3 mL/kg). Animals received oral gavage once-daily for seven
weeks. The parameters that were measured were food intake, energy intake, body
weight, serum lipid profiles, cognitive behavior, brain
mitochondrial architecture, brain mitochondrial expression, and hippocampal
structure. In CO and PO groups, food intake decreased significantly compared
with that in the control group (p<0.05), but energy intake, body weight, and
lipid profiles were not affected. Spatial learning in the
PO group decreased significantly compared with that in control and CO groups
(p<0.05). Crocodile oil significantly decreased the
percentage of abnormal mitochondria (p<0.05) and the expression of apoptotic
marker (p<0.05) compared with those in the PO treatment but also increased
energy production marker (p<0.05) compared with those in the control and PO
treatment. Moreover, percentage of intact hippocampal cells was not
different between CO and control groups, but neuronal cells were lost in the PO
group (p<0.05). This study suggest that CO could enhance the brain energy
production and maintain cognitive function. CO can be an alternative dietary
oil for treating brain energy disorder in the future.
Keywords:
Cognition; crocodile oil; energy production; mitochondrial function; palm oil
Abstrak
Minyak buaya (CO) kaya dengan asid
lemak tak tepu (PUFA). Diet yang kaya dengan PUFA boleh mengekalkan fungsi
mitokondria, penting dalam transduksi isyarat dan kemandirian sel neuron. Kami
mengkaji kesan CO pada pengekspresan protein mitokondria otak dan fungsi
kognitif pada tikus jantan. Dua puluh satu tikus dibahagikan secara rawak
kepada tiga kumpulan: (1) kawalan, (2) dirawat dengan CO (3 mL/kg) dan (3)
dirawat dengan minyak sawit (PO; 3 mL/kg). Haiwan menerima gavage oral sekali sehari
selama tujuh minggu. Parameter yang diukur ialah pengambilan makanan,
pengambilan tenaga, berat badan, profil lipid serum, tingkah laku kognitif,
seni bina mitokondria otak, pengekspresan mitokondria otak dan struktur
hipokampus. Dalam kumpulan CO dan PO, pengambilan makanan menurun dengan ketara
berbanding dengan kumpulan kawalan (p<0.05), tetapi pengambilan tenaga,
berat badan dan profil lipid tidak terjejas. Pembelajaran ruang dalam kumpulan
PO menurun dengan ketara berbanding dengan kumpulan kawalan dan CO (p<0.05).
Minyak buaya menurunkan peratusan mitokondria yang tidak normal (p<0.05) dan
pengekspresan penanda apoptosis dengan ketara (p<0.05) berbanding dengan
rawatan PO tetapi juga meningkatkan penanda pengeluaran tenaga (p<0.05) berbanding
dalam kawalan dan rawatan PO. Selain itu, peratusan sel hipokampus utuh tidak
berbeza antara CO dan kumpulan kawalan, tetapi sel neuron hilang dalam kumpulan
PO (p <0.05). Kajian ini mencadangkan bahawa CO boleh meningkatkan
pengeluaran tenaga otak dan mengekalkan fungsi kognitif. CO boleh menjadi
minyak pemakanan alternatif untuk merawat gangguan tenaga otak pada masa
hadapan.
Kata kunci: Fungsi mitokondria;
kognisi; minyak buaya; minyak sawit; pengeluaran tenaga
REFERENCES
Allan,
L.A. & Clarke, P.R. 2009. Apoptosis and autophagy: Regulation of caspase-9
by phosphorylation. FEBS Journal 276(21): 6063-6073.
Ampawong,
S., Isarangkul, D. & Aramwit, P. 2017. Sericin ameliorated dysmorphic
mitochondria in high-cholesterol diet/streptozotocin rat by antioxidative property. Experimental Biology and Medicine 242(4): 411-421.
Boon,
C., Ng, M., Choo, Y. & Mok, S. 2013. Super, red palm and palm oleins
improve the blood pressure, heart size, aortic media thickness and lipid
profile in spontaneously hypertensive rats. PLoS ONE 8: e55908.
