Sains Malaysiana
52(6)(2023):
1635-1648
http://doi.org/10.17576/jsm-2023-5206-03
In
Vitro and In Silico Study on the Interaction
between Apigenin, Kaempferol and 4-Hydroxybenzoic Acid in Xanthine Oxidase
Inhibition
(Kajian
Secara In Vitro dan In Silico pada Interaksi antara
Apigenin, Kaempferol dan Asid 4-Hidroksibenzoik dalam Perencatan Xantina
Oksidase)
CHIN YONG SIN1,
LOH KHYE ER1,*, WEE SZE PING1 & ONG GHIM HOCK2
1Department
of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of
Management and Technology, Jalan Genting Kelang, Setapak. 53300 Kuala Lumpur,
Malaysia
2Faculty
of Health and Life Sciences, INTI International University, Persiaran Perdana
BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
Received:
17 August 2022/Accepted: 23 May 2023
Abstract
Xanthine
oxidase (XO) is a biological enzyme that takes part in purine catabolism. It
catalyses the conversion of hypoxanthine to xanthine and eventually xanthine to
uric acid. The catabolism reaction increases the level of uric acid and
subsequently leads to hyperuricemia. Allopurinol is a XO inhibitor that is used
clinically to prevent purine catabolism. Although it is an effective XO inhibitor, it causes
some side effects. Therefore, a more effective inhibitor with fewer side effects is
in an urgent need. Phenolic compounds
have been identified as effective XO inhibitors in many studies. In vitro and in silico study were conducted to
investigate the interaction between apigenin, kaempferol and 4-hydroxybenzoic acid in XO
inhibition. Apigenin was found to be the most effective XO inhibitor among the
compounds tested with the best docking score of -8.2 kcal/mol as demonstrated
in the molecular docking simulation which indicated its favourable interaction
with XO enzyme. Additive interactions between compounds namely
apigenin-kaempferol, apigenin-4-hydroxybenzoic acid and 4-hydroxybenzoic
acid-kaempferol were demonstrated in both in
vitro and in silico studies. The
results showed that 4-hydroxybenzoic acid- apigenin (-7.4 kcal/mol) was the
most stable ligands combination docked to XO. The multiple ligands docking
simulation showed independent ligands bound to the XO active site at
non-interfering regional location. In conclusion, the combination of these three
compounds can
be explored further for their additive interaction in XO inhibition, which
could be beneficial in terms of the enhanced effectiveness and lower side
effects when each is used at lower dose to give the same effect.
Keywords: Additive interaction; molecular
docking; multiple ligands; phenolic compounds; xanthine oxidase inhibitor
Abstrak
Xantina oksidase (XO) ialah sejenis
enzim biologi yang terlibat dalam metabolisme purin. Ia memangkinkan penukaran
hipozantin kepada xantina dan akhirnya daripada xantina kepada asid urik. Tindak balas katabolisme
meningkatkan tahap asid urik dan seterusnya membawa kepada hiperurisemia. Allopurinol adalah sejenis perencat
XO yang digunakan secara klinikal untuk mencegah katabolisme purin. Walaupun ia
adalah sejenis perencat XO yang berkesan, ia menyebabkan kesan sampingan. Oleh
itu, perencat yang lebih berkesan serta kurang kesan sampingan adalah amat
diperlukan. Sebatian fenolik
telah dikenal pasti sebagai perencat XO yang berkesan dalam banyak kajian. Kajian in vitro dan in siliko telah dijalankan untuk mengkaji interaksi antara apigenin, kaempferol dan asid
4-hidrosibenzoik semasa perencatan XO. Apigenin didapati merupakan perencat XO
yang paling berkesan dalam kalangan sebatian yang dikaji dengan skor dok yang
terbaik sebanyak -8.2 kcal/mol sebagaimana yang ditunjukkan oleh simulasi dok
molekul yang menunjukkan interaksi yang menggalakkan dengan enzim XO. Interaksi
secara tambahan antara sebatian iaitu apigenin-kaempferol, apigenin-asid
4-hidroksibenzoik dan asid 4-hidroksibenzoik-kaempferol telah ditunjukkan dalam
kajian in vitro dan in siliko. Hasil kajian menunjukkan asid
4-hidroksibenzoik-apigenin (-7.4 kcal/mol) adalah gabungan ligan yang paling
stabil semasa didokkan pada XO. Simulasi dok berbilang ligan menunjukkan ligan bebas terikat pada tapak aktif XO di
lokasi yang tidak mengganggu antara satu sama lain. Secara kesimpulannya,
gabungan ketiga-tiga sebatian ini boleh diterokai dengan lebih lanjut dari segi
interaksi tambahan mereka dalam
perencatan XO, yang boleh dimanfaatkan dari segi peningkatan keberkesanan dan
pengurangan kesan sampingannya dapat dipertingkatkan apabila setiap satu
digunakan pada dos yang lebih rendah untuk memberikan kesan yang sama.
