Sains Malaysiana 52(6)(2023): 1711-1721

http://doi.org/10.17576/jsm-2023-5206-08

 

 

Effect of Interference Study on Carrageenan Detection using Ultraviolet Visible Spectrophotometry

(Kesan Kajian Gangguan terhadap Pengesanan Karagenan menggunakan Spektrofotometri Ultraungu Tampak)

 

MUHAMAD EQMAL IZMAN MOHD FADLI1, WAN ELINA FARADILLA WAN KHALID1,* & SHARINA ABU HANIFAH2

 

1School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

2Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 15 September 2022/Accepted: 17 May 2023

 

Abstract

Carrageenan is one of the most prominent hydrocolloids in the food industry used as a thickener and additive to improve the texture of food products. However, the detection of carrageenan in the food product is still limited as many interferences in the food matrix can interfere with the signal obtained. This research aims to study the effect of interference species on a simple and rapid quantitative detection of carrageenan by using a cationic dye which is methylene blue. Methylene blue will form a complex with carrageenan at 565 nm due to the hypsochromic shift of the methylene blue peak at 664 nm with a color change from blue to bluish purple. The optimization and analytical performance of carrageenan-methylene blue complexes were characterized by using UV-Visible Spectrophotometer. A dynamic linear concentration range for carrageenan detection was obtained in the range of 70-100 ppm (R2 = 0.9837) with a limit of detection (LOD) estimated at 38.37 ppm. The reproducibility study was found to give a satisfactory relative standard deviation (RSD) value of 1.64-1.94%. Selectivity experiments were carried out where the methylene blue demonstrated acceptable selectivity towards carrageenan with no significant interference from sucrose and glucose.

 

Keywords: Complexation; free solution; methylene blue

 

Abstrak

Karagenan ialah salah satu hidrokoloid yang popular dalam industri makanan yang selalunya digunakan sebagai pemekat dan aditif untuk memperbaiki tekstur produk makanan. Walau bagaimanapun, pengesanan karagenan dalam produk makanan adalah masih terhad kerana banyak gangguan dalam matriks makanan yang boleh mengganggu isyarat yang diperoleh. Penyelidikan ini bertujuan untuk mengkaji kesan spesies gangguan terhadap pengesanan kuantitatif karagenan yang mudah dan cepat dengan menggunakan pewarna kationik iaitu metilena biru. Metilena biru akan membentuk kompleks dengan karagenan pada 565 nm disebabkan oleh peralihan hipsokromik puncak metilena biru pada 664 nm dengan perubahan warna daripada biru kepada ungu kebiruan. Pengoptimuman dan prestasi analisis kompleks karagenan-metilena biru telah dicirikan dengan menggunakan Spektrofotometer Ultraungu Tampak. Julat kepekatan linear dinamik untuk pengesanan karagenan diperoleh dalam julat 70-100 ppm (R2 = 0.9837) dengan had pengesanan (LOD) dianggarkan pada 38.37 ppm. Kajian kebolehulangan didapati memberikan nilai sisihan piawai relatif (RSD) yang memuaskan iaitu 1.64-1.94%. Uji kaji kepilihan telah dijalankan dan metilena biru menunjukkan kepilihan yang boleh diterima terhadap karagenan tanpa gangguan ketara terutamanya daripada sukrosa.

 

Kata kunci: Larutan bebas; metilena biru; pengkompleksan

 

REFERENCES

Alsubaie, N., Alshamrani, R., Domyati, D., Alahmadi, N. & Bannani, F. 2021. Methylene blue dye adsorption onto polyoxometalate ionic liquid supported on bentonite: Kinetic, equilibrium and thermodynamic Studies. Open Journal of Physical Chemistry 11(02): 106-127.

Anderson, L., Wittkopp, S.M., Painter, C.J., Liegel, J.J., Schreiner, R., Bell, J.A. & Shakhashiri, B.Z. 2012. What is happening when the blue bottle bleaches: An investigation of the methylene blue-catalyzed air oxidation of glucose. Journal of Chemical Education 89(11): 1425-1431.

Bartlová, M., Ziółkowska, D., Pospiech, M., Shyichuk, A. & Tremlová, B. 2021. Determination of carrageenan in jellies with new methylene blue dye using spectrophotometry, smartphone-based colorimetry and spectrophotometric titration. Food Science and Technology 41: 81-90.

Bhanvase, B. & Barai, D. 2021. Stability of nanofluids. Nanofluids for Heat and Mass Transfer. Massachusetts: Academic Press. pp. 69-97.

Chen, X., Zhang, Z., Yang, H., Qiu, P., Wang, H., Wang, F., Zhao, Q., Fang, J. & Nie, J. 2020. Consumption of ultra-processed foods and health outcomes: A systematic review of epidemiological studies. Nutrition Journal 19(1): 1-10.

Dürüst, N., Meyerhoff, M.E., Ünal, N. & Naç, S. 2011. Spectrophotometric determination of various polyanions with polymeric film optodes using microtiter plate reader. Analytica Chimica Acta 699(1): 107-112.

