Sains Malaysiana 52(6)(2023):
1699-1710
http://doi.org/10.17576/jsm-2023-5206-07
Properties of Spray-Dried Iron Microcapsule
Using Hydrolysed Glucomannan as Encapsulant: Effect of Feed Viscosity
(Sifat Mikrokapsul Besi Sembur-Kering Menggunakan Glukomanan Terhidrolisis sebagai Enkapsulan: Kesan
Kelikatan Suapan)
DYAH HESTI WARDHANI*, IRSYADIA NINDYA WARDANA, HANA NIKMA ULYA, ANDRI CAHYO KUMORO & NITA ARYANTI
Department
of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro
Jl.
Prof. Sudarto, SH, Tembalang,
Semarang 50239, Indonesia
Received: 25 October
2022/Accepted: 22 May 2023
Abstract
As one of
the polysaccharides with high viscocity, even in low concentration, glucomannan
could block the nozzle and hinder its application as spray-dried
encapsulant. The present research aimed to investigate the effect of viscosity
of hydrolysed glucomannan as a spray-dryer feed on properties of encapsulated
iron particles. Glucomannan was hydrolysed using cellulase to obtain various
viscosities (83-222 cP) and used for encapsulating iron. Enzymatic hydrolysis
reduced the glucomannan's glass transition temperature and transmittance values
of O-H, C-O, and C-H groups. Increasing the viscosity lightened the particle
colour, and improved encapsulation efficiency and mean particle diameter,
however, reduced moisture content and bulk density. The highest encapsulation
efficiency (99.95%) was obtained using the most viscous encapsulant (222 cP). Thicker encapsulants produced larger particles
with more wrinkles on the surface but performed better in protecting iron. Solubility and swelling of the particles were higher in neutral solution
(pH=6.8) than in an acidic one. The degree of iron degradation was around 70%
after 10 months of storage. These results suggested the use of an appropriate
viscosity of hydrolysed glucomannan not only allow it to be sprayed but also
showed a potency to protect the iron from solubility in acid ambient and degradation
during the storage.
Keywords: Biodegradable;
glucomannan; iron; microencapsulation; viscosity
Abstrak
Sebagai salah satu polisakarida dengan kelikatan yang tinggi,
walaupun dalam kepekatan rendah, glukomanan boleh menyekat muncung
dan menghalang penggunaannya sebagai enkapsulan semburan kering. Penyelidikan
ini bertujuan untuk mengkaji kesan
kelikatan glukomanan terhidrolisis sebagai suapan pengering semburan ke atas
sifat zarah besi terkapsul. Glukomanan telah dihidrolisis menggunakan selulase
untuk mendapatkan pelbagai kelikatan (83-222 cP) dan digunakan untuk membungkus
besi. Hidrolisis enzim mengurangkan suhu peralihan kaca glukomanan dan nilai
penghantaran dalam kumpulan O-H, C-O, dan C-H. Meningkatkan kelikatan
mencerahkan warna zarah dan meningkatkan kecekapan enkapsulasi dan diameter
zarah purata bagaimanapun, mengurangkan kandungan lembapan dan ketumpatan
pukal. Kecekapan enkapsulasi tertinggi (99.95%) diperoleh menggunakan
enkapsulan paling likat (222 cP). Enkapsulan yang lebih tebal menghasilkan
zarah yang lebih besar dengan lebih banyak kedutan pada permukaan tetapi
berfungsi dengan lebih baik dalam melindungi besi. Keterlarutan dan
pembengkakan zarah adalah lebih tinggi dalam larutan neutral (pH=6.8) daripada
dalam larutan berasid. Tahap degradasi besi adalah sekitar 70% selepas 10 bulan
penyimpanan. Keputusan ini mencadangkan penggunaan kelikatan glukomanan
terhidrolisis yang sesuai bukan sahaja membenarkan ia disembur tetapi juga
menunjukkan potensi untuk melindungi besi daripada keterlarutan dalam ambien
asid dan degradasi semasa penyimpanan.
