Sains Malaysiana 52(6)(2023):
1723-1735
http://doi.org/10.17576/jsm-2023-5206-09
Evaluation of Calcium Carbonate Precipitation by Bacillus spp. Isolated from Stingless Bee Produtcs
(Penilaian Kerpasan Kalsium Karbonat oleh Bacillus spp. yang Dipencilkan daripada Produk Lebah Kelulut)
NURUL ASYIQIN ADDENAN1, MOHAMAD SYAZWAN NGALIMAT2,
RAJA NOOR ZALIHA RAJA ABD RAHMAN1,2, RAKESH DONEPUDI3, NOOR AZLINE MOHD NASIR3, MOHD SALEH JAAFAR3 & SURIANA SABRI1,2*
1Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Received: 20 October 2022/Accepted: 12 June 2023
Abstract
Microbiologically
Induced Calcium Carbonate Precipitation (MICCP) through urea hydrolysis is the
most effective way to precipitate a high concentration of calcium carbonate
(CaCO3) within a short time. The MICCP process is used to remediate
the micro-crack in the concrete. However, limited research has been conducted
to determine CaCO3 precipitation by bacteria, especially in
Malaysia. Here, Bacillus spp. isolated from the Malaysian stingless bee
products were evaluated for CaCO3 precipitation. Bacillus spp. were selected for further
study according to their ability to produce urease enzymes. The urease-positive Bacillus spp. were screened for CaCO3 precipitation by culturing on both CaCO3 precipitation agar and
broth media. The survivability of the urease-positive Bacillus spp. in various temperatures, pH values, and NaCl
concentrations were tested. Seven out of 11 Bacillus spp. were found as ureolytic bacteria. Among the ureolytic bacteria, bacteria
belonging to the Bacillus subtilis species complex group showed the highest number of bacteria (36.4%) that are
capable of precipitating CaCO3. Bacillus stratosphericus PD6
and B. aryabhattai BD8 exhibited the largest CaCO3 precipitation zones (15 mm). Bacillus stratosphericus PD6 also
precipitated the highest amount of CaCO3 (65 mg) and urease activity (0.197 U/mL). All the urease-positive Bacillus spp.
were able to grow at 45 °C, pH (8 to 12), and 5% NaCl. Only B.
subtilis BD3 can withstand high temperatures up to 55 °C
and 15% NaCl concentration. In conclusion, Bacillus spp. isolated from
stingless bee products showed the ability as the CaCO3 precipitating bacteria;
suggesting its potential application
in self-healing
concrete.
Keywords: Bacillus spp.; biomineralization; calcium
carbonate precipitation; urease; ureolytic bacteria
Abstrak
Pemendakan
Kalsium Karbonat Terinduksi Mikrobiologi (MICCP) melalui hidrolisis urea adalah
cara paling berkesan untuk memendakkan kepekatan tinggi kalsium karbonat (CaCO3)
dalam masa yang singkat. Proses MICCP digunakan untuk memulihkan retakan mikro
dalam konkrit. Walau bagaimanapun, kajian terhad telah dijalankan untuk
menentukan pemendakan CaCO3 oleh bakteria, terutamanya di Malaysia.
Di sini, Bacillus spp. yang
diasingkan daripada produk lebah Kelulut di Malaysia telah dinilai untuk pemendakan
CaCO3. Bacillus spp. telah
dipilih untuk kajian lanjut mengikut kebolehan mereka menghasilkan enzim
urease. Bacillus spp. yang positif
urease telah disaring untuk pemendakan CaCO3 dengan mengkultur pada
media agar dan media kaldu pemendakan CaCO3. Kebolehmandirian Bacillus spp. yang positif urease dalam
pelbagai suhu, nilai pH dan kepekatan NaCl telah diuji. Tujuh daripada 11 Bacillus spp. ialah bakteria ureolitik.
Antara bakteria ureolitik, bakteria yang tergolong dalam kumpulan kompleks
spesies Bacillus subtilis menunjukkan
bilangan bakteria tertinggi (36.4%) yang mampu memendakan CaCO3. Bacillus stratosphericus PD6 dan B. aryabhattai BD8 didapati menunjukkan
zon pemendakan CaCO3 terbesar (15 mm). Bacillus stratosphericus PD6 juga memendakan jumlah tertinggi CaCO3 (65 mg) dan aktiviti urease (0.197 U/mL). Semua Bacillus spp. yang positif urease mampu tumbuh pada suhu 45 °C, pH
(8 hingga 12), dan 5% NaCl. Hanya B.
subtilis BD3 boleh menahan suhu tinggi sehingga 55 °C dan kepekatan NaCl
15%. Kesimpulannya, Bacillus spp.
diasingkan daripada produk lebah Kelulut menunjukkan keupayaan sebagai bakteria
pemendakan CaCO3; mencadangkan penggunaan potensinya dalam pemulihan
diri konkrit.
