Sains Malaysiana 52(6)(2023): 1671-1683

http://doi.org/10.17576/jsm-2023-5206-05

 

Activity and Safety of Cinchonine Nanostructured Lipid Carriers as a Hair Growth Stimulant in Mice Model of Androgenetic Alopecia

(Aktiviti dan Keselamatan Pembawa Lipid Berstruktur Nano Sinkonina sebagai Perangsang Pertumbuhan Rambut dalam Model Tikus Alopecia Androgenetik)

 

HARIYANTI HARIYANTI1,2, RACHMAT MAULUDIN1, YEYET CAHYATI SUMIRTAPURA1 & NENG FISHERI KURNIATI3*

 

1Department of Pharmaceutic, School of Pharmacy, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia

2Department of Pharmaceutical, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Purwokerto, Central Java, 53182, Indonesia 

3Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia

 

Received: 21 February 2022/Accepted: 9 June 2023

 

Abstract

Androgenetic alopecia (AA) is a hair growth disorder characterized by hair loss and miniaturization of the size of follicles and dermal papillae. Cinchonine is a quinoline alkaloid that can increase VEGF production and potential as a hair growth stimulant. This study aimed to determine the morphology, penetration (in vitro), as well as safety and activity of cinchonine nanostructured lipid carriers (CN-NLC) serum as a hair growth stimulant. Preparation of CN-NLC serum using a combination of micro-emulsification and ultra-sonification methods, characterization of CN-NLC serum included morphology and closed hair follicle diffusion methods. Dermal and eye irritation test using New Zealand rabbit strain with primary irritation index parameters. Hair growth stimulant activity test using Swiss Webster mice strain, induced with the hormone testosterone. Observations were performed at 7, 14, and 21 days with hair length and histology parameters. CN-NLC serum morphology is a spherical shape with size ±500 nm, diffusion of serum CN-NLC (open hair follicles) of 23.92±0.84%; (close hair follicles) of 11.37±2.29%; and CN solution of 6.00±0.72%. CN-NLC serum are non-irritant with a primary irritation index of 0.0. Activity tests showed hair length on days 7; 14 and 21 were increased by 20.24-23.74%; 33.47-36.43%, and 39.30-39.97% (P≤0.05). Histological data showed an increase in the number and size of both dermal papillae and hair follicles compared to the control group. CN-NLC serum can improve the penetration of CN into hair follicles. CN-NLC serum is safe and effective as a hair growth stimulant in the treatment of AA.

 

Keywords: Androgenic alopecia; cinchonine; nanostructured lipid carriers

 

Abstrak

Alopecia androgenetik (AA) adalah gangguan pertumbuhan rambut yang dicirikan oleh keguguran rambut dan pengecilan saiz folikel dan papila dermal. Sinkonina adalah alkaloid kuinolina yang boleh meningkatkan pengeluaran VEGF dan berpotensi sebagai perangsang pertumbuhan rambut. Kajian ini bertujuan untuk menentukan morfologi, penembusan (in vitro), serta keselamatan dan aktiviti serum pembawa lipid berstruktur nano (CN-NLC) sinkonina sebagai perangsang pertumbuhan rambut. Penyediaan serum CN-NLC menggunakan gabungan kaedah pengemulsi mikro dan ultra-sonifikasi, pencirian serum CN-NLC termasuk kaedah morfologi dan kaedah penyebaran folikel rambut tertutup. Ujian kerengsaan kulit dan mata menggunakan ketegangan arnab New Zealand dengan parameter indeks kerengsaan primer. Ujian aktiviti perangsang pertumbuhan rambut menggunakan ketegangan tikus Swiss Webster, diinduksi dengan hormon testosteron. Pemerhatian dilakukan pada 7, 14 dan 21 hari dengan panjang rambut dan parameter histologi. Morfologi serum CN-NLC ialah bentuk sfera dengan saiz ±500 nm, resapan serum CN-NLC (folikel rambut terbuka) sebanyak 23.92±0.84%; (folikel rambut tertutup) sebanyak 11.37±2.29%; dan larutan CN sebanyak 6.00±0.72%. Serum CN-NLC tidak merengsa dengan indeks kerengsaan primer 0.0. Ujian aktiviti menunjukkan panjang rambut pada hari ke-7; 14 dan 21 meningkat sebanyak 20.24-23.74%; 33.47-36.43% dan 39.30-39.97% (P≤0.05). Data histologi menunjukkan peningkatan dalam bilangan dan saiz kedua-dua papila dermal dan folikel rambut berbanding kumpulan kawalan. Serum CN-NLC dapat meningkatkan penembusan CN ke dalam folikel rambut. Serum CN-NLC selamat dan berkesan sebagai perangsang pertumbuhan rambut dalam rawatan AA.

