Sains Malaysiana 52(6)(2023): 1685-1697

http://doi.org/10.17576/jsm-2023-5206-06

 

Physical Properties of Tapioca Starch-Based Film Indicators with Anthocyanin Extract from Purple Sweet Potato (Ipomoea batatas L.) and Response to pH Changes

 (Sifat Fizikal Penunjuk Filem Berasaskan Kanji Ubi Kayu dengan Ekstrak Antosianin daripada Ubi Keledek Ungu (Ipomoea batatas L.) dan Tindak Balasnya terhadap Perubahan pH)

 

SAFINTA NURINDRA RAHMADHIA*, AFIST AZKIYA SIDQI & YANAS ANGGANA SAPUTRA

 

Department of Food Technology, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Yogyakarta, Indonesia

 

Received: 2 August 2022/ Accepted: 22 May 2023

 

Abstract

Intelligent packaging comes in the form of interactive film indicator using a natural pigment compound sensitive to pH changes. The development of intelligent packaging as an indicator film by utilizing natural pigment compounds that are related to pH change and food safety is motivated by increased consumer awareness of food safety. Purple sweet potato (Ipomoea batatas L.) is the source of anthocyanin flavonoid compounds sensitive to pH changes, demonstrated by color changes in film indicators. This research aims to determine physical properties and the pH response of tapioca starch-based film indicators with anthocyanin extract variation from purple sweet potato. Purple sweet potato anthocyanin (PSPA) indicator film was made using tapioca starch as biopolymer by casting method with the addition of anthocyanin extract at concentrations of 0, 5, 10, and 15 g. Furthermore, this research is conducted to analyze the physical properties of the film, and response to pH changes of fresh cow milk, Gindara fish fillet and chicken sausage stored at 7 °C and 25 °C under 48-hour observation. The results showed that the film indicator thickness was 0.72-0.74 mm, tensile strength was 1.23-9.86 MPa, elongation was 14.83-55.74%, and water vapor permeability (WVP) was 1.32-1.78 × 10-14 kg.m/m2.s.Pa. The results of this study indicated that the PSPA indicator films have the potential to be used as smart packaging to monitor food freshness and quality for safe consumption. That was supported by the good physical properties of PSPA indicator films.

 

Keywords: Anthocyanin; food applications; intelligent packaging; pH indicator; purple sweet potato

 

Abstrak 

Pembungkusan pintar datang dalam bentuk filem penunjuk interaktif menggunakan pigmen semula jadi yang sensitif kepada perubahan pH. Membuat pembungkusan pintar sebagai filem penunjuk dengan menggunakan komponen pigmen semula jadi yang berkaitan dengan perubahan pH dan keselamatan makanan didorong oleh peningkatan kesedaran pengguna terhadap keselamatan makanan. Ubi keledek ungu (Ipomoea batatas L.) ialah sumber flavonoid antosianin yang sensitif kepada perubahan pH, ditunjukkan oleh perubahan warna dalam filem penunjuk. Penyelidikan ini bertujuan untuk menentukan sifat fizikal dan tindak balas pH filem penunjuk berasaskan kanji ubi kayu dengan variasi ekstrak antosianin daripada keledek ungu. Filem penunjuk antosianin ubi keledek ungu (PSPA) dibuat menggunakan kanji ubi kayu sebagai biopolimer dengan kaedah percetakan dengan penambahan ekstrak antosianin pada kepekatan 0, 5, 10 dan 15 g. Seterusnya, kajian ini dijalankan untuk menganalisis sifat fizikal filem dan perubahan tindak balas terhadap pH susu lembu segar, ikan Gindara dan sosej ayam yang disimpan pada suhu 7 °C dan 25 °C di bawah pemerhatian selama 48 jam. Keputusan menunjukkan bahawa ketebalan filem penunjuk ialah 0.72-0.74 mm, kekuatan tegangan ialah 1.23-9.86 MPa, pemanjangan ialah 14.83-55.74% dan Kebolehtelapan Wap Air (WVP) ialah 1.32-1.78 × 10-14 kg.m/m2.s.Pa. Hasil kajian ini menunjukkan bahawa filem penunjuk PSPA sebagai penunjuk pH yang dihasilkan berpotensi untuk digunakan sebagai pembungkusan pintar untuk memantau kesegaran dan kualiti makanan untuk penggunaan yang selamat. Itu disokong oleh sifat fizikal yang baik bagi filem penunjuk PSPA.