Kata kunci: Besi; glukomannan; kelikatan; mikroenkapsulasi;
terbiodegradasi
REFERENCES
Adamiec, J., Borompichaichartkul, C., Srzednicki,
G., Panket, W., Piriyapunsakul,
S. & Zhao, J. 2012. Microencapsulation
of kaffir lime oil and its functional properties. Drying Technology 30(9): 914-920. DOI:
10.1080/07373937.2012.666777
Akpinar, O., Erdogan, K., Bakir, U. & Yilmaz, L. 2010. Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides, LWT - Food Science and Technology 43(1): 119-125. DOI:
10.1016/j.lwt.2009.06.025
Albrecht,
S., van Muiswinkel, G.C., Xu, J., Schols,
H.A., Voragen, A.G. & Gruppen, H. 2011. Enzymatic production and
characterization of konjac glucomannan oligosaccharides. Journal of Agricultural and Food Chemistry 59(23): 12658-12666. DOI:
10.1021/jf203091h
Arpagaus, C., John, P., Collenberg, A. & Rütti, D.
2017. Nanocapsules formation by nano spray drying. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries, edited by Jafari, S.M. Massachusetts: Academic Press. pp. 346-401.
Baik, M.Y., Kim, K.J., Cheon, K.C., Ha, Y.C. & Kim, W.S. 1997. Recrystallization kinetics and glass transition of rice starch
gel system. Journal of Agricultural and Food Chemistry 45(11): 4242-4248.
DOI: 10.1021/jf960713u
Bhandari,
B.R. & Howes, T. 1999.
Implication of glass transition for the drying and stability of dried foods. Journal
of Food Engineering 40(1-2): 71-79. DOI:
10.1016/S0260-8774(99)00039-4
Churio, O. & Valenzuela, C. 2018. Development and characterization of maltodextrin microparticles to
encapsulate heme and non-heme iron. LWT - Food Science and Technology 96: 568-575.
DOI: 10.1016/j.lwt.2018.05.072
Ding,
H., Li, B., Boiarkina, I., Wilson, D.I., Yu, W. & Young, B.R. 2020. Effects of morphology on the bulk density of instant whole
milk powder. Foods 9(8): 1024. DOI:
10.3390/foods9081024
Dueik, V. & Diosady, L.L. 2017. Microencapsulation of iron in a
reversed enteric coating using spray drying technology for double fortification
of salt with iodine and iron. Journal of Food Process Engineering 40(2): e12376.
DOI: 10.1111/jfpe.12376
Ferrari,
C.C., Germer, S.P.M. & de Aguirre, J.M. 2012. Effects of spray-drying conditions on the
physicochemical properties of blackberry powder. Drying Technology 30(2): 154-163.
DOI: 10.1080/07373937.2011.628429
Frascareli, E.C., Silva,
V.M., Tonon, R.V. & Hubinger, M.D. 2012. Effect of process conditions on
the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing 90(3): 413-424.
DOI: 10.1016/j.fbp.2011.12.002
Goula, A.M. & Adamopoulos, K.G. 2010. A new technique for spray
drying orange juice concentrate. Innovative Food Science & Emerging
Technologies 11(2): 342-351. DOI:
10.1016/j.ifset.2009.12.001
Guerreiro, F., Pontes,
J.F., da Costa, A.M.R. & Grenha, A. 2019. Spray-drying of konjac glucomannan to produce microparticles for an application as antitubercular drug carriers. Powder
Technology 342: 246-252. DOI:
10.1016/j.powtec.2018.09.068
He,
Z., Zhang, J. & Huang, D. 2001. A kinetic correlation for konjac powder hydrolysis by β-mannanase from Bacillus licheniformis. Biotechnology Letters 23(5): 389-393.
DOI: 10.1023/A:1005615204340
Imtiaz-Ul-Islam, M. & Langrish, T.A.G. 2009. Comparing
the crystallization of sucrose and lactose in spray dryers. Food and Bioproducts Processing 87(2): 87-95.
DOI: 10.1016/j.fbp.2008.09.003
Kha, T.C., Nguyen,
M.H. & Roach, P.D. 2011. Effects of
pre-treatments and air drying temperatures on colour and antioxidant properties of gac fruit powder. International
Journal of Food Engineering 7(3). DOI:
10.2202/1556-3758.1926
Komiya,
S., Ojima, R., Takigami,
M., Takahashi, R. & Takigami, S. 2010.
Observation of molecular chains of hydrolyzed konjac glucomannan by scanning probe microscope. Transactions
of the Materials Research Society of Japan 35(4): 881-884. DOI:
10.14723/tmrsj.35.881
Lechanteur, A. & Evrard, B. 2020. Influence of composition and
spray-drying process parameters on carrier-free DPI properties and behaviors in
the lung: A review. Pharmaceutics 12(1): 55.
