Sains Malaysiana 52(6)(2023): 1699-1710

http://doi.org/10.17576/jsm-2023-5206-07

 

Properties of Spray-Dried Iron Microcapsule Using Hydrolysed Glucomannan as Encapsulant: Effect of Feed Viscosity

(Sifat Mikrokapsul Besi Sembur-Kering Menggunakan Glukomanan Terhidrolisis sebagai Enkapsulan: Kesan Kelikatan Suapan)

 

DYAH HESTI WARDHANI*, IRSYADIA NINDYA WARDANA, HANA NIKMA ULYA, ANDRI CAHYO KUMORO & NITA ARYANTI

 

Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro

Jl. Prof. Sudarto, SH, Tembalang, Semarang 50239, Indonesia

 

Received: 25 October 2022/Accepted: 22 May 2023

 

Abstract

As one of the polysaccharides with high viscocity, even in low concentration, glucomannan could block the nozzle and hinder its application as spray-dried encapsulant. The present research aimed to investigate the effect of viscosity of hydrolysed glucomannan as a spray-dryer feed on properties of encapsulated iron particles. Glucomannan was hydrolysed using cellulase to obtain various viscosities (83-222 cP) and used for encapsulating iron. Enzymatic hydrolysis reduced the glucomannan's glass transition temperature and transmittance values of O-H, C-O, and C-H groups. Increasing the viscosity lightened the particle colour, and improved encapsulation efficiency and mean particle diameter, however, reduced moisture content and bulk density. The highest encapsulation efficiency (99.95%) was obtained using the most viscous encapsulant (222 cP). Thicker encapsulants produced larger particles with more wrinkles on the surface but performed better in protecting iron. Solubility and swelling of the particles were higher in neutral solution (pH=6.8) than in an acidic one. The degree of iron degradation was around 70% after 10 months of storage. These results suggested the use of an appropriate viscosity of hydrolysed glucomannan not only allow it to be sprayed but also showed a potency to protect the iron from solubility in acid ambient and degradation during the storage.

 

Keywords: Biodegradable; glucomannan; iron; microencapsulation; viscosity

 

Abstrak

Sebagai salah satu polisakarida dengan kelikatan yang tinggi, walaupun dalam kepekatan rendah, glukomanan boleh menyekat muncung dan menghalang penggunaannya sebagai enkapsulan semburan kering. Penyelidikan ini bertujuan untuk mengkaji kesan kelikatan glukomanan terhidrolisis sebagai suapan pengering semburan ke atas sifat zarah besi terkapsul. Glukomanan telah dihidrolisis menggunakan selulase untuk mendapatkan pelbagai kelikatan (83-222 cP) dan digunakan untuk membungkus besi. Hidrolisis enzim mengurangkan suhu peralihan kaca glukomanan dan nilai penghantaran dalam kumpulan O-H, C-O, dan C-H. Meningkatkan kelikatan mencerahkan warna zarah dan meningkatkan kecekapan enkapsulasi dan diameter zarah purata bagaimanapun, mengurangkan kandungan lembapan dan ketumpatan pukal. Kecekapan enkapsulasi tertinggi (99.95%) diperoleh menggunakan enkapsulan paling likat (222 cP). Enkapsulan yang lebih tebal menghasilkan zarah yang lebih besar dengan lebih banyak kedutan pada permukaan tetapi berfungsi dengan lebih baik dalam melindungi besi. Keterlarutan dan pembengkakan zarah adalah lebih tinggi dalam larutan neutral (pH=6.8) daripada dalam larutan berasid. Tahap degradasi besi adalah sekitar 70% selepas 10 bulan penyimpanan. Keputusan ini mencadangkan penggunaan kelikatan glukomanan terhidrolisis yang sesuai bukan sahaja membenarkan ia disembur tetapi juga menunjukkan potensi untuk melindungi besi daripada keterlarutan dalam ambien asid dan degradasi semasa penyimpanan.

