Sains Malaysiana 52(6)(2023): 1821-1833

http://doi.org/10.17576/jsm-2023-5206-17

 

Effect of Crocodile Oil (Crocodylus siamensis) on Brain Mitochondrial Protein Expression and Cognition in Male Rats

(Kesan Minyak Buaya (Crocodylus siamensis) terhadap Pengekspresan Protein Mitokondria Otak dan Kognisi pada Tikus Jantan)

 

KRITTIKA SRISUKSAI1, KONGPHOP PARUNYAKUL1, PITCHAYA SANTATIVONGCHAI2, SUMATE AMPAWONG3, PHITSANU TULAYAKUL4 & WIRASAK FUNGFUANG1,5,*

 

1Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

2Bio-Veterinary Science (International Program), Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand

3Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand

4Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand

5Kasetsart University Research and Development Institute, Kasetsart University, Bangkok 10900, Thailand

 

Received: 7 September 2022/Accepted: 2 June 2023

 

Abstract

Crocodile oil (CO) is rich in polyunsaturated (PUFAs) fatty acids. Diets rich in PUFAs can maintain mitochondrial function, which is important in signal transduction and survival of neuronal cells. We investigated the effects of CO on brain mitochondrial protein expression and cognitive function in male rats. Twenty-one rats were randomly divided into three groups: (1) control, (2) treated with CO (3 mL/kg), and (3) treated with palm oil (PO; 3 mL/kg). Animals received oral gavage once-daily for seven weeks. The parameters that were measured were food intake, energy intake, body weight, serum lipid profiles, cognitive behavior, brain mitochondrial architecture, brain mitochondrial expression, and hippocampal structure. In CO and PO groups, food intake decreased significantly compared with that in the control group (p<0.05), but energy intake, body weight, and lipid profiles were not affected. Spatial learning in the PO group decreased significantly compared with that in control and CO groups (p<0.05). Crocodile oil significantly decreased the percentage of abnormal mitochondria (p<0.05) and the expression of apoptotic marker (p<0.05) compared with those in the PO treatment but also increased energy production marker (p<0.05) compared with those in the control and PO treatment. Moreover, percentage of intact hippocampal cells was not different between CO and control groups, but neuronal cells were lost in the PO group (p<0.05). This study suggest that CO could enhance the brain energy production and maintain cognitive function. CO can be an alternative dietary oil for treating brain energy disorder in the future.

 

Keywords: Cognition; crocodile oil; energy production; mitochondrial function; palm oil

 

 

Abstrak

Minyak buaya (CO) kaya dengan asid lemak tak tepu (PUFA). Diet yang kaya dengan PUFA boleh mengekalkan fungsi mitokondria, penting dalam transduksi isyarat dan kemandirian sel neuron. Kami mengkaji kesan CO pada pengekspresan protein mitokondria otak dan fungsi kognitif pada tikus jantan. Dua puluh satu tikus dibahagikan secara rawak kepada tiga kumpulan: (1) kawalan, (2) dirawat dengan CO (3 mL/kg) dan (3) dirawat dengan minyak sawit (PO; 3 mL/kg). Haiwan menerima gavage oral sekali sehari selama tujuh minggu. Parameter yang diukur ialah pengambilan makanan, pengambilan tenaga, berat badan, profil lipid serum, tingkah laku kognitif, seni bina mitokondria otak, pengekspresan mitokondria otak dan struktur hipokampus. Dalam kumpulan CO dan PO, pengambilan makanan menurun dengan ketara berbanding dengan kumpulan kawalan (p<0.05), tetapi pengambilan tenaga, berat badan dan profil lipid tidak terjejas. Pembelajaran ruang dalam kumpulan PO menurun dengan ketara berbanding dengan kumpulan kawalan dan CO (p<0.05). Minyak buaya menurunkan peratusan mitokondria yang tidak normal (p<0.05) dan pengekspresan penanda apoptosis dengan ketara (p<0.05) berbanding dengan rawatan PO tetapi juga meningkatkan penanda pengeluaran tenaga (p<0.05) berbanding dalam kawalan dan rawatan PO. Selain itu, peratusan sel hipokampus utuh tidak berbeza antara CO dan kumpulan kawalan, tetapi sel neuron hilang dalam kumpulan PO (p <0.05). Kajian ini mencadangkan bahawa CO boleh meningkatkan pengeluaran tenaga otak dan mengekalkan fungsi kognitif. CO boleh menjadi minyak pemakanan alternatif untuk merawat gangguan tenaga otak pada masa hadapan.