Kata kunci: Dok molekul; interaksi tambahan; pelbagai ligan;
perencat xantina oksidase; sebatian fenolik
REFERENCES
Cao, H., Pauff, J.M. & Hille, R.
2014. X-ray crystal structure of a xanthine oxidase complex with the flavonoid
inhibitor quercetin. Journal of Natural
Products 77(7): 1693-1699.
Cao, H., Pauff, J.M. & Hille, R.
2010. Substrate orientation and catalytic specificity in the action of xanthine
oxidase. Journal of Biological Chemistry 285(36): 28044-28053.
Cos, P., Ying, L., Calomme, M., Hu,
J.P., Cimanga, K., Poel, B.V., Pieters, L., Vlietinck, A.J. & Berghe, D.V.
1998. Structure-activity relationship and classification of flavonoids as
inhibitors of xanthine oxidase and superoxide scavengers. Journal of Natural Products 61(1): 71-76.
Du, X., Li, Y., Xia, Y.L., Ai, S.H.,
Liang, J., Sang, P., Ji, X.L. & Liu, S.Q. 2016. Insights into
protein-ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Science 17(2): 144-178.
Enroth, C., Eger, B.T., Okamoto, K.,
Nishino, T., Nishino, T. & Pai, E.F. 2000. Crystal structures of bovine
milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of
conversion. Proceedings of the National
Academy of Sciences of the United States of America 97(20): 10723-10728.
Ichide, K., Matsuo, H., Takada, T.,
Nakayama, A., Murakami, K., Shimizu, T., Yamanashi, Y., Kasuga, H., Nakashima,
H., Nakamura, T., Takada, Y., Kawamura, Y., Inoue, H., Okada, C., Utsumi, Y.,
Ikebuchi, Y., Ito, K., Nakamura, M., Shinohara, Y., Hosoyamada, M., Sakurai,
Y., Shinomiya, N., Tatsuo, H. & Suzuki, H. 2012. Decreased extra-renal
urate excretion is a common cause of hyperuricemia. Nature Communications 3(1): 764-777.
Li, Q.Q., Yang, Y.X., Qv, J.W., Hu,
G., Hu, Y.J., Xia, Z.N. & Yang, F.Q. 2018. Investigation of interactions
between thrombin and ten phenolic compounds by affinity capillary
electrophoresis and molecular docking. Journal
of Analytical Methods in Chemistry 2018: 4701609.
Lin, C.M., Chen, C.S., Chen, C.T.,
Liang, Y.C. & Lin, J.K. 2002. Molecular modeling of flavonoids that
inhibits xanthine oxidase. Biochemical
and Biophysical Research Communications 29(1): 167-172.
Lin,
S., Zhang, G., Liao, Y., Pan, J. & Gong, D. 2015a. Dietary flavonoids as
xanthine oxidase inhibitors: Structure-affinity and structure-activity
relationships. Journal of Agricultural
and Food Chemistry 63(35): 7784-7794.
Lin, S.Y., Zhang, G.W., Liao, Y.J.
& Pan, J.H. 2015b. Inhibition of chrysin on xanthine oxidase activity and
its inhibition mechanism. International
Journal of Biological Macromolecules 81: 274-282.
Liu,
L., Zhang, L., Ren, L. & Xie, Y. 2020. Advances in structures required of
polyphenols for xanthine oxidase inhibition. Food Frontiers 1: 152-167.
Loh,
K.E., Chin, Y.S., Ismail, I.S. & Tan, H.Y. 2021. Rapid characterisation of
xanthine oxidase inhibitors from the flowers of Chrysanthemum morifolium Ramat. using metabolomics approach. Phytochemical Analysis 33(1): 12-22.
Malik, N., Dhiman, P.
& Khatkar, A. 2019. In silico design and synthesis of hesperitin derivatives as new xanthine oxidase
inhibitors. BMC Chemistry 13(1): 53.