Kata kunci: Bacillus spp.; bakteria ureolitik;
biomineralisasi; pemendakan kalsium karbonat; urease
REFERENCES
Aburawi, M.M.
& Swamy, R.N. 2008. Influence of salt weathering on the properties of
concrete. The Arabian Journal for Science and Engineering 33(1B): 105-116.
Alazhari,
M., Sharma, T., Heath, A., Cooper, R. & Paine, K. 2018. Application of
expanded perlite encapsulated bacteria and growth media for self-healing
concrete. Construction and Building Materials 160: 610-619.
Algaifi,
H.A., Bakar, S.A., Sam, A.R.M., Abidin, A.R.Z., Shahir, S. & Altowayti,
W.A.H. 2018. Numerical modeling for crack self-healing concrete by microbial
calcium carbonate. Construction and Building Materials 189: 816-824.
Algaifi,
H.A., Bakar, S.A., Sam, A.R.M., Ismail, M., Abidin, A.R.Z., Shahir, S. &
Altowayti, W.A.H. 2020. Insight into the role of microbial calcium carbonate
and the factors involved in self-healing concrete. Construction and Building
Materials 254: 119258.
Alshalif,
A.F., Juki, M.I., Othman, N. & Al-gheethi, A.A. 2019. Improvement of
mechanical properties of bio-concrete using Enterococcus
faecalis and Bacillus cereus. Environmental Engineering Research 24(4): 630-637.
Amran, M., Onaizi, A.M., Fediuk, R., Vatin, N.I.,
Muhammad Rashid, R.S., Abdelgader, H. & Ozbakkaloglu, T. 2022. Self-healing
concrete as a prospective construction material: A review. Materials 15(9):
3214.
Andalib,
R., Abd Majid, M.Z., Hussin, M.W., Ponraj, M., Keyvanfar, A., Mirza, J. &
Lee, H. 2016. Optimum concentration of Bacillus
megaterium for strengthening structural concrete. Construction and
Building Materials 118:
180-193.
Azmi,
M.S., Lin, T.S., Tajaruddin, H.A., Mohd Zaini Makhtar, M. & Daud, Z. 2018.
Characterisation of calcium carbonate formed by Bacillus sphaericus via fermentation of urea. International
Journal of Integrated Engineering: Special Issue 10(9): 119-124.
Bachmeier,
K.L., Williams, A.E., Warmington, J.R. & Bang, S.S. 2002. Urease activity
in microbiologically-induced calcite precipitation. Journal of Biotechnology 93(2): 171-181.
Behnood,
A., Tittelboom, K.V. & Belie, N.D. 2016. Methods for measuring pH in
concrete: a review. Construction and Building Materials 105: 176-188.
Binici,
H., Aksogan, O., Gorur, E.B., Kaplan, H. & Bodur, M.N. 2008. Performance of
ground blast furnace slag and ground basaltic pumice concrete against seawater
attack. Construction and Building Materials 22: 1515-1526.
Braissant,
O., Decho, A.W., Dupraz, C., Glunk, C., Przekop, K.M. & Visscher, P.T.
2007. Exopolymeric substances of sulfate-reducing bacteria: Interactions with
calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5(4): 401-411.
Chahal,
N., Rajor, A. & Siddique, R. 2011. Calcium carbonate precipitation by
different bacterial strains. African Journal of Biotechnology 10(42): 8359-8372.
Chen,
H., Peng, C., Tang, C. & Chen, Y. 2019. Self-healing concrete by biological
substrate. Materials 12:
4099.
Damayanti,
N.W., Sahlan, M., Lischer, K., Hermansyah, H., Kusumoputro, B. & Pratami,
D.K. 2019. Comparison of original honey (Apis sp. and Tetragonula sp.) and fake
honey compounds in Indonesia using gas chromatography-mass spectrometry
(GC-MS). AIP Conference Proceedings 2193: 030018.
De
Muynck, W., De Belie, N. & Verstraete, W. 2010. Microbial carbonate precipitation
in construction materials: A review. Ecological Engineering Journal 36: 118-136.