 

Kata kunci: Fungsi mitokondria; kognisi; minyak buaya; minyak sawit; pengeluaran tenaga

 

REFERENCES

Allan, L.A. & Clarke, P.R. 2009. Apoptosis and autophagy: Regulation of caspase-9 by phosphorylation. FEBS Journal 276(21): 6063-6073.

Ampawong, S., Isarangkul, D. & Aramwit, P. 2017. Sericin ameliorated dysmorphic mitochondria in high-cholesterol diet/streptozotocin rat by antioxidative property. Experimental Biology and Medicine 242(4): 411-421.

Boon, C., Ng, M., Choo, Y. & Mok, S. 2013. Super, red palm and palm oleins improve the blood pressure, heart size, aortic media thickness and lipid profile in spontaneously hypertensive rats. PLoS ONE 8: e55908.

Bruce, K.D., Zsombok, A. & Eckel, R.H. 2017. Lipid processing in the brain: A key regulator of systemic metabolism. Frontiers in Endocrinology (Lausanne) 8: 60.

Buthelezi, S., Southway, C., Govinden, U., Bodenstein, J. & Karen, T. 2012. An investigation of the antimicrobial and anti-inflammatory activities of crocodile oil. Journal of Ethnopharmacology 143(1): 325-330.

Chapa-Dubocq, X., Makarov, V. & Javadov, S. 2018. Simple kinetic model of mitochondrial swelling in cardiac cells. Journal of Cellular Physiology 233(7): 5310-5321.

Chianese, R., Coccurello, R., Viggiano, A., Scafuro, M., Fiore, M., Coppola, G., Operto, F.F., Fasano, S., Layé, S., Pierantoni, R. & Meccariello, R. 2018. Impact of dietary fats on brain functions. Current Neuropharmacology 16(7): 1059-1085.

Chicco, A.J. & Sparagna, G.C. 2007. Role of cardiolipin alterations in mitochondrial dysfunction and disease. American Journal of Physiology Cell Physiology 292(1): C33-44.

Chou, W., Chen, K., Wang, Y., Wang, J., Liang, C. & Juo, S.H. 2013. The role of SIRT1/AKT/ERK pathway in ultraviolet B induced damage on human retinal pigment epithelial cells. Toxicology In Vitro 27(6): 1728-1736.

Djohan, Y.F., Monde, A.A., Camera-Cissé, M., Badia, E., Bonafos, B., Fouret, G., Lauret, C., Dupuy, A., Pinot, E., Koffi, G., Niamké, G., Sutra, T., Gaillet, S., Lambert, K., Raynaud, F., Gayrard, N., Jover, B., Cristol, J.P., Coudray, C. & Feillet-Coudray, C. 2021. Effects of high-fat diets on inflammation and antioxidant status in rats: Comparison between palm olein and olive oil. Acta Biochimica Polonica 68(4): 739-744.

Edem, D.O., Eka, O.U. & Umoh, I.B. 2002. Feeding of red palm oil-supplemented diets to rats may impact positively on vitamin A status. International Journal of Food Sciences and Nutrition 53(4): 285-291.

Fajardo, V.A., McMeekin, L., Saint, C. & LeBlanc, P.J. 2015. Cardiolipin linoleic acid content and mitochondrial cytochrome c oxidase activity are associated in rat skeletal muscle. Chemistry and Physics of Lipids 187: 50-55.

Fiorucci, L., Erba, F., Santucci, R. & Sinibaldi, F. 2022. Cytochrome c interaction with cardiolipin plays a key role in cell apoptosis: Implications for human diseases. Symmetry 14: 767.

