Sains Malaysiana 49(12)(2020): 3017-3028

http://dx.doi.org/10.17576/jsm-2020-4912-13

 

Effect of Chenodeoxycholic Acid on the Performance of Dye-sensitized Solar Cells utilizing Pinang Palm (Areca catechu) Dye

(Kesan Asid Kenodeoksikolik terhadap Prestasi Sel Suria Pekaan Pewarna yang menggunakanPewarna Pokok Pinang (Areca catechu)

 

ASMAA SOHEIL NAJM1, NORASIKIN A. LUDIN2*, NORUL HISHAM HAMID3, MOHD ADIB IBRAHIM2, MOHD ASRI MAT TERIDI2, KAMARUZZAMAN SOPIAN2, HAZIM MORIA4, ARAA MEBDIR HOLI5, ASLA A. AL-ZAHRANI6 & HASANAIN SALAH NAEEM7

 

1Department of Electrical Electronic & Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Biocomposite Unit, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

4Department of Mechanical Engineering Technology, Yanbu Industrial College, Yanbu Al-Sinaiyah 41912, Kingdom of Saudi Arabia

 

5Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Al-Qadisiyah 58002, Iraq

 

6Imam Abdulrahman Bin Faisal University, Eastern Region, Dammam, Saudi Arabia

 

7School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 12 Ogos 2020/Diterima: 30 Ogos 2020

 

ABSTRACT

This study examined and described the optical and photovoltaic (PV) characterizations of the Fruit Areca catechu (pinang) as a new type of organic sensitizer. Recent reports stated that including chenodeoxycholic acid (CDCA) in the dye improves the performance of dye-sensitized solar cells (DSSCs). The effectiveness of PV dye was investigated by applying it in a DSSC. The absorption spectra indicated that natural dyes with CDCA has an excellent stabilizing ability. The Fourier-transform infrared spectra indicated the existence of carboxylic and hydroxyl functional groups in the naturally extracted dye. These functional groups were responsible for the rapid electron transfer and strong electronic linkages of interactions within the TiO2 surface. In this study, photoluminescence spectra analysis showed that by narrowing the bandgap, incorporating CDCA as a co-adsorbent in natural dye could generate a significant photocurrent. The overall power conversion efficiency was enhanced by 4.6%. Moreover, the cell efficiency reached up to 0.076% after adding 1.5 mM of CDCA without optimizing the sensitization time. Results demonstrated that the present study contributes toward the improvement of DSSC through efficient electron injection.

 

Keywords: Areca catechu; chenodeoxycholic acid; DSSC; natural dye

 

ABSTRAK

Penyelidikan ini mengkaji dan menerangkan ciri optik dan fotovoltaik (PV) buah pinang (Areca catechu) sebagai sejenis pemeka organik yang baru. Laporan terkini menyatakan bahawa memasukkan asid kenodeoksikolik (CDCA) di dalam pemeka boleh meningkatkan prestasi sel suria pemeka warna (DSSCs). Keberkesanan pemeka PV tersebut dikaji dengan menerapkannya di dalam sel DSSC. Spektrum penyerapan menunjukkan bahawa pewarna semula jadi dengan CDCA mempunyai keupayaan menstabilkan pemeka yang sangat baik. Spektrum transformasi Fourier inframerah menunjukkan kewujudan kumpulan berfungsi karboksilik dan hidroksil dalam pewarna ekstrak semula jadi tersebut. Kumpulan berfungsi ini bertanggungjawab untuk pemindahan elektron yang cepat dan hubungan interaksi elektronik yang kuat di dalam permukaan TiO2. Dalam kajian ini, analisis spektrum cahaya menunjukkan bahawa dengan merapatkan jurang lebar, memasukkan CDCA sebagai penyerap bersama dalam pewarna semula jadi dapat menghasilkan foto arus yang signifikan. Keseluruhan kecekapan penukaran tenaga telah meningkat sebanyak 4.6%. Selanjutnya, kecekapan sel mencapai hingga 0.076% setelah menambahkan 1.5 mM CDCA tanpa mengoptimumkan masa pemekaan. Hasil menunjukkan bahawa kajian ini menyumbang ke arah peningkatan prestasi DSSC melalui suntikan elektron yang cekap.

 

Kata kunci: Areca catechu; asid kenodeoksikolik; DSSC; pewarna semula jadi

 

RUJUKAN

Amarasinghe, H.K., Usgodaarachchi, U.S., Johnson, N.W., Lalloo, R. & Warnakulasuriya, S. 2010. Betel-quid chewing with or without tobacco is a major risk factor for oral potentially malignant disorders in Sri Lanka: A case-control study. Oral oncology 46(4): 297-301.

Çakar, S. & Özacar, M. 2016. Fe–tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 163: 79-88.

Calogero, G. & di Marco, G. 2008. Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells 92(11): 1341-1346.

Chang, H., Wu, H.M., Chen, T.L., Huang, K.D., Jwo, C.S. & Lo, Y.J. 2010. Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea. Journal of Alloys and Compounds 495(2): 606-610.