Bruce,
K.D., Zsombok, A. & Eckel, R.H. 2017. Lipid processing in the brain: A key
regulator of systemic metabolism. Frontiers in Endocrinology (Lausanne) 8: 60.
Buthelezi,
S., Southway, C., Govinden, U., Bodenstein, J. & Karen, T. 2012. An
investigation of the antimicrobial and anti-inflammatory activities of
crocodile oil. Journal of Ethnopharmacology 143(1): 325-330.
Chapa-Dubocq,
X., Makarov, V. & Javadov, S. 2018. Simple kinetic model of mitochondrial
swelling in cardiac cells. Journal of Cellular Physiology 233(7):
5310-5321.
Chianese,
R., Coccurello, R., Viggiano, A., Scafuro, M., Fiore, M., Coppola, G., Operto,
F.F., Fasano, S., Layé, S., Pierantoni, R. & Meccariello, R. 2018. Impact
of dietary fats on brain functions. Current Neuropharmacology 16(7):
1059-1085.
Chicco,
A.J. & Sparagna, G.C. 2007. Role of cardiolipin alterations in
mitochondrial dysfunction and disease. American Journal of Physiology Cell
Physiology 292(1): C33-44.
Chou,
W., Chen, K., Wang, Y., Wang, J., Liang, C. & Juo, S.H. 2013. The role of
SIRT1/AKT/ERK pathway in ultraviolet B induced damage on human retinal pigment
epithelial cells. Toxicology In Vitro 27(6): 1728-1736.
Djohan,
Y.F., Monde, A.A., Camera-Cissé, M., Badia, E., Bonafos, B., Fouret, G.,
Lauret, C., Dupuy, A., Pinot, E., Koffi, G., Niamké, G., Sutra, T., Gaillet,
S., Lambert, K., Raynaud, F., Gayrard, N., Jover, B., Cristol, J.P., Coudray,
C. & Feillet-Coudray, C. 2021. Effects of high-fat diets on inflammation
and antioxidant status in rats: Comparison between palm olein and olive oil. Acta
Biochimica Polonica 68(4): 739-744.
Edem,
D.O., Eka, O.U. & Umoh, I.B. 2002. Feeding of red palm oil-supplemented
diets to rats may impact positively on vitamin A status. International Journal
of Food Sciences and Nutrition 53(4): 285-291.
Fajardo,
V.A., McMeekin, L., Saint, C. & LeBlanc, P.J. 2015. Cardiolipin linoleic
acid content and mitochondrial cytochrome c oxidase activity are associated in
rat skeletal muscle. Chemistry and Physics of Lipids 187: 50-55.
Fiorucci, L., Erba, F., Santucci,
R. & Sinibaldi, F. 2022. Cytochrome c interaction with cardiolipin plays a
key role in cell apoptosis: Implications for human diseases. Symmetry 14: 767.
González-Giraldo,
Y., Garcia-Segura, L.M., Echeverria, V. & Barreto, G.E. 2018. Tibolone
preserves mitochondrial functionality and cell morphology in astrocytic cells
treated with palmitic acid. Molecular Neurobiology 55(5): 4453-4462.
Hamilton,
J.A., Hillard, C.J., Spector, A.A. & Watkins, P.A. 2007. Brain uptake and
utilization of fatty acids, lipids and lipoprotein: Application to neurological
disorder. Journal of Molecular Neuroscience 33(1): 2-11.
Hennebelle,
M., Morgan, R.K., Sethi, S., Zhang, Z., Chen, H., Grodzki, A.C., Lein, P.J.
& Taha, A.Y. 2020. Linoleic acid-derived metabolites constitute the
majority of oxylipins in the rat pup brain and stimulate axonal growth in
primary rat cortical neural-glia co-cultures in a sex-dependent manner. Journal
of Neurochemistry 152(2): 195-207.
Horman,
T., Fernandes, M.F., Tache, M.C., Hucik, B., Mutch, D.M. & Leri, F. 2020.