Minowa, T., Zhen, F. & Ogi, T. 1997. Liquefaction of cellulose in hot
compressed water using sodium carbonate: Products distribution at different
reaction temperatures. Journal of Chemical Engineering of Japan 30(1): 186-190.
DOI: 10.1252/jcej.30.186
Mishra,
P., Mishra, S. & Mahanta, C.L. 2014. Effect
of maltodextrin concentration and inlet temperature
during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing 92(3): 252-258. DOI:
10.1016/j.fbp.2013.08.003
Pistre, V., Ducept, F., Mezdour, S., Sionneau, M. & Cuvelier, G. 2013. October. Impact of the product viscosity
on the spraying stage in spray drying. In EuroDrying'2013-4. European
Drying Conference.
Ramakrishnan, Y., Adzahan, N.M., Yusof, Y.A. & Muhammad, K. 2018. Effect of wall materials on the spray drying efficiency,
powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology 328: 406-414.
DOI: 10.1016/j.powtec.2017.12.018
Singh,
A.P, Siddiqui, J. & Diosady, L.L. 2018. Characterizing the pH-dependent release
kinetics of food-grade spray drying encapsulated iron microcapsules for food
fortification. Food and Bioprocess Technology 11(2): 435-446.
DOI: 10.1007/s11947-017-2022-0
Sosnik, A. & Seremeta, K.P. 2015. Advantages and challenges of the
spray-drying technology for the production of pure drug particles and
drug-loaded polymeric carriers. Advances in Colloid and Interface Science 223: 40-54.
DOI: 10.1016/j.cis.2015.05.003
Tonon, R.V., Baroni, A.F., Brabet, C., Gibert, O., Pallet, D. & Hubinger, M.D. 2009. Water sorption and glass
transition temperature of spray dried açai (Euterpe oleracea Mart.) juice. Journal of Food Engineering 94(3-4): 215-221.
DOI: 10.1016/j.jfoodeng.2009.03.009
Tontul, I. & Topuz, A. 2017. Spray-drying of fruit and vegetable juices:
Effect of drying conditions on the product yield and physical properties. Trends
in Food Science & Technology 63: 91-102.
Wang,
J., Liu, C., Shuai, Y., Cui, X. & Nie, L. 2014. Controlled release of anticancer drug
using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids
and Surfaces B: Biointerfaces 113: 223-229. DOI:
10.1016/j.colsurfb.2013.09.009
Wardhani, D.H., Cahyono, H., Ulya, H.N., Kumoro, A.C., Anam, K. & Vázquez, J.A. 2022. Spray-dryer feed preparation: Enzymatic degradation of glucomannan for iron nanoencapsulation. AIMS
Agriculture and Food 7(3): 683-703. DOI: 10.3934/agrfood.2022042
Wardhani, D.H., Rahayu, L.H., Cahyono, H.
& Ulya, H.L. 2020a. Purification of glucomannan of porang (Amorphophallus oncophyllus) flour using
combination of isopropyl alcohol and ultrasound-assisted extraction. Reaktor 20(4): 203-209.
DOI: 10.14710/reaktor.20.4.203-209
Wardhani, D.H., Wardana, I.N., Ulya, H.N., Cahyono, H., Kumoro, A.C. & Aryanti, N. 2020b. The effect of spray-drying inlet
conditions on iron encapsulation using hydrolysed glucomannan as a matrix. Food and Bioproducts Processing 123: 72-79.
DOI: 10.1016/j.fbp.2020.05.013
Wardhani, D.H., Aryanti, N., Etnanta, F.N. & Ulya, H.N. 2019. Modification of glucomannan of Amorphophallus oncophyllus as an excipient for iron encapsulation performed using the gelation
method. Acta Scientiarum Polonorum Technologia Alimentaria 18(2): 173-184.
DOI: 10.17306/J.AFS.2019.0651
Yousefi, S., Emam-Djomeh, Z. & Mousavi, S.M.
2011. Effect of carrier type and spray drying on the physicochemical properties
of powdered and reconstituted pomegranate juice (Punica granatum L.). Journal of Food Science and Technology 48(6): 677-684.
DOI: 10.1007/s13197-010-0195-x
*Corresponding author; email: dhwardhani@che.undip.ac.id
|