 

Kata kunci: Besi; glukomannan; kelikatan; mikroenkapsulasi; terbiodegradasi

 

REFERENCES

Adamiec, J., Borompichaichartkul, C., Srzednicki, G., Panket, W., Piriyapunsakul, S. & Zhao, J. 2012. Microencapsulation of kaffir lime oil and its functional properties. Drying Technology 30(9): 914-920. DOI: 10.1080/07373937.2012.666777

Akpinar, O., Erdogan, K., Bakir, U. & Yilmaz, L. 2010. Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides, LWT - Food Science and Technology 43(1): 119-125. DOI: 10.1016/j.lwt.2009.06.025

Albrecht, S., van Muiswinkel, G.C., Xu, J., Schols, H.A., Voragen, A.G. & Gruppen, H. 2011. Enzymatic production and characterization of konjac glucomannan oligosaccharides. Journal of Agricultural and Food Chemistry 59(23): 12658-12666. DOI: 10.1021/jf203091h

Arpagaus, C., John, P., Collenberg, A. & Rütti, D. 2017. Nanocapsules formation by nano spray drying. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries, edited by Jafari, S.M. Massachusetts: Academic Press. pp. 346-401.

Baik, M.Y., Kim, K.J., Cheon, K.C., Ha, Y.C. & Kim, W.S. 1997. Recrystallization kinetics and glass transition of rice starch gel system. Journal of Agricultural and Food Chemistry 45(11): 4242-4248. DOI: 10.1021/jf960713u

Bhandari, B.R. & Howes, T. 1999. Implication of glass transition for the drying and stability of dried foods. Journal of Food Engineering 40(1-2): 71-79. DOI: 10.1016/S0260-8774(99)00039-4

Churio, O. & Valenzuela, C. 2018. Development and characterization of maltodextrin microparticles to encapsulate heme and non-heme iron. LWT - Food Science and Technology 96: 568-575. DOI: 10.1016/j.lwt.2018.05.072

Ding, H., Li, B., Boiarkina, I., Wilson, D.I., Yu, W. & Young, B.R. 2020. Effects of morphology on the bulk density of instant whole milk powder. Foods 9(8): 1024. DOI: 10.3390/foods9081024

Dueik, V. & Diosady, L.L. 2017. Microencapsulation of iron in a reversed enteric coating using spray drying technology for double fortification of salt with iodine and iron. Journal of Food Process Engineering 40(2): e12376. DOI: 10.1111/jfpe.12376

Ferrari, C.C., Germer, S.P.M. & de Aguirre, J.M. 2012. Effects of spray-drying conditions on the physicochemical properties of blackberry powder. Drying Technology 30(2): 154-163. DOI: 10.1080/07373937.2011.628429

Frascareli, E.C., Silva, V.M., Tonon, R.V. & Hubinger, M.D. 2012. Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing 90(3): 413-424. DOI: 10.1016/j.fbp.2011.12.002

Goula, A.M. & Adamopoulos, K.G. 2010. A new technique for spray drying orange juice concentrate. Innovative Food Science & Emerging Technologies 11(2): 342-351. DOI: 10.1016/j.ifset.2009.12.001

Guerreiro, F., Pontes, J.F., da Costa, A.M.R. & Grenha, A. 2019. Spray-drying of konjac glucomannan to produce microparticles for an application as antitubercular drug carriers. Powder Technology 342: 246-252. DOI: 10.1016/j.powtec.2018.09.068

He, Z., Zhang, J. & Huang, D. 2001. A kinetic correlation for konjac powder hydrolysis by β-mannanase from Bacillus licheniformis. Biotechnology Letters 23(5): 389-393. DOI: 10.1023/A:1005615204340

Imtiaz-Ul-Islam, M. & Langrish, T.A.G. 2009. Comparing the crystallization of sucrose and lactose in spray dryers. Food and Bioproducts Processing 87(2): 87-95. DOI: 10.1016/j.fbp.2008.09.003

Kha, T.C., Nguyen, M.H. & Roach, P.D. 2011. Effects of pre-treatments and air drying temperatures on colour and antioxidant properties of gac fruit powder. International Journal of Food Engineering 7(3). DOI: 10.2202/1556-3758.1926

Komiya, S., Ojima, R., Takigami, M., Takahashi, R. & Takigami, S. 2010. Observation of molecular chains of hydrolyzed konjac glucomannan by scanning probe microscope. Transactions of the Materials Research Society of Japan 35(4): 881-884. DOI: 10.14723/tmrsj.35.881

Lechanteur, A. & Evrard, B. 2020. Influence of composition and spray-drying process parameters on carrier-free DPI properties and behaviors in the lung: A review. Pharmaceutics 12(1): 55.