González-Giraldo, Y., Garcia-Segura, L.M., Echeverria, V. & Barreto, G.E. 2018. Tibolone preserves mitochondrial functionality and cell morphology in astrocytic cells treated with palmitic acid. Molecular Neurobiology 55(5): 4453-4462.

Hamilton, J.A., Hillard, C.J., Spector, A.A. & Watkins, P.A. 2007. Brain uptake and utilization of fatty acids, lipids and lipoprotein: Application to neurological disorder. Journal of Molecular Neuroscience 33(1): 2-11.

Hennebelle, M., Morgan, R.K., Sethi, S., Zhang, Z., Chen, H., Grodzki, A.C., Lein, P.J. & Taha, A.Y. 2020. Linoleic acid-derived metabolites constitute the majority of oxylipins in the rat pup brain and stimulate axonal growth in primary rat cortical neural-glia co-cultures in a sex-dependent manner. Journal of Neurochemistry 152(2): 195-207.

Horman, T., Fernandes, M.F., Tache, M.C., Hucik, B., Mutch, D.M. & Leri, F. 2020. Dietary n-6/n-3 ratio influences brain fatty acid composition in adult rats. Nutrients 12(6): 1847.

Hosseinzadeh, Z., Moazedi, A.A. & Chinipardez, R. 2007. The effect of palmitic acid on spatial learning and extinction in adult male rat. Pakistan Journal of Biological Sciences 10(6): 2653-2658.

Ismail, M., Alsalahi, A., Imam, M.U., Ooi, D.J., Khaza´ai, H., Alijaberi, M.A., Shamsudin, M.N. & Idrus, Z. 2020. Safety and neuroprotective efficacy of palm oil and tocotrienol-rich fraction from palm oil: A systematic review. Nutrients 12(2): 521.

Jeng, J., Yeh, T., Chiu, Y., Lee, Y., Cheng, H. & Hsieh, R. 2009. Linoleic acid promotes mitochondrial biogenesis and maintains mitochondrial structure for prevention of streptozotocin damage in RIN-m5F cells. Bioscience, Biotechnology and Biochemistry 73(6): 1262-1267.

Kozimor, A., Chang, H. & Cooper, J.A. 2013. Effects of dietary fatty acid composition from a high fat meal on satiety. Appetile 69: 39-45.

Kwon, O., Lee, H., Kim, Y., Cha, H., Song, N. & Lee, M. 2020. ERK dephosphorylation through MKP1 deacetylation by SIRT1 attenuates RAS-driven tumorigenesis. Cancers 12(4): 909.

Li, H., Chen, L., Hu, Y., Qin, Y., Liang, G., Xiong, Y. & Chen, Q. 2012. Crocodile oil enhances cutaneous burn wound healing and reduces scar formation in rats. Academic Emergency Medicine 19(3): 265-273.

Li, H., Liu, X., Huang, S., Xiong, Y., Zhang, Z., Zheng, Y., Chen, Q. & Chen, Q. 2021. Repair function of essential oil from Crocodylus siamensis (Schneider, 1801) on the burn wound healing via up-regulated growth factor expression and anti-inflammatory effect. Journal of Ethnopharmacology 264: 113286.

Li, Y., Park, J., Deng, J. & Bai, Y. 2006. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. Journal of Bioenergetics and Biomembranes 38(5-6): 283-291.

Lv, C., Wang, Y., Zhou, C., Ma, W., Yang, Y., Xiao, R. & Yu, H. 2018. Effects of dietary palm olein on the cardiovascular risk factors in healthy young adults. Food and Nutrition Research 62: 1353.

Makaba, S., Tingginehe, R.M. & Ruru, Y. 2021. The effectiveness of crocodile oil extract ointment on the treatment of burns in mice (Mus musculus). Medico-Legal Journal 21(2): 1114-1121.

Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrù, S. & Buono, P. 2015. Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules 20(9): 17339-17361.

Ma, Q. 2013. Role of Nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology 53: 401-426.