Dietary n-6/n-3 ratio influences brain fatty acid composition in adult rats. Nutrients 12(6): 1847.
Hosseinzadeh,
Z., Moazedi, A.A. & Chinipardez, R. 2007. The effect of palmitic acid on
spatial learning and extinction in adult male rat. Pakistan Journal of
Biological Sciences 10(6): 2653-2658.
Ismail,
M., Alsalahi, A., Imam, M.U., Ooi, D.J., Khaza´ai, H., Alijaberi, M.A.,
Shamsudin, M.N. & Idrus, Z. 2020. Safety and neuroprotective efficacy of
palm oil and tocotrienol-rich fraction from palm oil: A systematic review. Nutrients 12(2): 521.
Jeng,
J., Yeh, T., Chiu, Y., Lee, Y., Cheng, H. & Hsieh, R. 2009. Linoleic acid
promotes mitochondrial biogenesis and maintains mitochondrial structure for
prevention of streptozotocin damage in RIN-m5F cells. Bioscience,
Biotechnology and Biochemistry 73(6): 1262-1267.
Kozimor,
A., Chang, H. & Cooper, J.A. 2013. Effects of dietary fatty acid
composition from a high fat meal on satiety. Appetile 69: 39-45.
Kwon,
O., Lee, H., Kim, Y., Cha, H., Song, N. & Lee, M. 2020. ERK
dephosphorylation through MKP1 deacetylation by SIRT1 attenuates RAS-driven
tumorigenesis. Cancers 12(4): 909.
Li,
H., Chen, L., Hu, Y., Qin, Y., Liang, G., Xiong, Y. & Chen, Q. 2012.
Crocodile oil enhances cutaneous burn wound healing and reduces scar formation
in rats. Academic Emergency Medicine 19(3): 265-273.
Li,
H., Liu, X., Huang, S., Xiong, Y., Zhang, Z., Zheng, Y., Chen, Q. & Chen,
Q. 2021. Repair function of essential oil from Crocodylus siamensis (Schneider, 1801) on the burn wound healing via up-regulated growth factor
expression and anti-inflammatory effect. Journal of Ethnopharmacology 264: 113286.
Li,
Y., Park, J., Deng, J. & Bai, Y. 2006. Cytochrome c oxidase subunit IV is
essential for assembly and respiratory function of the enzyme complex. Journal
of Bioenergetics and Biomembranes 38(5-6): 283-291.
Lv, C., Wang, Y., Zhou, C., Ma, W.,
Yang, Y., Xiao, R. & Yu, H. 2018. Effects of dietary palm olein on the
cardiovascular risk factors in healthy young adults. Food and Nutrition
Research 62: 1353.
Makaba,
S., Tingginehe, R.M. & Ruru, Y. 2021. The effectiveness of crocodile oil
extract ointment on the treatment of burns in mice (Mus musculus). Medico-Legal Journal 21(2): 1114-1121.
Mancini,
A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrù, S. &
Buono, P. 2015. Biological and nutritional properties of palm oil and palmitic
acid: effects on health. Molecules 20(9): 17339-17361.
Ma,
Q. 2013. Role of Nrf2 in oxidative stress and toxicity. Annual Review of
Pharmacology and Toxicology 53: 401-426.
Melo,
H.M., Silva, G.S., Sant’Ana, M.R., Teixeira, C.V.L., Clarke, J.R., Coreixas,
V.M., de Melo, B.C., Fortuna, J.T.S., Forny-Germano, L., Ledo, J.H., Oliveira,
M.S., Figueiredo, C.P., Pardossi-Piquard, R., Checler, F., Delgado-García,
J.M., Gruart, A., Velloso, L.A., Balthazar, M.L.F., Cintra, D.E., Ferreira,
S.T. & de Felice, F.G. 2020. Palmitate is increased in the cerebrospinal
fluid of humans with obesity and induces memory impairment in mice via
pro-inflammatory TNF- α. Cell Reports 30(7): 2180-2194.