Chevrier, M., Fattori, A., Lasser, L., Kotras, C., Rose, C., Cangiotti, M. & Dubois, P. 2020. In depth analysis of photovoltaic performance of chlorophyll derivative-based “all solid-state” dye-sensitized solar cells. Molecules 25(1): 198.

Du, J., Zhang, J., Liu, Z., Han, B., Jiang, T. & Huang, Y. 2006. Controlled synthesis of Ag/TiO2 core-shell nanowires with smooth and bristled surfaces via a one-step solution route. Langmuir 22(3): 1307-1312.

Gómez-Ortíz, N.M., Vázquez-Maldonado, I.A., Pérez-Espadas, A.R., Mena-Rejón, G.J., Azamar-Barrios, J.A. & Oskam, G. 2010. Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Solar Energy Materials and Solar Cells 94(1): 40-44.

Grätzel, M. 2003. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4(2): 145-153.

Green, M.A., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M. & Ho-Baillie, A.W. 2020. Solar cell efficiency tables (Version 55). Progress in Photovoltaics 28(1): 3-15.

Guo, S., Wen, D., Zhai, Y., Dong, S. & Wang, E. 2010. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4(7): 3959-3968.

Gürses, A., Açıkyıldız, M., Güneş, K. & Gürses, M.S. 2016. Dyes and pigments: Their structure and properties. In Dyes and Pigments. Berlin: Springer. pp. 13-29.

Hao, D.C., Xiao, P.G., Huang B.L., Ge, G.B. & Yang, L. 2008. Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Systematics and Evolution 276: 89-104.

Hemalatha, K.V., Karthick, S.N., Raj, C.J., Hong, N.Y., Kim, S.K. & Kim, H.J. 2012. Performance of Kerria japonica and Rosa chinensis flower dyes as sensitizers for dye-sensitized solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 96: 305-309.

Holi, A.M., Al-Zahrani, A.A., Najm, A.S., Chelvanathan, P. & Amin, N. 2020. PbS/CdS/ZnO nanowire arrays: Synthesis, structural, optical, electrical, and photoelectrochemical properties. Chemical Physics Letters 750: 137486.

Hosseinpanahi, K., Abbaspour-Fard, M.H., Feizy, J. & Reza Golzarian, M. 2017. Dye-sensitized solar cell using saffron petal extract as a novel natural sensitizer. Journal of Solar Energy Engineering 139: 021009.

Ismail, M., Ludin, N.A., Norul Hisham H., Adib, I.M. & Sopian, K. 2018. The effect of chenodeoxycholic acid (CDCA) in Mangosteen (Garcinia mangostana) pericarps sensitizer for dye-sensitized solar cell (DSSC). Journal of Physics Conference Series 1083. Bristol: IOP Science. p. 012018.

Ismail, M., Ludin, N.A., Hamid, N.H., Ibrahim, M.A., Zulfakar, M.S., Mohamed, N.M. & Sopian, K. 2017. Characterizations of natural dye from Garcinia mangostana with graphene oxide (GO) as sensitizer in dye-sensitizer solar cells. AIP Conference Proceedings 1838. Melville: AIP Publishing LLC. p. 0120017.

Jasim, K.E. 2012. Natural dye-sensitized solar cell based on nanocrystalline TiO2. Sains Malaysiana 41(8): 1011-1016.

Jung, J.S. 2017. Making of natural dyeing scarves by tie-dyeing technique. MATEC Web of Conferences 108. Les Ulis: EDP Sciences. p. 03006.

Krishna, N.V., Krishna, J.V.S., Mrinalini, M., Prasanthkumar, S. & Giribabu, L. 2017. Role of co‐sensitizers in dye‐sensitized solar cells. ChemSusChem 10(23): 4668-4689.

Li, J., Wu, W., Yang, J., Tang, J., Long, Y. & Hua, J. 2011. Effect of chenodeoxycholic acid (CDCA) additive on phenothiazine dyes sensitized photovoltaic performance. Science China Chemistry 54: 699.

Li, Y., Ku, S.H., Chen, S.M., Ali, M.A. & AlHemaid, F.M. 2013. Photoelectrochemistry for red cabbage extract as natural dye to develop a dye-sensitized solar cells. International Journal of Electrochemical Science 8: 1237-1245.

Mahir Faris Abdullah, Rozli Zulkifli, Zambri Harun, Shahrir Abdullah, Wan Aizon Wan Ghopa, Asmaa Soheil Najm & Noor Humam Sulaiman. 2019. Impact of the TiO2 nanosolution concentration on heat transfer enhancement of the twin impingement jet of a heated aluminum plate. Micromachines 10: 176.

Mercado, C.C., Knorr, F.J., McHale, J.L., Usmani, S.M., Ichimura, A.S. & Saraf, L.V. 2012. Location of hole and electron traps on nanocrystalline anatase TiO2. The Journal of Physical Chemistry C 116(19): 10796-10804.