 

Kata kunci: Antosianin; aplikasi makanan; pembungkusan pintar; penunjuk pH; ubi keledek ungu

 

REFERENCES

Abedi-Firoozjah, R., Yousefi, S., Heydari, M., Seyedfatehi, F., Jafarzadeh, S., Mohammadi, R., Rouhi, M. & Garavand, F. 2022. Application of red cabbage anthocyanins as pH-sensitive pigments in smart food packaging and sensors. Polymers 14(8): 1629. https://doi.org/10.3390/polym14081629

Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Graü, M.A. & Martín-Belloso, O. 2015. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids 47: 168-177. https://doi.org/10.1016/j.foodhyd.2015.01.032

Alizadeh-Sani, M., Tavassoli, M., Mohammadian, E., Ehsani, A., Khaniki, G.J., Priyadarshi, R. & Rhim, J.W. 2021. pH-Responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. International Journal of Biological Macromolecules 166: 741-750. https://doi.org/10.1016/j.ijbiomac.2020.10.231

Andretta, R., Luchese, C.L., Tessaro, I.C. & Spada, J.C. 2019. Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression. Food Hydrocolloids 93(February): 317-324. https://doi.org/10.1016/j.foodhyd.2019.02.019

ASTM D 882-02. 2002. Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International. In Www.Astm.Org.

ASTM E 96. 1995. Standard Test Methods for Water Vapor Transmission of Materials, E 96/E 96M - 05. ASTM International, i. https://doi.org/10.1520/E0096. pp. 1-8.

Balbinot-Alfaro, E., Craveiro, D.V., Lima, K.O., Costa, H.L.G., Lopes, D.R. & Prentice, C. 2019. Intelligent packaging with pH indicator potential. Food Engineering Reviews 11(4): 235-244. https://doi.org/10.1007/s12393-019-09198-9

Barnes, J.S., Nguyen, H.P., Shen, S. & Schug, K.A. 2009. General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry. Journal of Chromatography A 1216(23): 4728-4735. https://doi.org/10.1016/j.chroma.2009.04.032

Benbettaïeb, N., Kurek, M., Bornaz, S. & Debeaufort, F. 2014. Barrier, structural, and mechanical properties of bovine gelatin-chitosan blend films related to biopolymer interactions. Journal of the Science of Food and Agriculture 94(12): 2409-2419. https://doi.org/10.1002/jsfa.6570

Buchweitz, M., Carle, B.R. & Kammerer, D.R. 2013. Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems. Food Chemistry 138: 2026-2035. https://doi.org/10.1016/j.foodchem.2012.10.090

Chen, C.C., Lin, C., Chen, M.H. & Chiang, P.Y. 2019. Stability and quality of anthocyanin in purple sweet potato extracts. Foods 8(9): 1-13. https://doi.org/10.3390/foods8090393

Chen, M., Yan, T., Huang, J., Zhou, Y. & Hu, Y. 2021. Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. International Journal of Biological Macromolecules 179: 90-100. https://doi.org/10.1016/j.ijbiomac.2021.02.170

Chi, W., Cao, L., Sun, G., Meng, F., Zhang, C., Li, J. & Wang, L. 2020. Developing a highly pH-sensitive ĸ-Carrageenan-based intelligent film incorporating grape skin powder via a cleaner process. Journal of Cleaner Production 244: 118862. https://doi.org/10.1016/j.jclepro.2019.118862

Choi, I., Lee, J.Y., Lacroix, M. & Han, J. 2017. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry 218: 122-128. https://doi.org/10.1016/j.foodchem.2016.09.050

Devarayan, K., Pandiyan, P., Nagaraju, K.S. & Anjappan, H. 2020. Halochromic sensors for real-time monitoring of spoilage of packed seer fish. Materials Today: Proceedings 33(7): 3961-3966. https://doi.org/10.1016/j.matpr.2020.06.332

Dodero, A., Escher, A., Bertucci, S., Castellano, M. & Lova, P. 2021. Intelligent packaging for real-time monitoring of food-quality: Current and future developments. Applied Sciences 11(8): 3532. https://doi.org/10.3390/app11083532

Ezati, P., Tajik, H., Moradi, M. & Molaei, R. 2019. Intelligent pH-sensitive indicator based on starch-cellulose and alizarin dye to track freshness of rainbow trout fillet. International Journal of Biological Macromolecules 132: 157-165. https://doi.org/10.1016/j.ijbiomac.2019.03.173

Gao, R., Hu, H., Shi, T., Bao, Y., Sun, Q., Wang, L., Ren, Y., Jin, W. & Yuan, L. 2022. Incorporation of gelatin and Fe2+ increases the pH-sensitivity of zein-anthocyanin complex films used for milk spoilage detection. Current Research in Food Science 5: 677-686. https://doi.org/10.1016/j.crfs.2022.03.016

Ge, Y., Li, Y., Bai, Y., Yuan, C., Wu, C. & Hu, Y. 2020. Intelligent gelatin/oxidized chitin nanocrystals nanocomposite films containing black rice bran anthocyanins for fish freshness monitorings. International Journal of Biological Macromolecules 155: 1296-1306. https://doi.org/10.1016/j.ijbiomac.2019.11.101

Han, H., Li, M., Liu, Y., Yu, H., Cao, X., Zhao, H., Wang, B., Yue, X. & Zheng, Y. 2022. Non-volatile metabolite changes in low-temperature sausage stored at room temperature. Food Packaging and Shelf Life 31: 100805. https://doi.org/10.1016/j.fpsl.2021.100805

He, Z., Xu, M., Zeng, M., Qin, F. & Chen, J. 2016. Preheated milk proteins improve the stability of grape skin anthocyanins extracts. Food Chemistry 210: 221-227. https://doi.org/10.1016/j.foodchem.2016.04.116

Huang, S., Xiong, Y., Zou, Y., Dong, Q., Ding, F., Liu, X. & Li, H. 2019. A novel colorimetric indicator based on agar incorporated with Arnebia euchroma root extracts for monitoring fish freshness. Food Hydrocolloids 90: 198-205. https://doi.org/10.1016/j.foodhyd.2018.12.009

Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., Li, S., Luo, Q., Li, M., Liu, X., Chen, A., Wang, Z. & Zhang, Z. 2020. Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) Lam) anthocyanins for monitoring fish freshness. International Journal of Biological Macromolecules 143: 359-372. https://doi.org/10.1016/j.ijbiomac.2019.12.024

Kuswandi, B., Asih, N.P.N., Pratoko, D.K., Kristiningrum, N. & Moradi, M. 2020. Edible pH sensor based on immobilized red cabbage anthocyanins into bacterial cellulose membrane for intelligent food packaging. Packaging Technology and Science 33(8): 321-332. https://doi.org/10.1002/pts.2507

Kuswandi, B. & Jumina, J. 2020. Active and intelligent packaging, safety, and quality controls. In Fresh-Cut Fruits and Vegetables Elsevier. https://doi.org/10.1016/B978-0-12-816184-5.00012-4. pp. 243-294.

Lee, F.S., Soloi, S. & How, S.E. 2021. Extraction of anthocyanins and its effect on mechanical properties of pH sensitive-based films: A review. Transactions on Science and Technology 8(4): 679-688.

Lee, K., Park, H., Baek, S., Han, S., Kim, D., Chung, S., Yoon, J.Y. & Seo, J. 2019. Colorimetric array freshness indicator and digital color processing for monitoring the freshness of packaged chicken breast. Food Packaging and Shelf Life 22: 100408. https://doi.org/10.1016/j.fpsl.2019.100408

Li, Y., Wu, K., Wang, B. & Li, X. 2021. Colorimetric indicator based on purple tomato anthocyanins and chitosan for application in intelligent packaging. International Journal of Biological Macromolecules 174: 370-376. https://doi.org/10.1016/j.ijbiomac.2021.01.182

Luchese, C.L., Abdalla, V.F., Spada, J.C. & Tessaro, I.C. 2018. Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocolloids 82: 209-218. https://doi.org/10.1016/j.foodhyd.2018.04.010

Ma, Q., Ren, Y., Gu, Z. & Wang, L. 2017. Developing an intelligent film containing Vitis amurensis husk extracts: The effects of pH value of the film-forming solution. Journal of Cleaner Production 166: 851-859. https://doi.org/10.1016/j.jclepro.2017.08.099

Madeira, P.P., Loureiro, J.A., Freire, M.G. & Coutinho, J.A. 2019. Solvatochromism as a new tool to distinguish structurally similar compounds. Journal of Molecular Liquids 274: 740-745. https://doi.org/10.1016/j.molliq.2018.11.050