Monick,
M.M., Powers, L.S., Barrett, C.W., Hinde, S., Ashare, A., Groskreutz, D.J.,
Nyunoya, T., Coleman, M., Spitz, D.R. & Hunninghake, G.W. 2008. Constitutive
ERK MAPK activity regulates macrophage ATP production and mitochondrial
integrity. Journal of Immunology 180(11): 7485-7496.
Morris,
M.C. & Tangney, C.C. 2014. Dietary fat composition and dementia risk. Neurobiology
of Aging 35: S59-S64.
Mulligan,
C.M., Sparagna, G.C., Le, C.H., De Mooy, A.B., Routh, M.A., Holmes, M.G.,
Hickson-Bick, D.L., Zarini, S., Murphy, R.C., Xu, F.Y., Hatch, G.M., McCune,
S.A., Moore, R.L. & Chicco, A.J. 2012. Dietary linoleate preserves
cardiolipin and attenuate mitochondrial dysfunction in the failing rat heart. Cardiovascular
Research 94(3): 460-468.
Naphatthalung,
J., Cing, L.S., Kanokwiroon, K., Radenahmad, N. & Jansakul, C. 2018. Effect
of six-week consumption of lard or palm oil on blood pressure and blood vessel H2S
in middle-aged male rats. FFHD 8: 307-322.
Okaichi,
Y., Ishikura, Y., Akimoto, K., Kawashima, H., Toyoda-Ono, Y., Kiso, Y. &
Okaichi, H. 2005. Arachidonic acid improves aged rat’ spatial cognition. Physiology
and Behavior 84(4): 617-623.
Ortiz-Avila,
O., Esquivel-Martinez, M., Olmos-Orizaba, B.E., Saavedra-Molina, A.,
Rodriquez-Orozco, A.R. & Cortés-Rojo, C. 2015. Avocado oil improves
mitochondrial function and decreases oxidative stress in brain of diabetic
rats. Journal of Diabetes Research 2015: 485759.
Pellizzon,
M., Buison, A., Ordiz, F., Santa Ana, L. & Jen, C. 2002. Effects of dietary
fatty acids and exercise on body-weight regulation and metabolism in rats. Obesity
Research 10(9): 947-955.
Poon,
H.F., Calabrese, V., Scapagnini, G. & Butterfield, D.A. 2004. Free radicals
and brain aging. Clinics in Geriatric Medicine 20(2): 329-359.
Praduptong,
A., Siruntawineti, J., Chaeychomsri, S., Srimangkornkaew, P. &
Chaeychomsri, W. 2018. Acute oral toxicity testing of Siamese crocodile (Crocodylus siamensis) oil in wistar rats. Bioscience Discovery 9(3):
409-415.
Rango,
M. & Bresolin, N. 2018. Brain mitochondria, aging, and Parkinson’s disease. Genes 9(5): 250.
Reshetnikov,
V.V., Eisaretova, P.E., Ershov, N.I., Shulyupova, A.S., Oshchepkov, D.,
Klimova, N.V., Ivanchihina, A.V., Merkulova, T.I. & Bondar, N.P. 2020.
Genes associated with cognitive performance in the Morris water maze: An
RNA-seq study. Scientific Reports 10: 22078.
Rolland,
V., Roseau, S., Fromentin, G., Nicolaidis, S., Tomé, D. & Even, P.C. 2002.
Body weight, body composition, and energy metabolism in lean and obese Zucker
rats fed soybean oil or butter. The American Journal of Clinical Nutrition 75: 21-30.
Rujimongkon, K., Ampawong, S.,
Isarangkul, D., Reamtong, O. & Aramwit, P. 2022. Sericin-mediated
improvement of dysmorphic cardiac mitochondria from hypercholesterolaemia is
associated with maintaining mitochondrial dynamics, energy production, and
mitochondrial structure. Pharmaceutical Biology 60(1): 708-721.
