Sains Malaysiana 52(6)(2023): 1737-1747

http://doi.org/10.17576/jsm-2023-5206-10

 

Kinetic Study of Total Phenolic Content from Piper betle Linn. Leaves Extract Using Subcritical Water

(Kajian Kinetik Jumlah Kandungan Fenolik daripada Ekstrak Daun Piper betle Linn. Menggunakan Air Subkritikal)

 

NUR LAILATUL RAHMAH1,2, SITI MAZLINA MUSTAPA KAMAL1,*, ALIFDALINO SULAIMAN1, FARAH SALEENA TAIP1 & SHAMSUL IZHAR SIAJAM3 

 

1Department of Process and Food Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Department of Agro-industrial Technology, Universitas Brawijaya, 65145 Malang, East Java, Indonesia

3Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Received: 19 February 2023/Accepted: 12 June 2023

 

Abstract

The green plant-based extraction of phenolic compounds is still challenging and attractive due to their benefit. The mechanism controlling of desorption rate of phenolic compounds, measured as total phenolic content (TPC), from Piper betle Linn. (PBL) leaves using subcritical water, and a one-site kinetic desorption model (first order) was studied. One-site kinetic desorption model has well explained the extraction mechanism of phenolic compounds from PBL leaves using subcritical water through desorption and diffusion mechanism. This model fits with the experimental data and presents a good description of the extraction mechanism with R-squared of 0.94. The recovery of TPC from PBL leaves using subcritical water was influenced by intraparticle diffusion, temperature, and extraction time. The desorption rate constant in the one-site kinetic desorption model increased from 100 to 200 °C (0.3975±0.02 to 3.3045±0.00 min-1) and then decreased to 250 °C (3.2093±0.00 min-1). The highest TPC was recovered quickly for 5 min at 200 °C. In addition, a high yield of TPC was also obtained at a slow desorption process for 30 min at a lower temperature of 175 °C. The low activation energy for the diffusion of phenolic compounds from PBL leaves of this study was 8.964 kJ/mol. This result showed that the one-site kinetic desorption model of subcritical water extraction has an excellent opportunity to be applicable in phenolic compounds recovery from PBL leaves. The one-site kinetic desorption rate constant and mathematical kinetic model equation achieved in this study might control the quality of phenolic compounds extracted from PBL leaves through subcritical water. 

 

Keywords: Activation energy; betel leaves; desorption rate; kinetic; subcritical water

 

Abstrak

Pengekstrakan berasaskan tumbuhan hijau sebatian fenolik masih mencabar dan menarik kerana manfaatnya. Mekanisme yang mengawal kadar desorpsi sebatian fenolik, diukur sebagai jumlah kandungan fenolik (TPC), daripada daun Piper betle Linn. (PBL) menggunakan air subkritikal dan model penyahserapan kinetik satu tapak (turutan pertama) telah dikaji. Model penyahserapan kinetik satu tapak telah menjelaskan dengan baik mekanisme pengekstrakan sebatian fenolik daripada daun PBL menggunakan air subkritikal melalui mekanisme penyahserapan dan penyebaran. Model ini sesuai dengan data uji kaji dan menunjukkan deskripsi yang baik tentang mekanisme ekstraksi dengan koefisien determinasi (R2) sebesar 0.94. Pemulihan TPC dalam daun PBL menggunakan air subkritikal dipengaruhi oleh penyebaran antara zarah, suhu dan masa pengekstrakan. Pemalar kadar desorpsi dalam model desorpsi kinetik satu tapak meningkat daripada 100 kepada 200 °C (0.3975±0.02 kepada 3.3045±0.00 min-1) kemudian menurun kepada 250 °C (3.2093±0.00 min-1). TPC tertinggi telah pulih dengan cepat selama 5 minit pada 200 °C. Di samping itu, hasil TPC yang tinggi juga diperoleh pada proses desorpsi perlahan selama 30 minit pada suhu yang lebih rendah 175 °C. Tenaga pengaktifan rendah (Ea) untuk penyebaran sebatian fenolik daripada daun PBL kajian ini adalah 8.964 kJ/mol. Hasil ini mendedahkan bahawa model penyahserapan kinetik satu tapak pengekstrakan air subkritikal mempunyai peluang yang sangat baik untuk digunakan dalam pemulihan sebatian fenolik daripada daun PBL. Kadar penyahserapan kinetik satu tapak pemalar dan persamaan model kinetik matematik yang dicapai dalam kajian ini mungkin mengawal kualiti sebatian fenolik yang diekstrak daripada daun PBL melalui air subkritikal.