Maran, J.P., Sivakumar, V., Sridhar, R. & Thirugnanasambandham, K. 2013. Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydrate Polymers 92(2): 1335-1347. https://doi.org/10.1016/j.carbpol.2012.09.069

Musso, Y.S., Salgado, P.R. & Mauri, A.N. 2016. Gelatin based films capable of modifying its color against environmental pH changes. Food Hydrocolloids 61: 523-530. https://doi.org/10.1016/j.foodhyd.2016.06.013

Netramai, S., Kijchavengkul, T., Kham-Ngam, C. & Sirinupong, P. 2020. Development of colorimetric film with butterfly pea (Clitoria ternatea L.) extract for application in intelligent packaging. The 22nd Food Innovation Asia Conference 2020 (FIAC 2020).

Nisah, K. 2017. Study pengaruh kandungan amilosa dan amilopektin umbi-umbian terhadap karakteristik fisik plastik biodegradable dengan plastizicer gliserol. Jurnal Biotik 5(2): 106-113.

Novita, D.B. & Rahmadhia, S.N. 2021. Sifat fisiko-kimia kemasan berbasis gelatin dengan variasi penambahan gliserol dan ekstrak daun kersen (Muntingia calabura). Jurnal Teknologi Pangan 15(2). https://doi.org/10.33005/jtp.v15i2.2940

Park, K.J., Lee, J.S., Jo, H.J., Kim, E.S. & Lee, H.G. 2022. Antimicrobial and indicator properties of edible film containing clove bud oil-loaded chitosan capsules and red cabbage for fish preservation. International Journal of Biological Macromolecules 196: 163-171. https://doi.org/10.1016/j.ijbiomac.2021.12.027

Park, Y.W., Kim, S.M., Lee, J.Y. & Jang, W. 2015. Application of biosensors in smart packaging. Molecular and Cellular Toxicology 11(3): 277-285. https://doi.org/10.1007/s13273-015-0027-1

Prietto, L., Mirapalhete, T.C., Pinto, V.Z., Hoffmann, J.F., Vanier, N.L., Lim, L.T., Guerra Dias, A.R. & da Rosa Zavareze, E. 2017. pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT - Food Science and Technology 80: 492-500. https://doi.org/10.1016/j.lwt.2017.03.006

Qin, Y., Liu, Y., Yong, H., Liu, J., Zhang, X. & Liu, J. 2019. Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. International Journal of Biological Macromolecules 134: 80-90. https://doi.org/10.1016/j.ijbiomac.2019.05.029

Rahmadhia, S.N., Saputra, Y.A., Juwitaningtyas, T. & Rahayu, W.M. 2022. Intelligent packaging as a pH-indicator based on cassava starch with addition of purple sweet potato extract (Ipomoea batatas L.). Journal of Functional Food and Nutraceutical 4(1): 17-27. https://doi.org/10.33555/jffn.v4i1.90

Rahman, A., Kondo, N., Ogawa, Y., Suzuki, T., Shirataki, Y. & Wakita, Y. 2016. Classification of fresh and spoiled Japanese dace (Tribolodon hakonensis) fish using ultraviolet-visible spectra of eye fluid with multivariate analysis. Engineering in Agriculture, Environment and Food 9(1): 64-69. https://doi.org/10.1016/j.eaef.2015.06.004

Ramadhan, D.W. & Rusdianto, A.S. 2021. Smart packaging of temperature and light susceptible product with purple sweet potato (Ipomoea batatas L.) indicator label. Proceeding of the 2nd International Conference Health, Science and Technology (ICOHETECH).

Sai-Ut, S., Suthiluk, P., Tongdeesoontorn, W., Rawdkuen, S., Kaewprachu, P., Karbowiak, T., Debeaufort, F. & Degraeve, P. 2021. Using anthocyanin extracts from butterfly pea as pH Indicator for intelligent gelatin film and methylcellulose film. Current Applied Science and Technology 21(4): 652-661. https://doi.org/10.14456/cast.2021.52

Saliu, F. & Della Pergola, R. 2018. Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin and poly-lysine mixtures. Sensors and Actuators. B, Chemical 258: 1117-1124.