 

Kata kunci: Alopecia androgenetik; pembawa lipid berstruktur nano; sinkonina

 

REFERENCES

Abd, E., Benson, H.A.E., Roberts, M.S. & Grice, J.E. 2018. Follicular penetration of caffeine from topically applied nanoemulsion formulations containing penetration enhancers: in vitro human skin studies. Skin Pharmacology and Physiology 31(5): 252-260. https://doi.org/10.1159/000489857

Blume-Peytavi, U., Varvar, K. & Vogt, A. 2016. The Alopecias Diagnosis and Treatments, edited by Bouhanna, P. & Bouhanna, E. Boca Raton: CRC Press.

Blume-Peytavi, U., Tosti, A., Whiting, D.A. & Trüeb, R.M. 2008. Hair Growth and Disorders. Hair. Springer. https://doi.org/10.1007/978-3-540-46911-7

Bubić Pajić, N., Ilić, T., Nikolić, I., Dobričić, V., Pantelić, I. & Savić, S. 2019. Alkyl Polyglucoside-Based Adapalene-Loaded Microemulsions for Targeted Dermal Delivery: Structure, Stability and Comparative Biopharmaceutical Characterization with a Conventional Dosage Form. Journal of Drug Delivery Science and Technology 54. https://doi.org/10.1016/j.jddst.2019.101245

Chen, Y., Feng, X., Zhao, Y., Zhao, X. & Zhang, X. 2020. Mussel-inspired polydopamine coating enhances the intracutaneous drug delivery from nanostructured lipid carriers dependently on a follicular pathway. Molecular Pharmaceutics 17(4): 1215-1225. https://doi.org/10.1021/acs.molpharmaceut.9b01240

Driskell, R.R., Clavel, C., Rendl, M. & Watt, F.M. 2011. Hair follicle dermal papilla cells at a glance. Journal of Cell Science 124(8): 1179-1182. https://doi.org/10.1242/jcs.082446

Fresta, M., Mancuso, A., Cristiano, M.C., Urbanek, K., Cilurzo, F., Cosco, D., Iannone, M. & Paolino, D. 2020. Targeting of the pilosebaceous follicle by liquid crystal nanocarriers: in vitro and in vivo effects of the entrapped minoxidil. Pharmaceutics 12(11): 1127. https://doi.org/10.3390/pharmaceutics12111127.

Fu, D., Huang, J., Li, K., Chen, Y., He, Y., Sun, Y., Guo, Y., Du, L., Qu, Q., Miao, Y. & Hu, Z. 2021. Dihydrotestosterone-induced hair regrowth inhibition by activating androgen receptor in C57BL6 mice simulates androgenetic alopecia. Biomedicine and Pharmacotherapy 137: 111247. https://doi.org/10.1016/j.biopha.2021.111247

Gorzelanny, C., Mess, C., Schneider, S.W., Huck, V. & Brandner, J.M. 2020. Skin barriers in dermal drug delivery: Which barriers have to be overcome and how can we measure them? Pharmaceutics. https://doi.org/10.3390/pharmaceutics12070684

Hariyanti, H., Sophi Damayanti & Sasanti Tarini Darijanto. 2020. Formulation and Activity test of cinchonine niosomesas hair growth stimulants. In EBSCO Industries, Inc. Vol. Suppl, p. 47.