Goeff, D. & Guo, Q. 2019. Food structure development: The interplay between processing routes and formulation elements. Part A Food Structure Development: The Interplay Between Processing Routes and Formulation Elements. pp. 1-28.

Haldar, K. & Chakraborty, S. 2019. Investigation of chemical reaction during sodium alginate drop impact on calcium chloride film. Physics of Fluids 31(7): 072102.

Hemdan, S.S., Jebaly, A.M.A. & Ali, F.K. 2019. Importance of isosbestic point in spectroscopy: A review 62(1): 1-21.

Herfurth, J. & Ulrich, J. 2017. Analysis of hydrocolloids in crystalline material. Chemical Engineering and Technology 40(7): 1261-1267.

Hotchkiss, S., Brooks, M., Campbell, R., Philp, K. & Trius, A. 2018. The use of carrageenan in food. In Protests and Riots Past: Present and Future Perspectives, edited by Pichette, A. pp. 47-75.

Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T. & Khan, I. 2022. Review on methylene blue: Its properties, uses, toxicity and photodegradation. Water 14(2): 242.

Król, Z., Malik, M., Marycz, K. & Jarmoluk, A. 2016. Characteristic of gelatine, carrageenan and sodium alginate hydrosols treated by direct electric current. Polymers 8(8): 275.

Lapwanit, S., Sooksimuang, T. & Trakulsujaritchok, T. 2018. Adsorptive removal of cationic methylene blue dye by kappa-carrageenan/poly(glycidyl methacrylate) hydrogel beads: Preparation and characterization. Journal of Environmental Chemical Engineering 6(5): 6221-6230.

Lee, K.Y. & Mooney, D.J. 2012. Alginate: Properties and biomedical applications. Progress in Polymer Science 37(1): 106-126.

Ling, Y.P. & Heng, L.Y. 2014. Reflectance based sensor for carrageenan utilizing methylene blue embedded acrylic microspheres. Sensors and Actuators, B: Chemical 192: 247-252.

Lipatova, I.M., Makarova, L.I. & Mezina, E.A. 2016. A spectrophotometric study of the compoundation between methylene blue dye and sodium alginate. Russian Journal of General Chemistry 86(9): 2226-2231.

Liu, F., Hou, P., Zhang, H., Tang, Q., Xue, C. & Li, R.W. 2021. Food-grade carrageenans and their implications in health and disease. Comprehensive Reviews in Food Science and Food Safety 20(4): 3918-3936.

Luxminarayan, L., Neha, S., Amit, V. & Khinchi, M.P. 2017. A review on chromatography techniques. Asian Journal of Pharmaceutical Research and Development 5(2): 1-8.

Makhado, E., Pandey, S., Modibane, K.D., Kang, M. & Hato, M.J. 2020. Sequestration of methylene blue dye using sodium alginate poly(acrylic acid)@ZnO hydrogel nanocomposite: Kinetic, isotherm and thermodynamic investigations. International Journal of Biological Macromolecules 162: 60-73.

Sacks, G., Riesenberg, D., Mialon, M., Dean, S. & Cameron, A.J. 2020. The characteristics and extent of food industry involvement in peer-reviewed research articles from 10 leading nutrition related journals in 2018. PLoS ONE 15: 1-15.

Sun, Y., Zhu, X., Shen, X. & Wang, W. 2021. Determination of carrageenan in livestock and poultry meat by ultrahigh-performance liquid chromatography-tandem mass spectrometry. International Journal of Analytical Chemistry 2021: 5277453.

Taha, A.M., Said, R.A.M., Mousa, I.S. & Elsayed, T.M. 2022. Simultaneous determination of ofloxacin and bromfenac in combined dosage form using four different spectrophotometric methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 273: 121066.

Taylor, J.K. 1983. Validation of analytical methods. Analytical Chemistry 55(6): 600A-608A.

Tobacman, J.K., Bhattacharya, S., Borthakur, A. & Dudeja, P.K. 2008. The carrageenan diet: Not recommended. Science 321(5892): 1040-1041.

Wan Khalid, W.E.F., Mat Arip, M.N., Jasmani, L. & Heng, L.Y. 2019. A new sensor for methyl paraben using an electrode made of a cellulose nanocrystal–reduced graphene oxide nanocomposite. Sensors 19(12): 2726.

Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Filipič, M., Frutos, M.J., Galtier, P., Gott, D., Gundert-Remy, U., Kuhnle, G.G., Lambré, C., Leblanc, J-C., Lillegaard, I.T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R.A., Wright, M., Brimer, L., Lindtner, O., Mosesso, P., Christodoulidou, A., Ioannidou, S., Lodi, F. & Dusemund, B. 2018. Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA Journal 16(4): e05238.

Ziółkowska, D., Kaniewska, A., Lamkiewicz, J. & Shyichuk, A. 2017. Determination of carrageenan by means of photometric titration with methylene blue and toluidine blue dyes. Carbohydrate Polymers 165: 1-6.

 

*Corresponding author; email: wan_elina@uitm.edu.my

 

 

 

 

 

 

 

 

previous