 

Kata kunci: Air subkritikal; daun sirih; kadarpenyahserapan; kinetik; tenaga pengaktifan

 

                                                                   REFERENCES

Abrahim, N.N., Kanthimathi, M.S. & Abdul-Aziz, A. 2012. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase. BMC Complementary and Alternative Medicine 12: 220. https://doi.org/10.1186/1472-6882-12-220

Anekpankul, T., Goto, M., Sasaki, M., Pavasant, P. & Shotipruk, A. 2007. Extraction of anti-cancer damnacanthal from roots of Morinda citrifolia by subcritical water. Separation and Purification Technology 55(3): 343-349. https://doi.org/10.1016/j.seppur.2007.01.004

Arambewela, L., Arawwawala, M. & Rajapaksa, D. 2006. Piper betle: A potential natural antioxidant. International Journal of Food Science and Technology 41(Suppl. 1): 10-14. https://doi.org/10.1111/j.1365-2621.2006.01227.x

Arawwawala, L.D.M., Hewageegana, H.P., Arambewela, L.S. & Ariyawansa, H. 2011. Standardization of spray-dried powder of Piper betle hot water extract. Pharmacognosy Magazine 7(26): 157. https://doi.org/10.4103/0973-1296.80678

Asl, A.H. & Khajenoori, M. 2013. Subcritical water extraction. In Mass Transfer - Advances in Sustainable Energy and Environment Oriented Numerical Modeling, edited by Nakajima, H. https://doi.org/10.5772/54993

Bar-Peled, M. & O’Neill, M.A. 2011. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling*. Annual Review of Plant Biology 62(1): 127-155. https://doi.org/10.1146/annurev-arplant-042110-103918

Bodoira, R., Rossi, Y., Montenegro, M., Maestri, D. & Velez, A. 2017. Extraction of antioxidant polyphenolic compounds from peanut skin using water-ethanol at high pressure and temperature conditions. Journal of Supercritical Fluids 128(March): 57-65. https://doi.org/10.1016/j.supflu.2017.05.011

Chemat, F. & Strube, J. 2015. Green Extraction of Natural Products Theory and Practice. Wiley-VCH Verlag GmbH & Co. KGaA.

Cliffe, S., Fawer, M.S., Maier, G., Takata, K. & Ritter, G. 1994. Enzyme assays for the phenolic content of natural juices. Journal of Agricultural and Food Chemistry 42(8): 1824-1828. https://doi.org/10.1021/jf00044a048

Crank, J. 1975. The Mathematics of Diffusion. Clarendon Press.

Cussler, E.L. 1984. Diffusion: Mass Transfer in Fluid Systems. Boca Raton: CRC Press.

Das, I. & Arora, A. 2021. Kinetics and mechanistic models of solid-liquid extraction of pectin using advance green techniques - A review. Food Hydrocolloids 120(June): 106931. https://doi.org/10.1016/j.foodhyd.2021.106931

Ding, S.Y., Liu, Y.S., Zeng, Y., Himmel, M.E., Baker, J.O. & Bayer, E.A. 2012. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338(6110): 1055-1060. https://doi.org/10.1126/science.1227491

Essien, S.O., Young, B. & Baroutian, S. 2020. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends in Food Science and Technology 97(January): 156-169. https://doi.org/10.1016/j.tifs.2020.01.014

Gong, Y., Zhang, X., He, L., Yan, Q., Yuan, F. & Gao, Y. 2015. Optimization of subcritical water extraction parameters of antioxidant polyphenols from sea buckthorn (Hippophaë rhamnoides L.) seed residue. Journal of Food Science and Technology 52(3): 1534-1542. https://doi.org/10.1007/s13197-013-1115-7

Haider, M.R., Khair, A., Rahman, M.M. & Alam, M.K. 2013. Indigenous management practices of betel-leaf (Piper betle L.) cultivation by the Khasia community in Bangladesh. Indian Journal of Traditional Knowledge 12(2): 231-239.

Islam, M.N., Jo, Y.T., Jung, S.K. & Park, J.H. 2013. Thermodynamic and kinetic study for subcritical water extraction of PAHs. Journal of Industrial and Engineering Chemistry 19(1): 129-136. https://doi.org/10.1016/j.jiec.2012.07.014

Jaiswal, S.G., Patel, M., Saxena, D.K. & Naik, S.N. 2014. Antioxidant properties of Piper betel (L) leaf extracts from six different geographical domain of India. Journal of Bioresource Engineering and Technology 2(2): 12-20.

Jamaludin, R., Kim, D.S., Salleh, L.M. & Lim, S.B. 2021. Kinetic study of subcritical water extraction of scopoletin, alizarin, and rutin from morinda citrifolia. Foods 10(10): 1-13. https://doi.org/10.3390/foods10102260

Jamwal, K., Bhattacharya, S. & Puri, S. 2018. Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants 9(December 2017): 26-38. https://doi.org/10.1016/j.jarmap.2017.12.003

Kanjwani, D.G., Marathe, T.P., Chiplunkar, S.V. & Sathaye, S.S. 2008. Evaluation of immunomodulatory activity of methanolic extract of Piper betel. Scandinavian Journal of Immunology 67: 589-593.