Hariyanti, H., Kurniati, N.F., Sumirtapura, Y.C. & Mauludin, R. 2023. Development and validation of an analytical method for the determination of nanostructured lipid carrier’s cinchonine used direct method modified by liquid-liquid extraction using high-performance liquid chromatography. Journal of Research in Pharmacy 27(2): 913-923. https://doi.org/10.29228/jrp.371

Hariyanti, H., Mauludin, R., Sumirtapura, Y.C. & Kurniati, N.F. 2022. A review: Pharmacological activities of quinoline alkaloid of Cinchona sp. Biointerface Research in Applied Chemistry 13(Issue 4): 3. https://doi.org/org/10.33263/BRIAC134.319

Inaba, M. & Inaba, Y. 1996. Therapy for androgenetic alopecia. In Androgenetic Alopecia. Tokyo: Springer. https://doi.org/10.1007/978-4-431-67038-4_25.

Jeong, G., Shin, S.H., Kim, S.N., Na, Y., Park, B.C., Cho, J.H., Park, W-S. & Kim, H-J. 2022. Ginsenoside Re Prevents 3-Methyladenine-induced catagen phase acceleration by regulating Wnt/β-catenin signaling in human dermal papilla cells. Journal of Ginseng Research 47(3): 440-447. https://doi.org/https://doi.org/10.1016/j.jgr.2022.11.002

Jimenez, W., Gonzalez, E., Murphy, V.A. & Bauta, W. 2021. Evaluation of dermal corrosion and irritation by cytoreg in rabbits. Toxicology Reports 8: 1527-1529. https://doi.org/10.1016/j.toxrep.2021.07.021

Joshi, M.D., Prabhu, R.H. & Patravale, V.B. 2019. Fabrication of nanostructured lipid carriers (NLC)-based gels from microemulsion template for delivery through skin. In Methods in Molecular Biology 2000: 279-292. https://doi.org/10.1007/978-1-4939-9516-5_19

Kakadia, P.G. & Conway, B.R. 2018. Solid lipid nanoparticles for targeted delivery of triclosan into skin for infection prevention. Journal of Microencapsulation 35(7-8): 695-704. https://doi.org/10.1080/02652048.2019.1576796

Kharat, M. & McClements, D.J. 2019. Fabrication and characterization of nanostructured lipid carriers (NLC) using a plant-based emulsifier: Quillaja Saponin. Food Research International 126: 108601. https://doi.org/10.1016/j.foodres.2019.108601

Kim, J.H., Na, J., Bak, D‑H., Lee, B.C., Lee, E., Choi, M.J., Ryu, C.H., Lee, S., Mun, S.K., Park, B.C., Kim, B.J. & Lee, H.S. 2019a. Development of Finasteride Polymer Microspheres for Systemic Application in Androgenic Alopecia. International Journal of Molecular Medicine 43(6): 2409-2419. https://doi.org/10.3892/ijmm.2019.4149

Kim, M.H., Kim, K.T., Sohn, S.Y., Lee, J.Y., Lee, C.H., Yang, H., Lee, B.K., Lee, K.W. & Kim, D.D. 2019b. Formulation and evaluation of nanostructured lipid carriers (NLCs) of 20(s)-protopanaxadiol (PPD) by box-behnken design. International Journal of Nanomedicine 14: 8509-8520. https://doi.org/10.2147/IJN.S215835.

Kim, S.H., Park, M.K., Seol, J.K., Im, J.M., Park, H.S., Seo, H.S., Park, H.J. & Nah, S.S. 2021. Evaluation of potential eye or skin irritation/corrosion in rabbit exposed to Tio2 photocatalyst (GST). Environmental Health and Toxicology 36(3): e2021022-0. https://doi.org/10.5620/eaht.2021022

Lademann, J., Darvin, M.E., Meinke, M.C. & Patzelt, A. 2019. Characterization of penetration of particles after dermal application. In Nanocosmetics, edited by Cornier, J., Keck, C., van de Voorde, M. Springer, Cham. https://doi.org/10.1007/978-3-030-16573-4_11

Lademann, J., Knorr, F., Richter, H., Jung, S., Meinke, M.C., Rühl, E., Alexiev, U., Calderon, M. & Patzelt, A. 2015. Hair follicles as a target structure for nanoparticles. Journal of Innovative Optical Health Sciences 8(4): 1530004. https://doi.org/10.1142/S1793545815300049

