Sains
Malaysiana 52(6)(2023):
1711-1721
http://doi.org/10.17576/jsm-2023-5206-08
Effect of Interference Study on Carrageenan Detection
using Ultraviolet Visible Spectrophotometry
(Kesan Kajian Gangguan terhadap Pengesanan Karagenan
menggunakan Spektrofotometri Ultraungu Tampak)
MUHAMAD EQMAL IZMAN MOHD FADLI1, WAN ELINA
FARADILLA WAN KHALID1,* & SHARINA ABU
HANIFAH2
1School of Chemistry and
Environment, Faculty of Applied Sciences, Universiti
Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit
Tinggi, 72000 Kuala Pilah,
Negeri Sembilan, Malaysia
2Department of Chemical Sciences, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
Received: 15 September
2022/Accepted: 17 May 2023
Abstract
Carrageenan is one of the most prominent hydrocolloids in the food
industry used as a thickener and additive to improve the texture of food
products. However, the detection of carrageenan in the food product is still
limited as many interferences in the food matrix can interfere with the signal
obtained. This research aims to study the effect of interference species on a
simple and rapid quantitative detection of carrageenan by using a cationic dye
which is methylene blue. Methylene blue will form a complex with carrageenan at
565 nm due to the hypsochromic shift of the methylene blue peak at 664 nm with
a color change from blue to bluish purple. The optimization and analytical
performance of carrageenan-methylene blue complexes were characterized by using
UV-Visible Spectrophotometer. A dynamic linear concentration range for
carrageenan detection was obtained in the range of 70-100 ppm (R2 =
0.9837) with a limit of detection (LOD) estimated at 38.37 ppm. The
reproducibility study was found to give a satisfactory relative standard
deviation (RSD) value of 1.64-1.94%. Selectivity experiments were carried out
where the methylene blue demonstrated acceptable selectivity towards
carrageenan with no significant interference from sucrose and glucose.
Keywords: Complexation; free solution;
methylene blue
Abstrak
Karagenan ialah salah satu hidrokoloid yang popular dalam
industri makanan yang selalunya digunakan sebagai pemekat dan aditif untuk
memperbaiki tekstur produk makanan. Walau bagaimanapun, pengesanan karagenan dalam produk makanan adalah masih terhad
kerana banyak gangguan dalam matriks makanan yang boleh mengganggu isyarat yang
diperoleh. Penyelidikan ini bertujuan untuk mengkaji kesan spesies gangguan
terhadap pengesanan kuantitatif karagenan yang mudah dan cepat dengan
menggunakan pewarna kationik iaitu metilena biru. Metilena biru akan membentuk
kompleks dengan karagenan pada 565 nm disebabkan oleh peralihan hipsokromik
puncak metilena biru pada 664 nm dengan perubahan warna daripada biru kepada
ungu kebiruan. Pengoptimuman dan prestasi analisis kompleks karagenan-metilena
biru telah dicirikan dengan menggunakan Spektrofotometer Ultraungu Tampak.
Julat kepekatan linear dinamik untuk pengesanan karagenan diperoleh dalam julat
70-100 ppm (R2 = 0.9837) dengan had pengesanan (LOD) dianggarkan
pada 38.37 ppm. Kajian kebolehulangan didapati memberikan nilai sisihan piawai
relatif (RSD) yang memuaskan iaitu 1.64-1.94%. Uji kaji kepilihan telah
dijalankan dan metilena biru menunjukkan kepilihan yang boleh diterima terhadap
karagenan tanpa gangguan ketara terutamanya daripada sukrosa.
Kata kunci: Larutan bebas; metilena biru; pengkompleksan
REFERENCES
Alsubaie, N.,
Alshamrani, R., Domyati, D., Alahmadi, N. & Bannani, F. 2021. Methylene
blue dye adsorption onto polyoxometalate ionic liquid supported on bentonite: Kinetic, equilibrium and thermodynamic Studies. Open
Journal of Physical Chemistry 11(02):
106-127.
Anderson, L.,
Wittkopp, S.M., Painter, C.J., Liegel, J.J., Schreiner, R., Bell, J.A. &
Shakhashiri, B.Z. 2012. What is happening when the blue bottle bleaches: An
investigation of the methylene blue-catalyzed air oxidation of glucose. Journal
of Chemical Education 89(11):
1425-1431.
Bartlová, M.,
Ziółkowska, D., Pospiech, M., Shyichuk, A. & Tremlová, B. 2021.
Determination of carrageenan in jellies with new methylene blue dye using
spectrophotometry, smartphone-based colorimetry and spectrophotometric
titration. Food Science and Technology 41: 81-90.
Bhanvase, B.
& Barai, D. 2021. Stability of nanofluids. Nanofluids for Heat and Mass
Transfer. Massachusetts: Academic
Press. pp. 69-97.
Chen, X.,
Zhang, Z., Yang, H., Qiu, P., Wang, H., Wang, F., Zhao, Q., Fang, J. & Nie,
J. 2020. Consumption of ultra-processed foods and health outcomes: A systematic
review of epidemiological studies. Nutrition Journal 19(1): 1-10.
Dürüst, N.,
Meyerhoff, M.E., Ünal, N. & Naç, S. 2011. Spectrophotometric determination of
various polyanions with polymeric film optodes using microtiter plate reader. Analytica
Chimica Acta 699(1):
107-112.
Goeff, D.