Melo, H.M., Silva, G.S., Sant’Ana, M.R., Teixeira, C.V.L., Clarke, J.R., Coreixas, V.M., de Melo, B.C., Fortuna, J.T.S., Forny-Germano, L., Ledo, J.H., Oliveira, M.S., Figueiredo, C.P., Pardossi-Piquard, R., Checler, F., Delgado-García, J.M., Gruart, A., Velloso, L.A., Balthazar, M.L.F., Cintra, D.E., Ferreira, S.T. & de Felice, F.G. 2020. Palmitate is increased in the cerebrospinal fluid of humans with obesity and induces memory impairment in mice via pro-inflammatory TNF- α. Cell Reports 30(7): 2180-2194.

Monick, M.M., Powers, L.S., Barrett, C.W., Hinde, S., Ashare, A., Groskreutz, D.J., Nyunoya, T., Coleman, M., Spitz, D.R. & Hunninghake, G.W. 2008. Constitutive ERK MAPK activity regulates macrophage ATP production and mitochondrial integrity. Journal of Immunology 180(11): 7485-7496.

Morris, M.C. & Tangney, C.C. 2014. Dietary fat composition and dementia risk. Neurobiology of Aging 35: S59-S64.

Mulligan, C.M., Sparagna, G.C., Le, C.H., De Mooy, A.B., Routh, M.A., Holmes, M.G., Hickson-Bick, D.L., Zarini, S., Murphy, R.C., Xu, F.Y., Hatch, G.M., McCune, S.A., Moore, R.L. & Chicco, A.J. 2012. Dietary linoleate preserves cardiolipin and attenuate mitochondrial dysfunction in the failing rat heart. Cardiovascular Research 94(3): 460-468.

Naphatthalung, J., Cing, L.S., Kanokwiroon, K., Radenahmad, N. & Jansakul, C. 2018. Effect of six-week consumption of lard or palm oil on blood pressure and blood vessel H2S in middle-aged male rats. FFHD 8: 307-322.

Okaichi, Y., Ishikura, Y., Akimoto, K., Kawashima, H., Toyoda-Ono, Y., Kiso, Y. & Okaichi, H. 2005. Arachidonic acid improves aged rat’ spatial cognition. Physiology and Behavior 84(4): 617-623.

Ortiz-Avila, O., Esquivel-Martinez, M., Olmos-Orizaba, B.E., Saavedra-Molina, A., Rodriquez-Orozco, A.R. & Cortés-Rojo, C. 2015. Avocado oil improves mitochondrial function and decreases oxidative stress in brain of diabetic rats. Journal of Diabetes Research 2015: 485759.

Pellizzon, M., Buison, A., Ordiz, F., Santa Ana, L. & Jen, C. 2002. Effects of dietary fatty acids and exercise on body-weight regulation and metabolism in rats. Obesity Research 10(9): 947-955.

Poon, H.F., Calabrese, V., Scapagnini, G. & Butterfield, D.A. 2004. Free radicals and brain aging. Clinics in Geriatric Medicine 20(2): 329-359.

Praduptong, A., Siruntawineti, J., Chaeychomsri, S., Srimangkornkaew, P. & Chaeychomsri, W. 2018. Acute oral toxicity testing of Siamese crocodile (Crocodylus siamensis) oil in wistar rats. Bioscience Discovery 9(3): 409-415.

Rango, M. & Bresolin, N. 2018. Brain mitochondria, aging, and Parkinson’s disease. Genes 9(5): 250.

Reshetnikov, V.V., Eisaretova, P.E., Ershov, N.I., Shulyupova, A.S., Oshchepkov, D., Klimova, N.V., Ivanchihina, A.V., Merkulova, T.I. & Bondar, N.P. 2020. Genes associated with cognitive performance in the Morris water maze: An RNA-seq study. Scientific Reports 10: 22078.

Rolland, V., Roseau, S., Fromentin, G., Nicolaidis, S., Tomé, D. & Even, P.C. 2002. Body weight, body composition, and energy metabolism in lean and obese Zucker rats fed soybean oil or butter. The American Journal of Clinical Nutrition 75: 21-30.