Masuda,
A., Takahashi, C., Inai, M., Miura, Y. & Masuda, T. 2013. Chemical evidence
for potent xanthine oxidase inhibitory activity of Glechoma hederacea var. Grandis leaves (Kakidoushi-Cha). Journal of Nutritional Science and
Vitaminology 59: 570-575.
Masuoka, N. & Kubo, I. 2018.
Characterization of the xanthine oxidase inhibitory activity of alk(en)yl
phenols and related compounds. Phytochemistry 155: 100-106.
Murata, K., Nakao, K., Hirata, N.,
Hirata, N., Namba, K., Nomi, T., Kitamura, Y., Moriyama, K., Shintani, T.,
Munekazu, I. & Matsuda, H. 2009. Hydroxychavicol: A potent xanthine oxidase
inhibitor obtained from the leaves of betel, Piper betle. Journal of
Natural Medicines 63(3): 355-359.
Narayanaswamy, R., Isha, A., Lam,
K.W. & Ismail, I.S. 2016. Molecular docking analysis of selected Clinacanthus nutans constituents as
xanthine oxidase, nitric oxide synthase, human neutrophil elastase, matrix
metalloproteinase 2, matrix metalloproteinase 9 and squalene synthase
inhibitors. Pharmacognosy Magazine 12(45): 21-26.
Ng, T.L., Loh, K.E., Tan, S.A., Tan,
H.Y., Yue, C.S., Wee, S.P. & Tey, Z.T. 2022. Anti-hyperuricemic effect of
ethyl acetate sub-fractions from Chrysanthemum
morifolium Ramat. dried flowers on potassium oxonate-induced hyperuricemic
rats. Applied Sciences 12: 3487.
Okamoto,
K., Eger, B.T., Nishino, T., Pai, E.F. & Nishino, T. 2008. Mechanism of
inhibition of xanthine oxidoreductase by allopurinol: Crystal structure of
reduced bovine milk xanthine oxidoreductase bound with oxipurinol. Nucleosides, Nucleotides and Nucleic Acids 27(6-7): 888-893.
Reynolds, C.H., Bembenek, S.D. &
Tounge, B.A. 2007. The role of molecular size in ligand efficiency. Bioorganic & Medicinal Chemistry Letters 17(15): 4258-4261.
Santoyo, A.H., Tenorio-Barajas,
A.Y., Altuzar, V., Vivanco-Cid, H. & Mendoza-Barrera, C. 2013.
Protein-protein and protein-ligand docking. In Protein Engineering - Technology and Application. InTech Open
Science. pp. 63-84.
Shani, M., Vinker, S., Dinour, D.,
Leiba, M., Twig, G., Holtzman, E.J. & Leiba, A. 2016. High normal uric acid
levels are associated with an increased risk of diabetes in lean, normoglycemic
healthy women. Journal of Clinical
Endocrinology and Metabolism 101(10): 3772-3778.
Tao, X., Huang, Y.K., Wang, C.,
Chen, F., Yang, L.L., Ling, L., Che, Z.M. & Chen, X.G. 2019. Recent
developments in molecular docking technology applied in food science: A review. International Journal of Food Science and
Technology 55(44): 33-45.
Tung,
Y.T. & Chang, S.T. 2010. Inhibition of xanthine oxidase by Acacia confusa extracts and their
phytochemicals. Journal of Agricultural
and Food Chemistry 58(2): 781-786.
Umamaheswari,
M., Madeswaran, A., Asokkumar, K., Sivashanmugam, T., Subhadradevi, V. &
Jagannath, P. 2011. Study of potential xanthine oxidase inhibitors: in silico and in vitro biological activity. Bangladesh
Journal of Pharmacology 6(2): 117-123.
Wang,
Y.J., Zhang, G.W., Pan, J.H. & Gong, D.M. 2015. Novel insights into the
inhibitory mechanism of kaempferol on xanthine oxidase. Journal of Agricultural and Food Chemistry 63: 526-534.
Xie,
Y., Yang, W., Tang, F., Chen, X. & Ren, L. 2014. Antibacterial activities
of flavonoids: Structure-activity relationship and mechanism. Current Medicinal Chemistry 22(1):
132-149.
Zhao,
C., Yang, C.F., Liu, B., Lin, L., Sarker, S.D., Nahar, L., Yu, H., Cao, H.
& Xiao, J. 2018. Bioactive compounds from marine macroalgae and their
hypoglycemic benefits. Trends in Food
Science & Technology 72: 1-12.
*Corresponding
author; email:
lohke@tarc.edu.my
|