Sains Malaysiana 52(6)(2023):
1649-1670
http://doi.org/10.17576/jsm-2023-5206-04
Persicaria minor F-box Gene PmF-box1 Indirectly Affects Arabidopsis thaliana LOX-HPL Pathway
for Green Leaf Volatile Production
(Gene F-box Persicaria minor PmF-box1 Secara Tidak Langsung Mempengaruhi Tapak Jalan LOX-HPL Arabidopsis thaliana untuk Penghasilan Sebatian Meruap Daun Hijau)
NUR-ATHIRAH ABD-HAMID1, MUHAMMAD NAEEM-UL-HASSAN2,3, ZAMRI ZAINAL1,2& ISMANIZAN
ISMAIL1,2*
1Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department
of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
3Department
of Chemistry, University of Sargodha, Sargodha, Punjab 40100, Pakistan
Received: 3 October 2022/Accepted: 6 June 2023
Abstract
Green leaf volatiles (GLVs)
play an essential role in plant defence, plant-plant interaction and
plant-insect interaction. The plant releases GLVs and inhibits the growth and
propagation of plant pathogens. In this study, overexpression of PmF-box1 in wild type A. thaliana showed the downregulation
of genes involved in the lipoxygenase-hydroperoxide lyase (LOX-HPL) pathway, which contributes to the
biosynthesis of GLVs. It resulted in
a marked reduction of hexanal production in the PmF-box1-overexpressing
plant. The expression pattern of LOX-HPL branch genes in the kelch-repeat modified PmF-box1 (KMF)-overexpressing
plant showed a pattern much closer to the expression of LOX-HPL branch genes in
the vector control (VC) plant. It was shown that the functional KMF protein
sequence was not responsible for the significant reduction of all GLVs
including hexanal, 1-hexanol, (Z)-3-hexen-1-ol, and
the carbon 5 (C5) volatile, 1-penten-3-ol, in plants overexpressing KMF.
Furthermore, this study also showed that the relative proportion of production
of 1-penten-3-ol to hexanal was higher in the PmF-box1-overexpressing
plant. Based on the
current comparative literature search, PmF-box1 does not appear to
interact directly with the proteins or transcription factors of the LOX-HPL
pathway. On the other hand, PmF-box1 interacts with SAMS1, which
subsequently influences the HPL pathway enzyme genes. Thus, this study
highlights the potential roles of PmF-box1 in the manipulation of GLV
productions.
Keywords: F-box proteins; hydroperoxide lyase; Kelch-repeats;
lipoxygenase; oxylipin
Abstrak
Sebatian meruap daun hijau (GLV)
memainkan peranan penting dalam pertahanan tumbuhan, interaksi
tumbuhan-tumbuhan dan interaksi tumbuhan-serangga. Tumbuhan membebaskan GLV
serta merencat pertumbuhan dan propagasi patogen tumbuhan. Dalam kajian ini,
pengekspresan lampau PmF-box1 dalam A. thaliana jenis liar telah
menunjukkan pengawalaturan menurun gen yang terlibat dalam tapak jalan
lipoksigenase-hidroperoksid liase (LOX-HPL) yang menyumbang kepada biosintesis
GLV. Ia mengakibatkan pengurangan penghasilan heksanal yang ketara dalam
tumbuhan yang mengekspres PmF-box1 secara melampau. Corak pengekspresan gen cabang LOX-HPL dalam tumbuhan
yang mengekspres PmF-box1 secara melampau dengan ulangan Kelch (KMF)
yang terubah suai menunjukkan corak pengekspresan yang hampir sama dengan gen
cabang LOX-HPL di dalam tumbuhan kawalan vektor (VC). Ini menunjukkan bahawa
jujukan protein KMF yang berfungsi tidak bertanggungjawab terhadap penurunan
yang signifikan bagi semua GLV termasuk heksanal, 1-heksanol, (Z)-3-hexen-1-ol
dan karbon 5 (C5) meruap, 1-penten-3-ol, di dalam tumbuhan yang mengekspreskan KMF secara melampau. Tambahan pula,
kajian ini juga menunjukkan bahawa perkadaran relatif penghasilan 1-penten-3-ol
kepada heksanal adalah lebih tinggi di dalam tumbuhan yang mengekspres PmF-box1 secara melampau. Berdasarkan carian
perbandingan kepustakaan semasa, PmF-box1 didapati tidak dapat
berinteraksi secara langsung dengan protein atau faktor transkripsi bagi tapak
jalan LOX-HPL. Sebaliknya, PmF-box1 berinteraksi dengan SAMS1, yang
kemudiannya mempengaruhi gen enzim tapak jalan HPL. Oleh itu, kajian ini
menunjukkan PmF-box1 berpotensi berperanan dalam memanipulasi
penghasilan GLV.
Kata kunci: Hidroperoksid liase; lipoksigenase; oksilipin; protein F-box; ulangan Kelch
REFERENCES
Abd-Hamid, N.A., Ahmad-Fauzi, M.I., Zainal, Z. &
Ismail, I. 2020. Diverse and dynamic roles of F-box proteins in plant biology. Planta 251(3): 68.