Rujimongkon, K., Ampawong, S., Isarangkul, D., Reamtong, O. & Aramwit, P. 2022. Sericin-mediated improvement of dysmorphic cardiac mitochondria from hypercholesterolaemia is associated with maintaining mitochondrial dynamics, energy production, and mitochondrial structure. Pharmaceutical Biology 60(1): 708-721.

Sakurai, K., Shen, C., Shiraishi, I., Inamura, N. & Hisatsune, T. 2021. Consumption of oleic acid on the preservation of cognitive functions in Japanese elderly individuals. Nutrients 13(2): 284.

Salama, A., Amin, M.M. & Hassan, A. 2023. Effects of oleic acid and/or exercise on diet-induced thermogenesis and obesity in rats: Involvement of beige adipocyte differentiation and macrophage M1 inhibition. Research in Pharmaceutical Sciences 18(2): 219-230.

Santativongchai, P., Fungfuang, W., Boonyawiwat, V., Pongchairerk, U. & Tulayakul, P. 2020. Comparison of physicochemical properties and fatty acid composition of crocodile oil (Crocodylus siamensis) extracted by using various extraction methods. International Journal of Food Properties 23(1): 1465-1474.

Schwingshackl, L., Bogensberger, B., Benčič, A., Knüppel, S., Boeing, H. & Hoffmann, G. 2018. Effects of oils and solid fats on blood lipids: A systematic review and network meta-analysis. Journal of Lipid Research 59(9): 1771-1782.

Snoke, D.B., Mahler, C.A., Angelotti, A., Cole, R.M., Sparagna, G.C., Baskin, K.K. & Belury, M.A. 2023. Linoleic acid-enriched diet increases mitochondrial tetralinoleoyl cardiolipin, OXPHOS protein levels, and uncoupling in interscapular brown adipose tissue during diet-induced weight gain. Biology 12: 9.

Srisuksai, K., Parunyakul, K., Santativongchai, P., Phaonakrop, N., Roytrakul, S., Tulayakul, P. & Fungfuang, W. 2023. Antioxidant activity of crocodile oil (Crocodylus siamensis) on cognitive function in rats. Foods 12: 791.

Taib, I.S., Budin, S.B., Ghazali, A.R., Jayusman, P.A., Louis, S.R. & Mohamed, J. 2015. Palm oil tocotrienol-rich fraction attenuates testicular toxicity induced by fenitrothion via an oxidative stress mechanism. Toxicology Research 4(1): 132-142.

Ulloth, J.E., Casiano, C.A. & De Leon, M. 2003. Palmitic and stearic fatty acids induce caspase-dependent and -independent cell death in nerve growth factor differentiated PC12 cells. Journal of Neurochemistry 84(4): 655-668.

Vorhees, C.V. & Williams, M.T. 2006. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nature Protocols 1(2): 848-858.

Wichai, T., Pannangrong, W., Welbat, J., Chaichun, A., Sripanidkulchai, K. & Sripanidkulchai, B. 2019. Effects of aged garlic extract on spatial memory and oxidative damage in the brain of amyloid-β induced rats. Songklanakarin Journal of Science and Technology 41(2): 311-318.

Yamaoka, S., Urade, R. & Kito, M. 1990. Cardiolipin molecular species in rat heart mitochondria are sensitive to essential fatty acid-deficient dietary lipids. The Journal of Nutrition 120(5): 415-421.

Yuan, Q., Zhao, S., Wang, F., Zhang, H., Chen, Z., Wang, J., Wang, Z., Du, Z., Ling, E., Liu, Q. & Hao, A. 2013. Palmitic acid increases apoptosis of neural stem cells via activating c-Jun N-terminal kinase. Stem Cell Research 10(2): 257-266.

Zorova, L.D., Popkov, V.A., Plotnikov, E.Y., Silachev, D.N., Pevzner, I.B., Jankauskas, S.S., Babenko, V.A., Zorov, S.D., Balakireva, A.V., Juhaszova, M., Sollott, S.J. & Zorov, D.B. 2018. Mitochondrial membrane potential. Analytical Biochemistry 552: 50-59.

 

*Corresponding author; email: fsciwsf@ku.ac.th

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous