Sains Malaysiana 52(6)(2023): 1737-1747
http://doi.org/10.17576/jsm-2023-5206-10
Kinetic
Study of Total Phenolic Content from Piper betle Linn. Leaves Extract Using Subcritical Water
(Kajian Kinetik Jumlah Kandungan Fenolik daripada Ekstrak Daun Piper betle Linn. Menggunakan Air Subkritikal)
NUR LAILATUL RAHMAH1,2,
SITI MAZLINA MUSTAPA KAMAL1,*, ALIFDALINO
SULAIMAN1, FARAH SALEENA TAIP1 & SHAMSUL IZHAR SIAJAM3
1Department of Process and Food Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Department of Agro-industrial Technology, Universitas Brawijaya, 65145 Malang, East Java, Indonesia
3Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia
Received: 19 February
2023/Accepted: 12 June 2023
Abstract
The
green plant-based extraction of phenolic compounds is still challenging and
attractive due to their benefit. The mechanism
controlling of desorption rate of phenolic compounds, measured as total
phenolic content (TPC), from Piper betle Linn.
(PBL) leaves using subcritical water, and a one-site kinetic desorption model
(first order) was studied. One-site kinetic desorption model has well explained
the extraction mechanism of phenolic compounds from PBL leaves using
subcritical water through desorption and diffusion mechanism. This model fits
with the experimental data and presents a good description of the extraction
mechanism with R-squared of 0.94. The recovery of TPC from PBL leaves using
subcritical water was influenced by intraparticle diffusion, temperature, and extraction time. The desorption rate constant in
the one-site kinetic desorption model increased from 100 to 200 °C (0.3975±0.02
to 3.3045±0.00 min-1) and then decreased to 250 °C (3.2093±0.00 min-1).
The highest TPC was recovered quickly for 5 min at 200 °C. In addition, a high
yield of TPC was also obtained at a slow desorption process for 30 min at a
lower temperature of 175 °C. The low activation
energy for the diffusion of phenolic compounds from PBL leaves of this study
was 8.964 kJ/mol. This result showed that the one-site kinetic
desorption model of subcritical water extraction has an excellent opportunity
to be applicable in phenolic compounds recovery from PBL leaves. The one-site
kinetic desorption rate constant and mathematical kinetic model equation
achieved in this study might control the quality of phenolic compounds
extracted from PBL leaves through subcritical water.
Keywords: Activation
energy; betel leaves; desorption rate; kinetic; subcritical water
Abstrak
Pengekstrakan berasaskan tumbuhan hijau sebatian fenolik masih mencabar dan menarik kerana manfaatnya. Mekanisme yang mengawal kadar desorpsi sebatian fenolik, diukur sebagai jumlah kandungan fenolik (TPC), daripada daun Piper betle Linn.
(PBL) menggunakan air subkritikal dan model penyahserapan kinetik satu tapak (turutan pertama) telah dikaji. Model penyahserapan kinetik satu tapak telah menjelaskan dengan baik mekanisme pengekstrakan sebatian fenolik daripada daun PBL menggunakan air subkritikal melalui mekanisme penyahserapan dan penyebaran. Model ini sesuai dengan data uji kaji dan menunjukkan deskripsi yang baik tentang mekanisme ekstraksi dengan koefisien determinasi (R2) sebesar 0.94. Pemulihan TPC dalam daun PBL menggunakan air subkritikal dipengaruhi oleh penyebaran antara zarah, suhu dan masa pengekstrakan. Pemalar kadar desorpsi dalam model desorpsi kinetik satu tapak meningkat daripada 100 kepada 200 °C (0.3975±0.02 kepada 3.3045±0.00 min-1) kemudian menurun kepada 250 °C
(3.2093±0.00 min-1). TPC tertinggi telah pulih dengan cepat selama 5 minit pada 200 °C. Di samping itu, hasil TPC yang tinggi juga diperoleh pada proses desorpsi perlahan selama 30 minit pada suhu yang lebih rendah 175 °C. Tenaga pengaktifan rendah (Ea) untuk penyebaran sebatian fenolik daripada daun PBL kajian ini adalah 8.964 kJ/mol. Hasil ini mendedahkan bahawa model penyahserapan kinetik satu tapak pengekstrakan air subkritikal mempunyai peluang yang sangat baik untuk digunakan dalam pemulihan sebatian fenolik daripada daun PBL. Kadar penyahserapan kinetik satu tapak pemalar dan persamaan model kinetik matematik yang dicapai dalam kajian ini mungkin mengawal kualiti sebatian fenolik yang diekstrak daripada daun PBL melalui air subkritikal.
Kata kunci:
Air subkritikal; daun sirih; kadarpenyahserapan; kinetik; tenaga pengaktifan
REFERENCES
Abrahim, N.N., Kanthimathi, M.S.
& Abdul-Aziz, A. 2012. Piper betle shows antioxidant activities,
inhibits MCF-7 cell proliferation and increases activities of catalase and
superoxide dismutase. BMC Complementary and Alternative Medicine 12:
220. https://doi.org/10.1186/1472-6882-12-220
Anekpankul,
T., Goto, M., Sasaki, M., Pavasant, P. & Shotipruk, A. 2007. Extraction of
anti-cancer damnacanthal from roots of Morinda citrifolia by subcritical
water. Separation and Purification Technology 55(3): 343-349.
https://doi.org/10.1016/j.seppur.2007.01.004
Arambewela,
L., Arawwawala, M. & Rajapaksa, D. 2006. Piper betle: A potential
natural antioxidant. International Journal of Food Science and Technology 41(Suppl. 1): 10-14. https://doi.org/10.1111/j.1365-2621.2006.01227.x
Arawwawala,
L.D.M., Hewageegana, H.P., Arambewela, L.S. & Ariyawansa, H. 2011.
Standardization of spray-dried powder of Piper betle hot water extract. Pharmacognosy
Magazine 7(26): 157. https://doi.org/10.4103/0973-1296.80678
Asl, A.H.
& Khajenoori, M. 2013. Subcritical water extraction. In Mass
Transfer - Advances in Sustainable Energy and Environment Oriented Numerical
Modeling, edited by Nakajima, H. https://doi.org/10.5772/54993
Bar-Peled,
M. & O’Neill, M.A. 2011. Plant nucleotide sugar formation, interconversion,
and salvage by sugar recycling*. Annual Review of Plant Biology 62(1):
127-155. https://doi.org/10.1146/annurev-arplant-042110-103918
Bodoira,
R., Rossi, Y., Montenegro, M., Maestri, D. & Velez, A. 2017. Extraction of
antioxidant polyphenolic compounds from peanut skin using water-ethanol at high
pressure and temperature conditions. Journal of Supercritical Fluids 128(March): 57-65. https://doi.org/10.1016/j.supflu.2017.05.011
Chemat,
F. & Strube, J. 2015. Green Extraction of Natural Products Theory and
Practice. Wiley-VCH Verlag GmbH & Co. KGaA.
Cliffe,
S., Fawer, M.S., Maier, G., Takata, K. & Ritter, G. 1994. Enzyme assays for
the phenolic content of natural juices. Journal of Agricultural and Food
Chemistry 42(8): 1824-1828. https://doi.org/10.1021/jf00044a048
Crank, J.
1975. The Mathematics of Diffusion. Clarendon Press.
Cussler,
E.L. 1984. Diffusion: Mass Transfer in Fluid Systems. Boca Raton: CRC
Press.
Das, I.
& Arora, A. 2021. Kinetics and mechanistic models of solid-liquid
extraction of pectin using advance green techniques - A review. Food
Hydrocolloids 120(June): 106931.
https://doi.org/10.1016/j.foodhyd.2021.106931
Ding,
S.Y., Liu, Y.S., Zeng, Y., Himmel, M.E., Baker, J.O. & Bayer, E.A. 2012.
How does plant cell wall nanoscale architecture correlate with enzymatic
digestibility? Science 338(6110): 1055-1060.
https://doi.org/10.1126/science.1227491
Essien,
S.O., Young, B. & Baroutian, S. 2020. Recent advances in subcritical water
and supercritical carbon dioxide extraction of bioactive compounds from plant
materials. Trends in Food Science and Technology 97(January): 156-169. https://doi.org/10.1016/j.tifs.2020.01.014
Gong,
Y., Zhang, X., He, L., Yan, Q., Yuan, F. & Gao, Y. 2015. Optimization of
subcritical water extraction parameters of antioxidant polyphenols from sea
buckthorn (Hippophaë rhamnoides L.) seed residue. Journal of Food
Science and Technology 52(3): 1534-1542.
https://doi.org/10.1007/s13197-013-1115-7
Haider,
M.R., Khair, A., Rahman, M.M. & Alam, M.K. 2013. Indigenous management
practices of betel-leaf (Piper betle L.) cultivation by the Khasia
community in Bangladesh. Indian Journal of Traditional Knowledge 12(2):
231-239.
Islam,
M.N., Jo, Y.T., Jung, S.K. & Park, J.H. 2013. Thermodynamic and kinetic
study for subcritical water extraction of PAHs. Journal of Industrial and
Engineering Chemistry 19(1): 129-136.
https://doi.org/10.1016/j.jiec.2012.07.014
Jaiswal,
S.G., Patel, M., Saxena, D.K. & Naik, S.N. 2014. Antioxidant properties of Piper
betel (L) leaf extracts from six different geographical domain of India. Journal
of Bioresource Engineering and Technology 2(2): 12-20.
Jamaludin,
R., Kim, D.S., Salleh, L.M. & Lim, S.B. 2021. Kinetic study of subcritical
water extraction of scopoletin, alizarin, and rutin from morinda citrifolia. Foods 10(10): 1-13. https://doi.org/10.3390/foods10102260
Jamwal,
K., Bhattacharya, S. & Puri, S. 2018. Plant growth regulator mediated consequences
of secondary metabolites in medicinal plants. Journal of Applied Research on
Medicinal and Aromatic Plants 9(December 2017): 26-38.
https://doi.org/10.1016/j.jarmap.2017.12.003
Kanjwani,
D.G., Marathe, T.P., Chiplunkar, S.V. & Sathaye, S.S. 2008. Evaluation of
immunomodulatory activity of methanolic extract of Piper betel. Scandinavian
Journal of Immunology 67: 589-593.
Kim, D.S.
& Lim, S.B. 2020. Kinetic study of subcritical water extraction of
flavonoids from citrus unshiu peel. Separation and Purification Technology 250(March): 117259. https://doi.org/10.1016/j.seppur.2020.117259
Kumar, N.
& Goel, N. 2019. Phenolic acids: Natural versatile molecules with promising
therapeutic applications. Biotechnology Reports 24: e00370.
https://doi.org/10.1016/j.btre.2019.e00370
Madhumita,
M., Guha, P. & Nag, A. 2019. Extraction of betel leaves (Piper betle L.) essential oil and its bio-actives identification: Process optimization,
GC-MS analysis and anti-microbial activity. Industrial Crops and Products 138(April): 111578. https://doi.org/10.1016/j.indcrop.2019.111578
Mufari,
J.R., Rodríguez-Ruiz, A.C., Bergesse, A.E., Miranda-Villa, P.P., Nepote, V.
& Velez, A.R. 2021. Bioactive compounds extraction from malted quinoa using
water-ethanol mixtures under subcritical conditions. LWT 138: 110574.
https://doi.org/10.1016/j.lwt.2020.110574
Murugesan,
S., Ravichandran, D., Lakshmanan, D.K., Ravichandran, G., Arumugam, V., Raju,
K., Geetha, K. & Thilagar, S. 2020. Evaluation of anti rheumatic activity
of Piper betle L. (Betelvine) extract using in silico, in vitro and in vivo approaches. Bioorganic Chemistry 103: 104227. https://doi.org/10.1016/j.bioorg.2020.104227
Nastić,
N., Švarc-Gajić, J., Delerue-Matos, C., Morais, S., Barroso, M.F. &
Moreira, M.M. 2018. Subcritical water extraction of antioxidants from mountain
germander (Teucrium montanum L.). Journal of Supercritical Fluids 138(March): 200-206. https://doi.org/10.1016/j.supflu.2018.04.019
Nkurunziza,
D., Pendleton, P. & Chun, B.S. 2019. Optimization and kinetics modeling of
okara isoflavones extraction using subcritical water. Food Chemistry 295(May): 613-621. https://doi.org/10.1016/j.foodchem.2019.05.129
Rahmah,
N.L., Mazlina, S., Kamal, M., Sulaiman, A., Saleena, F. & Siajam, S.I.
2022. Optimization of phenolic compounds and antioxidant extraction from Piper
betle linn. leaves using pressurized hot water. Journal of Applied
Science and Engineering 26(2): 175-184. https://doi.org/10.6180/jase.202302_26(2).0003
Raman,
V., Galal, A.M. & Khan, I.A. 2012. An investigation of the vegetative
anatomy of Piper sarmentosum and
a comparison with the Anatomy of Piper betle. American Journal of
Plant Sciences 3(08): 1135-1144. https://doi.org/10.4236/ajps.2012.38137
Sugumaran,
M., Poornima, M., Venkatraman, S. & Lakshmi, M. 2011. Chemical composition
and antimicrobial activity of sirugamani variety of Piper betle Linn
leaf oil. Journal of Pharmacy Research 4(10): 3424-3426.
Taukoorah,
U., Lall, N. & Mahomoodally, F. 2016. Piper betle L. (betel quid)
shows bacteriostatic, additive, and synergistic antimicrobial action when
combined with conventional antibiotics. South African Journal of Botany 105: 133-140. https://doi.org/10.1016/j.sajb.2016.01.006
Temple,
H., Saez-Aguayo, S., Reyes, F.C. & Orellana, A. 2016. The inside and
outside: Topological issues in plant cell wall biosynthesis and the roles of
nucleotide sugar transporters. Glycobiology 26(9): 913-925.
https://doi.org/10.1093/glycob/cww054
Umar,
R.A., Sanusi, N. ’Adani, Zahary, M.N., Rohin, M.A.K. & Ismail, S. 2018.
Chemical composition and the potential biological activities of Piper betel - A review. Malaysian Journal of Applied Sciences 3(1): 1-8.
van
Boekel, M.A.J. 2009. Kinetic Modeling of Reactions in Foods. Boca Raton:
CRC Press, Taylor & Francis Group, LLC.
Yogeswari,
S., Bindu, K.H., Kamalraj, S., Ashokkumar, V. & Jayabaskaran, C. 2020.
Antidiabetic, antithrombin and cytotoxic bioactive compounds in five cultivars
of Piper betle L. Environmental Technology and Innovation 20:
101140. https://doi.org/10.1016/j.eti.2020.101140
Zakaria,
S.M., Kamal, S.M.M., Harun, M.R., Omar, R. & Siajam, S.I. 2017. Subcritical
water technology for extraction of phenolic compounds from Chlorella sp.
microalgae and assessment on its antioxidant activity. Molecules 22(7):
1105. https://doi.org/10.3390/molecules22071105
Zhang,
B., Gao, Y., Zhang, L. & Zhou, Y. 2021. The plant cell wall: Biosynthesis,
construction, and functions. Journal of Integrative Plant Biology 63(1):
251-272. https://doi.org/10.1111/jipb.13055
Zhang,
J., Wen, C., Zhang, H., Duan, Y. & Ma, H. 2020. Recent advances in the
extraction of bioactive compounds with subcritical water: A review. Trends
in Food Science & Technology 95: 183-195. https://doi.org/10.1016/j.tifs.2019.11.018
Zhang,
L., Gao, C., Mentink-Vigier, F., Tang, L., Zhang, D., Wang, S., Cao, S., Xu,
Z., Liu, X., Wang, T., Zhou, Y. & Zhang, B. 2019. Arabinosyl deacetylase
modulates the arabinoxylan acetylation profile and secondary wall formation. The
Plant Cell 31(5): 1113-1126. https://doi.org/10.1105/tpc.18.00894
*Corresponding
author; email: smazlina@upm.edu.my
|