Sakurai,
K., Shen, C., Shiraishi, I., Inamura, N. & Hisatsune, T. 2021. Consumption
of oleic acid on the preservation of cognitive functions in Japanese elderly
individuals. Nutrients 13(2): 284.
Salama, A., Amin, M.M. &
Hassan, A. 2023. Effects of oleic acid and/or exercise on diet-induced
thermogenesis and obesity in rats: Involvement of beige adipocyte
differentiation and macrophage M1 inhibition. Research in Pharmaceutical
Sciences 18(2): 219-230.
Santativongchai,
P., Fungfuang, W., Boonyawiwat, V., Pongchairerk, U. & Tulayakul, P. 2020.
Comparison of physicochemical properties and fatty acid composition of
crocodile oil (Crocodylus siamensis) extracted by using various
extraction methods. International Journal of Food Properties 23(1):
1465-1474.
Schwingshackl,
L., Bogensberger, B., Benčič, A., Knüppel, S., Boeing, H. &
Hoffmann, G. 2018. Effects of oils and solid fats on blood lipids: A systematic
review and network meta-analysis. Journal of Lipid Research 59(9):
1771-1782.
Snoke, D.B., Mahler, C.A.,
Angelotti, A., Cole, R.M., Sparagna, G.C., Baskin, K.K. & Belury, M.A.
2023. Linoleic acid-enriched diet increases mitochondrial tetralinoleoyl
cardiolipin, OXPHOS protein levels, and uncoupling in interscapular brown
adipose tissue during diet-induced weight gain. Biology 12: 9.
Srisuksai,
K., Parunyakul, K., Santativongchai, P., Phaonakrop, N., Roytrakul, S.,
Tulayakul, P. & Fungfuang, W. 2023. Antioxidant activity of crocodile oil (Crocodylus siamensis) on cognitive function in rats. Foods 12: 791.
Taib,
I.S., Budin, S.B., Ghazali, A.R., Jayusman, P.A., Louis, S.R. & Mohamed, J.
2015. Palm oil tocotrienol-rich fraction attenuates testicular toxicity induced
by fenitrothion via an oxidative stress mechanism. Toxicology Research 4(1): 132-142.
Ulloth,
J.E., Casiano, C.A. & De Leon, M. 2003. Palmitic and stearic fatty acids
induce caspase-dependent and -independent cell death in nerve growth factor
differentiated PC12 cells. Journal of Neurochemistry 84(4): 655-668.
Vorhees,
C.V. & Williams, M.T. 2006. Morris water maze: Procedures for assessing
spatial and related forms of learning and memory. Nature Protocols 1(2):
848-858.
Wichai,
T., Pannangrong, W., Welbat, J., Chaichun, A., Sripanidkulchai, K. &
Sripanidkulchai, B. 2019. Effects of aged garlic extract on spatial memory and
oxidative damage in the brain of amyloid-β induced rats. Songklanakarin
Journal of Science and Technology 41(2): 311-318.
Yamaoka,
S., Urade, R. & Kito, M. 1990. Cardiolipin molecular species in rat heart
mitochondria are sensitive to essential fatty acid-deficient dietary lipids. The
Journal of Nutrition 120(5): 415-421.
Yuan,
Q., Zhao, S., Wang, F., Zhang, H., Chen, Z., Wang, J., Wang, Z., Du, Z., Ling,
E., Liu, Q. & Hao, A. 2013. Palmitic acid increases apoptosis of neural
stem cells via activating c-Jun N-terminal kinase. Stem Cell Research 10(2): 257-266.
Zorova,
L.D., Popkov, V.A., Plotnikov, E.Y., Silachev, D.N., Pevzner, I.B., Jankauskas,
S.S., Babenko, V.A., Zorov, S.D., Balakireva, A.V., Juhaszova, M., Sollott,
S.J. & Zorov, D.B. 2018. Mitochondrial membrane potential. Analytical
Biochemistry 552: 50-59.
*Corresponding
author; email: fsciwsf@ku.ac.th
|