Deng,
W. & Wang, Y. 2018. Investigating the factors affecting the properties of
coral sand treated with microbially induced calcite precipitation. Advances
in Civil Engineering 2018:
1-7.
Dhami,
N.K., Reddy, M.S. & Mukherjee, A. 2013. Biomineralization of calcium
carbonates and their engineered applications: A review. Frontiers in
Microbiology 4: 314.
Dhami,
N.K., Reddy, M.S. & Mukherjee, A. 2014. Application of calcifying bacteria
for remediation of stones and cultural heritages. Frontiers in Microbiology 5: 304.
Dupraz,
C., Visscher, P.T., Baumgartner, L.K. & Reid, R.P. 2004. Microbe-mineral
interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera
Island, Bahamas). Sedimentology 51(4):
745-765.
Felsenstein,
J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39(4): 783-791.
Fujita,
Y., Ferris, F.G., Lawson, R.D., Colwell, F.S. & Smith, R.W. 2000.
Subscribed content calcium carbonate precipitation by ureolytic subsurface
bacteria. Geomicrobiology Journal 17(4):
305-318.
Golovkina, D.A., Zhurishkina, E.V., Ivanova, L.A., Baranchikov, A.E., Sokolov, A.Y., Bobrov, K.S., Masharsky, A.E., Tsvigun, N.V., Kopitsa, G.P. & Kulminskaya, A.A. 2020. Calcifying bacteria flexibility in induction of CaCO3 mineralization. Life 10(12): 317.
Hammad,
I.A., Talkhan, F.N. & Zoheir, A.E. 2013. Urease activity and induction of
calcium carbonate precipitation by Sporosarcina
pasteurii NCIMB 8841. Journal of Applied Sciences Research 9(3): 1525-1533.
Hammes,
F., Boon, N., Villiers, J.D., Verstraete, W. & Siciliano, S.D. 2003.
Strain-specific ureolytic microbial calcium carbonate precipitation. Applied
and Enviromental Microbiology 69(8):
4901-4909.
Hammes,
F. & Verstraete, W. 2002. Key roles of pH and calcium metabolism in
microbial carbonate precipitation. Review in Enviromental Science and
Biotechnology 1: 3-7.
Huang, F. & Zhou, S. 2022. A review of lightweight
self-healing concrete. Materials 15(21): 7572.
Huynh,
N.N.T., Imamoto, K. & Kiyohara, C. 2019. A study on biomineralization using Bacillus subtilis Natto for
repeatability of self-healing concrete and strength improvement. Journal of
Advanced Concrete Technology 17:
700-714.
Irwan,
J.M. & Othman, N. 2013. An overview of bioconcrete for structural repair. Applied
Mechanics and Materials 389:
36-39.
Jin,
C., Yu, R. & Shui, Z. 2018. Fungi: A neglected candidate for the
application of self-healing concrete. Frontiers in Built Environment 4:
62.
Joshi,
K.A., Kumthekar, M.B. & Ghodake, V.P. 2016. Bacillus subtilis bacteria impregnation in concrete for enhancement
in compressive strength. International Research Journal of Engineering and
Technology 3(5): 1229-1234.
Khaliq,
W. & Ehsan, M.B. 2019. Crack healing in concrete using various bio
influenced self-healing techniques. Construction and Building Materials
Journal 102: 349-357.
Krishnapriya,
S., Venkatesh Babu, D.L. & Prince Arulraj, G. 2015. Isolation and
identification of bacteria to improve the strength of concrete. Microbiological
Research 174: 48-55.
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing plaforms. Molecular Biology and Evolution 35(6): 1547.
Luhar, S., Luhar, I. & Shaikh, F.U.A. 2022. A
review on the performance evaluation of autonomous self-healing bacterial
concrete: Mechanisms, strength, durability, and microstructural
properties. Journal of Composites Science 6(1): 23.
Manikandan,
A.T. & Padmavathi, A. 2015. An experimental investigation on improvement of
concrete serviceability by using bacterial mineral precipitation. International
Journal of Research and Scientific Innovation 2(3): 46-49.
Mitchell,
A. & Grant Ferris, F. 2005. The coprecipitation of Sr into calcite
precipitates induced by bacterial ureolysis in artificial groundwater:
Temperature and kinetic dependence. Geochimica et Cosmochimica Acta 69(17): 4199-4210.