Lademann, J., Richter, H., Teichmann, A., Otberg, N., Blume-Peytavi, U., Luengo, J., Weiss, B., Schaefer, U.F., Lehr, C-M., Wepf, R. & Sterry, W. 2007. Nanoparticles - An efficient carrier for drug delivery into the hair follicles. European Journal of Pharmaceutics and Biopharmaceutics 66(2): 159-164. https://doi.org/10.1016/j.ejpb.2006.10.019

Leveque, M., Mas, C., Haure, M., Lejeune, O., Duplan, H., Castex-Rizzi, N. & Bessou-Touya, S. 2021. 601 hair growth properties of Cinchona succirubra extract, Leontopodium alpinum extract and manganese pca in human hair follicle dermal papilla cells. Journal of Investigative Dermatology 141(5): S104. https://doi.org/10.1016/j.jid.2021.02.629

Melincovici, C.S., Boşca, A.B., Şuşman, S., Mărginean, M., Mihu, C., Istrate, M., Moldovan, I.M., Roman, A.L. & Mihu, C.M. 2018. Vascular endothelial growth factor (VEGF) - Key factor in normal and pathological angiogenesis. Romanian Journal of Morphology and Embryology 59(2): 455-467.

Mohd, F., Todo, H., Yoshimoto, M., Eddy Yusuf & Sugibayashi, K. 2016. Contribution of the hair follicular pathway to total skin permeation of topically applied and exposed chemicals. Pharmaceutics 8(4): 32. https://doi.org/10.3390/pharmaceutics8040032

Ou, H.C., Keating, S., Wu, P., Simon, J.A., Raible, D.W. & Rubel, E.W. 2012. Quinoline ring derivatives protect against aminoglycoside-Induced hair cell death in the zebrafish lateral line. JARO - Journal of the Association for Research in Otolaryngology 13(6): 759-770. https://doi.org/10.1007/s10162-012-0353-0

Patzelt, A. & Lademann, J. 2020. Recent advances in follicular drug delivery of nanoparticles. Expert Opinion on Drug Delivery 17(1): 49-60.  https://doi.org/10.1080/17425247.2020.1700226.

Pereira, M.N., Tolentino, S., Pires, F.Q., Anjos, J.L.V., Alonso, A., Gratieri, T., Cunha-Filho, M. & Gelfuso, G.M. 2021. Nanostructured lipid carriers for hair follicle-targeted delivery of clindamycin and rifampicin to hidradenitis suppurativa treatment. Colloids and Surfaces B: Biointerfaces 197: 111448. https://doi.org/10.1016/j.colsurfb.2020.111448

Pires, F.Q., da Silva, J.K.R., Sa-Barreto, L.L., Gratieri, T., Gelfuso, G.M. & Cunha-Filho, M. 2019. Lipid nanoparticles as carriers of cyclodextrin inclusion complexes: A promising approach for cutaneous delivery of a volatile essential oil. Colloids and Surfaces B: Biointerfaces 182: 110382. https://doi.org/10.1016/j.colsurfb.2019.110382

Rooney, J.P., Choksi, N.Y., Ceger, P., Daniel, A.B., Truax, J., Allen, D. & Kleinstreuer, N. 2021. Analysis of variability in the rabbit skin irritation assay. Regulatory Toxicology and Pharmacology 122: 104920. https://doi.org/10.1016/j.yrtph.2021.104920

Santos, G.A., Angelo, T., Andrade, L.M., Silva, S.M.M., Magalhães, P.O., Cunha-Filho, M., Gelfuso, G.M., Taveira, S.F. & Gratieri, T. 2018. The role of formulation and follicular pathway in voriconazole cutaneous delivery from liposomes and nanostructured lipid carriers. Colloids and Surfaces B: Biointerfaces 170: 341-346. https://doi.org/10.1016/j.colsurfb.2018.06.037

Santos, A.C., Pereira-Silva, M., Guerra, C., Costa, D., Peixoto, D., Pereira, I., Pita, I., Ribeiro, A.J. & Veiga, F. 2020. Topical minoxidil-Loaded nanotechnology strategies for alopecia. Cosmetics 7(2): 21. https://doi.org/10.3390/COSMETICS7020021

Satheeshan, K.N., Seema, B.R. & Manjusha, M.A.V. 2020. Development and evaluation of VCO based herbal hair tonic. Journal of Pharmacognosy and Phytochemistry 9(2): 485-493. https://www.phytojournal.com/archives/2020/vol9issue3/PartH/9-3-5-112.pdf