Bai, C., Sen, P.,
Hofmann, K., Ma, L., Goebl, M., Harper, J.W. & Elledge, S.J. 1996. SKP1 connects cell cycle regulators to
the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86: 263-274.
Chen, Y., Xu, Y., Luo,
W., Li, W., Chen, N., Zhang, D. & Chong, K. 2013. The F-box protein OsFBK12
targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including
leaf senescence, in rice. Plant
Physiology 163(4): 1673-1685.
Christapher, P.V.,
Parasuraman, S., Christina, J.M., Asmawi, M.Z. & Vikneswaran, M. 2015.
Review on Polygonum minus Huds., a
commonly used food additive in Southeast Asia. Pharmacognosy Research 7(1): 1-6.
Clough, S.J. & Bent,
A.F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant
Journal 16(6): 735-743.
Engelberth, J., Alborn,
H.T., Schmelz, E.A. & Tumlinson, J.H. 2004. Airborne signals prime plants
against insect herbivore attack. Proceedings
of the National Academy of Sciences 101(6): 1781-1785.
Engelberth, J.,
Contreras, C.F., Dalvi, C., Li, T. & Engelberth, M. 2013. Early
transcriptome analyses of Z-3-hexenol-treated Zea mays revealed distinct transcriptional networks and
anti-herbivore defense potential of green leaf volatiles. PLoS ONE 8(10): e77465.
Feng, Z., Mao, Y., Xu,
N., Zhang, B., Wei, P., Yang, D.L., Wang, Z., Zhang, Z., Zheng, R., Yang, L.,
Zeng, L., Liu, X. & Zhu, J.K. 2014. Multigeneration analysis reveals the
inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications
in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of
America 111(12): 4632-4637.
Gershenzon, J. 2007.
Plant volatiles carry both public and private messages. Proceedings of the National Academy of Sciences of the United States of
America 104(13): 5257-5258.
Ghassemian, M., Nambara,
E., Cutler, S., Kawaide, H., Kamiya, Y. & Mccourt, P. 2000. Regulation of
abscisic acid signaling by the ethylene response pathway in arabidopsis. The Plant Cell 12(7): 1117-1126.
Gor, M.C., Ismail, I.,
Mustapha, W.a.W., Zainal, Z., Noor, N.M., Othman, R. & Hussein, Z.a.M.
2010. Identification of cDNAs for jasmonic acid-responsive genes in Polygonum minus roots by suppression
subtractive hybridization. Acta
Physiologiae Plantarum 33(2): 283-294.
Gorman, Z., Tolley,
J.P., Koiwa, H. & Kolomiets, M.V. 2021. The synthesis of pentyl leaf
volatiles and their role in resistance to anthracnose leaf blight. Frontiers in Plant Science 12: 719587.
He, Y., Borrego, E.J.,
Gorman, Z., Huang, P.C. & Kolomiets, M.V. 2020. Relative contribution of
LOX10, green leaf volatiles and JA to wound-induced local and systemic oxylipin
and hormone signature in Zea mays (maize). Phytochemistry 174: 112334.
Li, Y., Liu, Z., Wang,
J., Li, X. & Yang, Y. 2015. The Arabidopsis Kelch repeat F-box E3 ligase
ARKP1 plays a positive role for the regulation of abscisic acid signaling. Plant Molecular Biology Reporter 34(3):
582-591.
Li, Y., Qi, H., Jin, Y.,
Tian, X., Sui, L. & Qiu, Y. 2016. Role of ethylene in the biosynthetic
pathway of related-aroma volatiles derived from fatty acids in oriental sweet
melon. Journal of the American Society
for Horticultural Science 141(4): 327-338.
Malherbe, Y., Kamping,
A., Delden, W.V. & Zande, L.V.D. 2005. ADH enzyme activity and Adh gene expression in Drosophila melanogaster lines
differentially selected for increased alcohol tolerance. Journal of Evolutionary Biology 18(4): 811-819.
Mochizuki, S., Sugimoto,
K., Koeduka, T. & Matsui, K. 2016. Arabidopsis lipoxygenase 2 is essential
for formation of green leaf volatiles and five-carbon volatiles. FEBS Letters 590(7): 1017-1027.
Naeem-Ul-Hassan, M.,
Zainal, Z. & Ismail, I. 2015. Green leaf volatiles: biosynthesis,
biological functions and their applications in biotechnology. Plant Biotechnology Journal 13(6):
727-739.
Naeem-Ul-Hassan, M.,
Zainal, Z., Abd Hamid, N.A., Sajad, M. & Ismail, I. 2018. Arabidopsis AT2G02870 loss of function mutants lead
to enhanced production of hydroperoxide lyase pathway genes and products. Sains Malaysiana 47(12): 3003-3008.