Silbande, A., Adenet, S., Chopin, C., Cornet, J., Smith-Ravin, J., Rochefort, K. & Leroi, F. 2018. Effect of vacuum and modified atmosphere packaging on the microbiological, chemical and sensory properties of tropical red drum (Sciaenops ocellatus) fillets stored at 4 °C. International Journal of Food Microbiology 266: 31-41. https://doi.org/10.1016/j.ijfoodmicro.2017.10.015

Silva-Pereira, M.C., Teixeira, J.A., Pereira-Júnior, V.A. & Stefani, R. 2015. Chitosan/corn starch blend films with extract from Brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. Lwt 61(1): 258-262. https://doi.org/10.1016/j.lwt.2014.11.041

Sinela, A., Rawat, N., Mertz, C., Achir, N., Fulcrand, H. & Dornier, M. 2017. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products. Food Chemistry 214: 234-241. https://doi.org/10.1016/j.foodchem.2016.07.071

Singh, S., Gaikwad, K.K. & Lee, Y.S. 2018. Anthocyanin - A natural dye for smart food packaging systems. Korean Journal of Packaging Science and Technology 24(3): 167-180. https://doi.org/10.20909/kopast.2018.24.3.167

Sohany, M., Tawakkal, I.S.M.A., Ariffin, S.H., Shah, N.N.A.K. & Yusof, Y.A. 2021. Characterization of anthocyanin associated purple sweet potato starch and peel-based pH indicator films. Foods 10(9): 2-27. https://doi.org/10.3390/foods10092005

Šojić, B.V., Petrović, L.S., Mandić, A.I., Sedej, I.J., Džinić, N.R., Tomović, V.M., Jokanović, M.R., Tasić, T.A., Škaljac, S.B. & Ikonić, P.M. 2014. Lipid oxidative changes in tradititional dry fermented sausage Petrovská klobása during storage. Hemijska Industrija 68(1): 27-34. https://doi.org/10.2298/HEMIND130118024S

Tavares, J., Martins, A., Fidalgo, L.G., Lima, V., Amaral, R.A., Pinto, C.A., Silva, A.M. & Saraiva, J.A. 2021. Fresh Fish degradation and advances in preservation using physical emerging technologies. Foods 10(780): 1-20. https://doi.org/10.3390/foods10040780

Vanderroost, M., Ragaert, P., Devlieghere, F. & De Meulenaer, B. 2014. Intelligent food packaging: The next generation. Trends in Food Science & Technology 39(1): 47-62. https://doi.org/10.1016/j.tifs.2014.06.009

Versino, F. & García, M.A. 2014. Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Industrial Crops and Products 58: 305-314. https://doi.org/10.1016/j.indcrop.2014.04.040

Wahyuningsih, S., Wulandari, L., Wartono, M.W., Munawaroh, H. & Ramelan, A.H. 2017. The effect of pH and Color stability of anthocyanin on food colorant. International Conference on Food Science and Engineering 2016 193: 012047. https://doi.org/10.1088/1757-899X/193/1/012047

Warkoyo, Budi, R., Djagal Wiseso, M. & Joko Nugroho Wahyu, K. 2014. Sifat fisik, mekanik dan barrier edible film berbasis pati umbi kimpul (Xanthosoma sagittifolium) yang diinkorporasi dengan kalium sorbat. Agritech 34(01): 72-81. https://doi.org/10.22146/agritech.9525

Yong, H. & Liu, J. 2020. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life 26: 1-17. https://doi.org/10.1016/j.fpsl.2020.100550

Zhai, X., Shi, J., Zou, X., Wang, S., Jiang, C., Zhang, J., Huang, X., Zhang, W. & Holmes, M. 2017. Novel colorimetric films based on starch/polyvinyl alcohol incorporated with Roselle anthocyanins for fish freshness monitoring. Food Hydrocolloids 69: 308-317. https://doi.org/10.1016/j.foodhyd.2017.02.014

Zhang, K., Huang, T.S., Yan, H., Hu, X. & Ren, T. 2020. Novel pH-sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration. International Journal of Biological Macromolecules 145: 768-776. https://doi.org/10.1016/j.ijbiomac.2019.12.159

Zhao, L., Liu, Y., Zhao, L. & Wang, Y. 2022. Anthocyanin-based pH-sensitive smart packaging films for monitoring food freshness. Journal of Agriculture and Food Research 9: 100340. https://doi.org/10.1016/j.jafr.2022.100340

 

* Corresponding author; email: safinta.rahmadhia@tp.uad.ac.id

 

 

 

 

 

 

 

previous