& Guo, Q. 2019. Food structure development: The interplay between processing
routes and formulation elements. Part A Food Structure Development: The
Interplay Between Processing Routes and Formulation Elements. pp. 1-28.
Haldar, K.
& Chakraborty, S. 2019. Investigation of chemical reaction during sodium
alginate drop impact on calcium chloride film. Physics of Fluids 31(7): 072102.
Hemdan, S.S.,
Jebaly, A.M.A. & Ali, F.K. 2019. Importance of isosbestic point in
spectroscopy: A review 62(1):
1-21.
Herfurth, J.
& Ulrich, J. 2017. Analysis of hydrocolloids in crystalline material. Chemical
Engineering and Technology 40(7):
1261-1267.
Hotchkiss,
S., Brooks, M., Campbell, R., Philp, K. & Trius, A. 2018. The use of
carrageenan in food. In Protests and Riots Past: Present and Future
Perspectives, edited by Pichette, A. pp. 47-75.
Khan, I.,
Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N.,
Ahmad, H., Shah, L.A., Shah, T. & Khan, I. 2022. Review on methylene blue:
Its properties, uses, toxicity and photodegradation. Water 14(2): 242.
Król, Z.,
Malik, M., Marycz, K. & Jarmoluk, A. 2016. Characteristic of gelatine,
carrageenan and sodium alginate hydrosols treated by direct electric current. Polymers 8(8): 275.
Lapwanit, S.,
Sooksimuang, T. & Trakulsujaritchok, T. 2018. Adsorptive removal of
cationic methylene blue dye by kappa-carrageenan/poly(glycidyl methacrylate)
hydrogel beads: Preparation and characterization. Journal of Environmental
Chemical Engineering 6(5):
6221-6230.
Lee, K.Y.
& Mooney, D.J. 2012. Alginate: Properties and biomedical applications. Progress
in Polymer Science 37(1): 106-126.
Ling, Y.P.
& Heng, L.Y. 2014. Reflectance based sensor for carrageenan utilizing
methylene blue embedded acrylic microspheres. Sensors and Actuators, B:
Chemical 192: 247-252.
Lipatova,
I.M., Makarova, L.I. & Mezina, E.A. 2016. A spectrophotometric study of the
compoundation between methylene blue dye and sodium alginate. Russian
Journal of General Chemistry 86(9): 2226-2231.
Liu, F., Hou,
P., Zhang, H., Tang, Q., Xue, C. & Li, R.W. 2021. Food-grade carrageenans
and their implications in health and disease. Comprehensive Reviews in
Food Science and Food Safety 20(4):
3918-3936.
Luxminarayan,
L., Neha, S., Amit, V. & Khinchi, M.P. 2017. A review on chromatography techniques. Asian
Journal of Pharmaceutical Research and Development 5(2): 1-8.
Makhado, E.,
Pandey, S., Modibane, K.D., Kang, M. & Hato, M.J. 2020. Sequestration of
methylene blue dye using sodium alginate poly(acrylic acid)@ZnO hydrogel
nanocomposite: Kinetic, isotherm and thermodynamic investigations. International
Journal of Biological Macromolecules 162: 60-73.
Sacks, G.,
Riesenberg, D., Mialon, M., Dean, S. & Cameron, A.J. 2020. The
characteristics and extent of food industry involvement in peer-reviewed
research articles from 10 leading nutrition related journals in 2018. PLoS ONE 15: 1-15.
Sun, Y., Zhu,
X., Shen, X. & Wang, W. 2021. Determination of carrageenan in livestock and
poultry meat by ultrahigh-performance liquid chromatography-tandem mass
spectrometry. International Journal of Analytical Chemistry 2021:
5277453.
Taha, A.M.,
Said, R.A.M., Mousa, I.S. & Elsayed, T.M. 2022. Simultaneous determination
of ofloxacin and bromfenac in combined dosage form using four different
spectrophotometric methods. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy 273: 121066.
Taylor, J.K.
1983. Validation of analytical methods. Analytical Chemistry 55(6): 600A-608A.
Tobacman,
J.K., Bhattacharya, S., Borthakur, A. & Dudeja, P.K. 2008. The carrageenan diet:
Not recommended. Science 321(5892): 1040-1041.
Wan Khalid,
W.E.F., Mat Arip, M.N., Jasmani, L. & Heng, L.Y. 2019. A new sensor for
methyl paraben using an electrode made of a cellulose nanocrystal–reduced
graphene oxide nanocomposite. Sensors 19(12): 2726.
Younes, M.,
Aggett, P., Aguilar, F., Crebelli, R., Filipič, M., Frutos, M.J., Galtier,
P., Gott, D., Gundert-Remy, U., Kuhnle, G.G., Lambré, C., Leblanc, J-C.,
Lillegaard, I.T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic, I.,
Waalkens-Berendsen, I., Woutersen, R.A., Wright, M., Brimer, L., Lindtner, O.,
Mosesso, P., Christodoulidou, A., Ioannidou, S., Lodi, F. & Dusemund, B.
2018. Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA Journal 16(4): e05238.
Ziółkowska,
D., Kaniewska, A., Lamkiewicz, J. & Shyichuk, A. 2017. Determination of
carrageenan by means of photometric titration with methylene blue and toluidine
blue dyes. Carbohydrate Polymers 165: 1-6.
*Corresponding author; email: wan_elina@uitm.edu.my
|