Naeem-Ul-Hassan, M.,
Zainal, Z., Kiat, C.J., Monfared, H.H. & Ismail, I. 2017. Arabidopsis thaliana SKP1 interacting
protein 11 (At2g02870) negatively regulates the release of green leaf
volatiles. RSC Advances 7(88):
55725-55733.
Othman, M.H.C., Hadi,
N.A., Zainal, Z., Kiat, C.J., Naeem-Ul-Hassan, M., Zain, C.R.C.M. & Ismail,
I. 2017. Expression profile of gene encoding Kelch repeat containing F-box
protein (PmF-box1) in relation to the
production of green leaf volatiles. Australian
Journal of Crop Science 11(04): 406-418.
Oughtred, R., Stark, C.,
Breitkreutz, B.J., Rust, J., Boucher, L., Chang, C., Kolas, N., O'donnell, L.,
Leung, G., Mcadam, R., Zhang, F., Dolma, S., Willems, A., Coulombe-Huntington,
J., Chatr-Aryamontri, A., Dolinski, K. & Tyers, M. 2019. The BioGRID
interaction database: 2019 update. Nucleic
Acids Research 47(D1): D529-D541.
Risseeuw, E.,
Daskalchuk, T., Banks, T., Liu, E., Cotelesage, J., Hellmann, H., Estelle, M.,
Somers, D. & Crosby, W. 2003. Protein interaction analysis of SCF ubiquitin
E3 ligase subunits from Arabidopsis. The Plant Journal 34(6): 753-767.
Salas, J.J.,
Garcia-Gonzalez, D.L. & Aparicio, R. 2006. Volatile compound biosynthesis
by green leaves from an Arabidopsis
thaliana hydroperoxide lyase knockout mutant. Journal of Agricultural and Food Chemistry 54(21): 8199-8205.
Salas, J.J., Sanchez,
C., Garcia-Gonzalez, D.L. & Aparicio, R. 2005. Impact of the suppression of
lipoxygenase and hydroperoxide lyase on the quality of the green odor in green
leaves. Journal of Agricultural and Food
Chemistry 53(5): 1648-1655.
Salch, Y.P., Grove,
M.J., Takamura, H. & Gardner, H.W. 1995. Characterization of a
C-5,13-cleaving enzyme of 13(S)-hydroperoxide of linolenic acid by soybean
seed. Plant Physiology 108(3):
1211-1218.
Sarang, K., Rudziński,
K.J. & Szmigielski, R. 2021. Green leaf volatiles in the atmosphere -
properties, transformation, and significance. Atmosphere 12(12): 1655.
Shen, J., Tieman, D.,
Jones, J.B., Taylor, M.G., Schmelz, E., Huffaker, A., Bies, D., Chen, K. &
Klee, H.J. 2014. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5
flavour volatiles in tomato. Journal of
Experimental Botany 65(2): 419-428.
Shiojiri, K., Ozawa, R.,
Matsui, K., Sabelis, M.W. & Takabayashi, J. 2012. Intermittent exposure to
traces of green leaf volatiles triggers a plant response. Scientific Reports 2: 378.
Vikram, P., Chiruvella,
K.K., Ripain, I.H. & Arifullah, M. 2014. A recent review on phytochemical
constituents and medicinal properties of kesum (Polygonum minus Huds.). Asian
Pacific Journal of Tropical Biomedicine 4(6): 430-435.
Vincenti, S., Mariani,
M., Alberti, J.-C., Jacopini, S., Brunini-Bronzini De Caraffa, V., Berti, L.
& Maury, J. 2019. Biocatalytic synthesis of natural green leaf volatiles
using the lipoxygenase metabolic pathway. Catalysts 9(10): 873.
Wang, K.L., Li, H. &
Ecker, J.R. 2002. Ethylene biosynthesis and signaling networks. Plant Cell 14: S131-S151.
Wang, Y., Suo, H.,
Zhuang, C., Ma, H. & Yan, X. 2011. Overexpression of the soybean GmWNK1 altered the sensitivity to salt
and osmotic stress in Arabidopsis. Journal of Plant Physiology 168(18):
2260-2267.
Xie, Y.H., Gao, H.Y.,
Luo, Y.B., Zhang, H.X., Chen, X.N. & Zhu, B.Z. 2011. Role of ethylene in
the biosynthesis of fatty acid-derived volatiles in tomato fruits. Advanced Materials Research 343-344:
937-950.
Yang, S.F. &
Hoffman, N.E. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology 35:
155-189.
Yang, X., Song, J., Du,
L., Forney, C., Campbell-Palmer, L., Fillmore, S., Wismer, P. & Zhang, Z.
2016. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple
fruit. Food Chemistry 194: 325-336.
Zhang, X., Gou, M. &
Liu, C.J. 2013. Arabidopsis Kelch repeat F-box proteins regulate
phenylpropanoid biosynthesis via controlling the turnover of phenylalanine
ammonia-lyase. The Plant Cell 25(12):
4994-5010.
*Corresponding author; email: maniz@ukm.edu.my
|