Kim, D.S. & Lim, S.B. 2020. Kinetic study of subcritical water extraction of flavonoids from citrus unshiu peel. Separation and Purification Technology 250(March): 117259. https://doi.org/10.1016/j.seppur.2020.117259

Kumar, N. & Goel, N. 2019. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports 24: e00370. https://doi.org/10.1016/j.btre.2019.e00370

Madhumita, M., Guha, P. & Nag, A. 2019. Extraction of betel leaves (Piper betle L.) essential oil and its bio-actives identification: Process optimization, GC-MS analysis and anti-microbial activity. Industrial Crops and Products 138(April): 111578. https://doi.org/10.1016/j.indcrop.2019.111578

Mufari, J.R., Rodríguez-Ruiz, A.C., Bergesse, A.E., Miranda-Villa, P.P., Nepote, V. & Velez, A.R. 2021. Bioactive compounds extraction from malted quinoa using water-ethanol mixtures under subcritical conditions. LWT 138: 110574. https://doi.org/10.1016/j.lwt.2020.110574

Murugesan, S., Ravichandran, D., Lakshmanan, D.K., Ravichandran, G., Arumugam, V., Raju, K., Geetha, K. & Thilagar, S. 2020. Evaluation of anti rheumatic activity of Piper betle L. (Betelvine) extract using in silico, in vitro and in vivo approaches. Bioorganic Chemistry 103: 104227. https://doi.org/10.1016/j.bioorg.2020.104227

Nastić, N., Švarc-Gajić, J., Delerue-Matos, C., Morais, S., Barroso, M.F. & Moreira, M.M. 2018. Subcritical water extraction of antioxidants from mountain germander (Teucrium montanum L.). Journal of Supercritical Fluids 138(March): 200-206. https://doi.org/10.1016/j.supflu.2018.04.019

Nkurunziza, D., Pendleton, P. & Chun, B.S. 2019. Optimization and kinetics modeling of okara isoflavones extraction using subcritical water. Food Chemistry 295(May): 613-621. https://doi.org/10.1016/j.foodchem.2019.05.129

Rahmah, N.L., Mazlina, S., Kamal, M., Sulaiman, A., Saleena, F. & Siajam, S.I. 2022. Optimization of phenolic compounds and antioxidant extraction from Piper betle linn. leaves using pressurized hot water. Journal of Applied Science and Engineering 26(2): 175-184. https://doi.org/10.6180/jase.202302_26(2).0003

Raman, V., Galal, A.M. & Khan, I.A. 2012. An investigation of the vegetative anatomy of  Piper sarmentosum and a comparison with the Anatomy of Piper betle. American Journal of Plant Sciences 3(08): 1135-1144. https://doi.org/10.4236/ajps.2012.38137

Sugumaran, M., Poornima, M., Venkatraman, S. & Lakshmi, M. 2011. Chemical composition and antimicrobial activity of sirugamani variety of Piper betle Linn leaf oil. Journal of Pharmacy Research 4(10): 3424-3426.

Taukoorah, U., Lall, N. & Mahomoodally, F. 2016. Piper betle L. (betel quid) shows bacteriostatic, additive, and synergistic antimicrobial action when combined with conventional antibiotics. South African Journal of Botany 105: 133-140. https://doi.org/10.1016/j.sajb.2016.01.006

Temple, H., Saez-Aguayo, S., Reyes, F.C. & Orellana, A. 2016. The inside and outside: Topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters. Glycobiology 26(9): 913-925. https://doi.org/10.1093/glycob/cww054

Umar, R.A., Sanusi, N. ’Adani, Zahary, M.N., Rohin, M.A.K. & Ismail, S. 2018. Chemical composition and the potential biological activities of Piper betel - A review. Malaysian Journal of Applied Sciences 3(1): 1-8.

van Boekel, M.A.J. 2009. Kinetic Modeling of Reactions in Foods. Boca Raton: CRC Press, Taylor & Francis Group, LLC.

Yogeswari, S., Bindu, K.H., Kamalraj, S., Ashokkumar, V. & Jayabaskaran, C. 2020. Antidiabetic, antithrombin and cytotoxic bioactive compounds in five cultivars of Piper betle L. Environmental Technology and Innovation 20: 101140. https://doi.org/10.1016/j.eti.2020.101140

Zakaria, S.M., Kamal, S.M.M., Harun, M.R., Omar, R. & Siajam, S.I. 2017. Subcritical water technology for extraction of phenolic compounds from Chlorella sp. microalgae and assessment on its antioxidant activity. Molecules 22(7): 1105. https://doi.org/10.3390/molecules22071105

Zhang, B., Gao, Y., Zhang, L. & Zhou, Y. 2021. The plant cell wall: Biosynthesis, construction, and functions. Journal of Integrative Plant Biology 63(1): 251-272. https://doi.org/10.1111/jipb.13055

Zhang, J., Wen, C., Zhang, H., Duan, Y. & Ma, H. 2020. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends in Food Science & Technology 95: 183-195. https://doi.org/10.1016/j.tifs.2019.11.018

Zhang, L., Gao, C., Mentink-Vigier, F., Tang, L., Zhang, D., Wang, S., Cao, S., Xu, Z., Liu, X., Wang, T., Zhou, Y. & Zhang, B. 2019. Arabinosyl deacetylase modulates the arabinoxylan acetylation profile and secondary wall formation. The Plant Cell 31(5): 1113-1126. https://doi.org/10.1105/tpc.18.00894

 

*Corresponding author; email: smazlina@upm.edu.my

 

 

 

 

 

 

 

 

 

 

previous