Minowa, T., Zhen, F. & Ogi, T. 1997. Liquefaction of cellulose in hot compressed water using sodium carbonate: Products distribution at different reaction temperatures. Journal of Chemical Engineering of Japan 30(1): 186-190. DOI: 10.1252/jcej.30.186

Mishra, P., Mishra, S. & Mahanta, C.L. 2014. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing 92(3): 252-258. DOI: 10.1016/j.fbp.2013.08.003

Pistre, V., Ducept, F., Mezdour, S., Sionneau, M. & Cuvelier, G. 2013. October. Impact of the product viscosity on the spraying stage in spray drying. In EuroDrying'2013-4. European Drying Conference.

Ramakrishnan, Y., Adzahan, N.M., Yusof, Y.A. & Muhammad, K. 2018. Effect of wall materials on the spray drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology 328: 406-414. DOI: 10.1016/j.powtec.2017.12.018

Singh, A.P, Siddiqui, J. & Diosady, L.L. 2018. Characterizing the pH-dependent release kinetics of food-grade spray drying encapsulated iron microcapsules for food fortification. Food and Bioprocess Technology 11(2): 435-446. DOI: 10.1007/s11947-017-2022-0

Sosnik, A. & Seremeta, K.P. 2015. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Advances in Colloid and Interface Science 223: 40-54. DOI: 10.1016/j.cis.2015.05.003

Tonon, R.V., Baroni, A.F., Brabet, C., Gibert, O., Pallet, D. & Hubinger, M.D. 2009. Water sorption and glass transition temperature of spray dried açai (Euterpe oleracea Mart.) juice. Journal of Food Engineering 94(3-4): 215-221. DOI: 10.1016/j.jfoodeng.2009.03.009

Tontul, I. & Topuz, A. 2017. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology 63: 91-102.

Wang, J., Liu, C., Shuai, Y., Cui, X. & Nie, L. 2014. Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids and Surfaces B: Biointerfaces 113: 223-229. DOI: 10.1016/j.colsurfb.2013.09.009

Wardhani, D.H., Cahyono, H., Ulya, H.N., Kumoro, A.C., Anam, K. & Vázquez, J.A. 2022. Spray-dryer feed preparation: Enzymatic degradation of glucomannan for iron nanoencapsulation. AIMS Agriculture and Food 7(3): 683-703. DOI: 10.3934/agrfood.2022042

Wardhani, D.H., Rahayu, L.H., Cahyono, H. & Ulya, H.L. 2020a. Purification of glucomannan of porang (Amorphophallus oncophyllus) flour using combination of isopropyl alcohol and ultrasound-assisted extraction. Reaktor 20(4): 203-209. DOI: 10.14710/reaktor.20.4.203-209

Wardhani, D.H., Wardana, I.N., Ulya, H.N., Cahyono, H., Kumoro, A.C. & Aryanti, N. 2020b. The effect of spray-drying inlet conditions on iron encapsulation using hydrolysed glucomannan as a matrix. Food and Bioproducts Processing 123: 72-79. DOI: 10.1016/j.fbp.2020.05.013

Wardhani, D.H., Aryanti, N., Etnanta, F.N. & Ulya, H.N. 2019. Modification of glucomannan of Amorphophallus oncophyllus as an excipient for iron encapsulation performed using the gelation method. Acta Scientiarum Polonorum Technologia Alimentaria 18(2): 173-184. DOI: 10.17306/J.AFS.2019.0651

Yousefi, S., Emam-Djomeh, Z. & Mousavi, S.M. 2011. Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica granatum L.). Journal of Food Science and Technology 48(6): 677-684. DOI: 10.1007/s13197-010-0195-x

 

*Corresponding author; email: dhwardhani@che.undip.ac.id

 

 

 

 

 

 

 

previous