Souto, E. 2004. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. International Journal of Pharmaceutics 278(1): 71-77. https://doi.org/10.1016/s0378-5173(04)00153-x

Taghiabadi, E., Nilforoushzadeh, M.A. & Aghdami, N. 2020. Maintaining hair inductivity in human dermal papilla cells: A review of effective methods. Skin Pharmacology and Physiology 33(5): 280-292. https://doi.org/10.1159/000510152

Tanaka, S., Saito, M. & Tabata, M. 1980. Bioassay of crude drugs for hair growth promoting activity in mice by a new simple method. Planta Medica 40(Suppl.): 84-90. https://doi.org/10.1055/s-2008-1075009

Todo, H. & Mohd. F. 2017. Related topic: Drug permeation through hair follicles. In Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds, edited by Sugibayashi, K. Tokyo: Springer. pp. 399-409. https://doi.org/10.1007/978-4-431-56526-0_36

Toll, R., Jacobi, U., Richter, H., Lademann, J., Schaefer, H. & Blume-Peytavi, U. 2004. Penetration profile of microspheres in follicular targeting of terminal hair follicles. Journal of Investigative Dermatology 123(1): 168-176. https://doi.org/10.1111/j.0022-202X.2004.22717.x

Truong, V.L., Bak, M.J., Lee, C., Jun, M. & Jeong, W.S. 2017. Hair regenerative mechanisms of red ginseng oil and its major components in the testosterone-induced delay of anagen entry in C57BL/6 mice. Molecules 22(9): 1505. https://doi.org/10.3390/molecules22091505.

Vanhoutte, P.M., Zhao, Y., Xu, A. & Leung, S.W.S. 2016. Thirty years of saying NO: Sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circulation Research 119(2): 375-396. https://doi.org/10.1161/CIRCRESAHA.116.306531.

Vitorino, C., Sousa, J. & Pais, A. 2015. Overcoming the skin permeation barrier: Challenges and opportunities. Current Pharmaceutical Design 21(20): 2698-2712. https://doi.org/10.2174/1381612821666150428124053.

Wang, Z.D., Feng, Y., Sun, L., Gan, J., Li, X., Ding, W.F. & Chen, X.M. 2021. Anti-androgenetic alopecia effect of policosanol from chinese wax by regulating abnormal hormone levels to suppress premature hair follicle entry into the regression phase. Biomedicine and Pharmacotherapy 136: 111241. https://doi.org/10.1016/j.biopha.2021.111241

Wang, Z.D., Feng, Y., Ma, L.Y., Li, X., Ding, W.F. & Chen, X.M. 2017. Hair growth promoting effect of white wax and policosanol from white wax on the mouse model of testosterone-induced hair loss. Biomedicine and Pharmacotherapy 89: 438-446. https://doi.org/10.1016/j.biopha.2017.02.036

Yazdani-Arazi, S.N., Ghanbarzadeh, S., Adibkia, K., Kouhsoltani, M. & Hamishehkar, H. 2017. Histological evaluation of follicular delivery of arginine via nanostructured lipid carriers: A novel potential approach for the treatment of alopecia. Artificial Cells, Nanomedicine and Biotechnology 45(7): 1379-1387. https://doi.org/10.1080/21691401.2016.1241794

Yokouchi, M. & Kubo, A. 2018. Maintenance of tight junction barrier integrity in cell turnover and skin diseases 27(8): 876-883. Experimental Dermatology https://doi.org/10.1111/exd.13742

Zhang, B., Zhang, R.W., Yin, X.Q., Lao, Z.Z., Zhang, Z., Wu, Q.G., Yu, L.W., Lai, X.P., Wan, Y.H. & Li, G. 2016. Inhibitory activities of some traditional Chinese herbs against testosterone 5α-reductase and effects of Cacumen platycladi on hair re-growth in testosterone-treated mice. Journal of Ethnopharmacology 177: 1-9. https://doi.org/10.1016/j.jep.2015.11.012.

 

*Corresponding author; email: nfkurniati@fa.itb.ac.id

 

 

 

 

 

 

previous