Mohammadizadeh,
M., Ajalloeian, R., Nadi, B. & Soltani Nezhad, S. 2019. Investigating the
shear strength of biologically improved soil using two types of bacteria. Geomicrobiology Journal 36(7): 581-590.
Natarajan,
K.R. 1995. Kinetic study of the enzyme urease from Dolichos biflorus. Journal of Chemical Education 72(6): 556-557.
Nei,
M. & Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford:
Oxford University Press.
Ngalimat,
M.S., Raja Abd. Rahman, R.N.Z., Yusof, M.T., Syahir, A. & Sabri, S. 2019.
Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread
and propolis. PeerJ 7:
e7478.
Ni, M.
& Ratner, B.D. 2008. Differentiation of calcium carbonate polymorphs by
surface analysis techniques - An XPS and TOF-SIMS study. Surface and
Interface Analysis: SIA 40(10):
1356-1361.
Nosouhian,
F., Mostofinejad, D. & Hasheminejad, H. 2015. Influence of biodeposition
treatment on concrete durability in a sulphate environment. Biosystems
Engineering 133: 141-152.
Pachaivannan,
P., Hariharasudhan, C., Mohanasundram, M. & Bhavani, M.A. 2020.
Experimental anaylsis of self healing properties of bacterial concrete. Materials
Today: Proceedings 33: 3148-3154.
Phillips,
A.J., Gerlach, R., Lauchnor, E., Mitchell, A.C., Cunningham, A.B. &
Spangler, L. 2013. Engineered applications of ureolytic biomineralization: A
review. Biofouling 29(6):
715-733.
Reeburgh,
W.S. 2007. Oceanic methane biogeochemistry. Chemical Reviews 107(2): 486-513.
Rodriguez-Navarro,
C., Rodriguez-Gallego, M., Ben Chekroun, K. & Gonzalez-Muñoz, M.T. 2003.
Conservation of ornamental stone by Myxococcus
xanthus-induced carbonate biomineralization. Applied and Environmental
Microbiology 69(4):
2182-2193.
Saitou,
N. & Nei, M. 1987. The neighbor-joining method: A new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
Sarkar,
M., Adak, D., Tamang, A., Chattopadhyay, B. & Mandal, S. 2015.
Genetically-enriched microbe-facilitated self- healing concrete - A sustainable
material for a new generation of construction technology. RSC Advances 5: 105363-105371.
Shahid,
S., Aslam, M.A., Ali, S., Zameer, M. & Faisal, M. 2020. Self-healing of
cracks in concrete using Bacillus strains encapsulated in sodium alginate beads. Chemistry Select 5: 312-323.
Siddique,
R., Singh, K., Singh, M., Corinaldesi, V. & Rajor, A. 2016. Properties of
bacterial rice husk ash concrete. Construction and Building Materials 121: 112-119.
Sierra-beltran,
M.G., Jonkers, H.M. & Schlangen, E. 2014. Characterization of sustainable
bio-based mortar for concrete repair. Construction and Building Materials 67: 344-352.
Van
Paassen, L.A., Daza, C.M., Staal, M., Sorokin, D.Y., Van Der Zon, W. & Van
Loosdrecht, M.C.M. 2010. Potential soil reinforcement by biological
denitrification. Ecological Engineering 36(2): 168-175.
Vijay,
K., Murmu, M. & Deo, S.V. 2017. Bacteria based self healing concrete - A
review. Construction and Building Materials 152: 1008-1014.
Wang, J.Y., Soens, H., Verstraete, W. & De Belie,
N. 2014. Self-healing concrete by use of microencapsulated bacterial
spores. Cement and Concrete Research 56: 139-152.
Wegian,
F.M. 2010. Effect of seawater for mixing and curing on structural concrete. The
IES Journal Part A: Civil & Structural Engineering 3(4): 235-243.
Wiktor,
V. & Jonkers, H.M. 2011. Quantification of crack-healing in novel
bacteria-based self-healing concrete. Cement and Concrete Composites 33: 763-770.
Williams,
P.D., Guilyardi, E., Madec, G., Gualdi, S. & Scoccimarro, E. 2010. The role
of mean ocean salinity in climate. Dynamics of Atmospheres and Oceans 49: 108-123.
Zhang,
Z., Weng, Y., Ding, Y. & Qian, S. 2019. Use of genetically modified
bacteria to repair cracks in concrete. Materials 12(23): 3912.
*Corresponding author;
email: suriana@upm.edu.my
|