Mikroyannidis, J.A., Suresh, P., Roy, M.S. & Sharma, G.D. 2011. New photosensitizer with phenylenebisthiophene central unit and cyanovinylene 4-nitrophenyl terminal units for dye-sensitized solar cells. Electrochimica Acta 56(16): 5616-5623.

Muhammad, N., Muh Zakir, M., Maulidiyah, M., Nurjannah, M. & Dwiprayogo, W. 2016. Plasmonic Silver-N/TiO 2 Effect on photoelectrocatalytic oxidation reaction. J. Mater. Environ. Sci. 7(9): 3334-3343.

Najm, A.S., Ludin, N.A., Abdullah, M.F., Almessiere, M.A., Ahmed, N.M. & Al-Alwani, M.A. 2020a. Areca catechu extracted natural new sensitizer for dye-sensitized solar cell: Performance evaluation. Journal of Materials Science: Materials in Electronics 31:  3564-3575.

Najm, A.S., Moria, H. & Ludin, N.A. 2020b. Areca catechu as photovoltaic sensitizer for dye-sensitized solar cell (DSSC). Biointerface Research in Applied Chemistry 10(3): 5636-5639.

Najm, A.S., Mohamad, A.B. & Ludin, N.A. 2017. The extraction and absorption study of natural dye from Areca catechu for dye sensitized solar cell application. AIP Conference Proceedings Series 1838. Melville: AIP Publishing LLC. p. 020019

Narayan, M.R. 2012. Dye sensitized solar cells based on natural photosensitizers. Renewable and Sustainable Energy Reviews 16: 208-215.

Oguchi, T., Sasaki, N., Hara, T., Tozuka, Y. & Yamamoto, K. 2003. Differentiated thermal crystallization from amorphous chenodeoxycholic acid between the ground specimens derived from the polymorphs. International Journal of Pharmaceutics 253(1-2): 81-88.

Portillo-Cortez, K., Martinez, A., Dutt, A. & Santana, G. 2019. N719 Derivatives for application in a dye-sensitized solar cell (DSSC): A theoretical study. The Journal of Physical Chemistry A 123(51): 10930-10939.

Pugliese, D., Shahzad, N., Sacco, A., Musso, G., Lamberti, A., Caputo, G. & Pirri, C.F. 2013. Fast TiO2 sensitization using the semisquaric acid as anchoring group. International Journal of Photoenergy 2013: 871526.

Purgato, F.L.S., Pronier, S., Olivi, P., de Andrade, A.R., Léger, J.M., Tremiliosi-Filho, G., Kokoh, K.B. 2012. Direct ethanol fuel cell: Electrochemical performance at 90 °C on Pt and PtSn/C electrocatalysts. Journal of Power Sources 198: 95-99.

Qu, S., Wu, W., Hua, J., Kong, C., Long, Y. & Tian, H. 2010. New diketopyrrolopyrrole (DPP) dyes for efficient dye-sensitized solar cells. The Journal of Physical Chemistry C 114(2): 1343-1349.

Riyaz Ahmad Mohamed Ali & Nafarizal Nayan. 2010. Fabrication and analysis of dye-sensitized solar cell using natural dye extracted from dragon fruit. International Journal of Integrated Engineering 2(3): 55-62.

Safie, N.E., Hamid, N.H., Sepeai, S., Teridi, M.A.M., Ibrahim, M.A., Sopian, K. & Arakawa, H. 2017. Energy levels of natural sensitizers extracted from rengas (Gluta spp.) and mengkulang (Heritiera elata) wood for dye-sensitized solar cells. Materials for Renewable and Sustainable Energy 6: 5.

San Esteban. A.C.M. & Enriquez, E.P. 2013. Graphene–anthocyanin mixture as photosensitizer for dye-sensitized solar cell. Solar Energy 98(Part C): 392-399.

Senthil, T.S., Muthukumarasamy, N., Velauthapillai, D., Agilan, S., Thambidurai, M. & Balasundaraprabhu, R. 2011. Natural dye (cyanidin 3-O-glucoside) sensitized nanocrystalline TiO2 solar cell fabricated using liquid electrolyte/quasi-solid-state polymer electrolyte. Renewable Energy 36(9): 2484-2488.

Sharma, R. & Ghoshal, G. 2020. Optimization of carotenoids production by Rhodotorula mucilaginosa (MTCC-1403) using agro-industrial waste in bioreactor: A statistical approach. Biotechnology Reports 25: e00407.

Sharma, S., Siwach, B., Ghoshal, S.K. & Mohan, D. 2017. Dye sensitized solar cells: From genesis to recent drifts. Renewable and Sustainable Energy Reviews 70: 529-537.

Shrestha, J., Shanbhag, T., Shenoy, S., Amuthan, A., Prabhu, K., Sharma, S. & Kafle, S. 2010. Antiovulatory and abortifacient effects of Areca catechu (betel nut) in female rats. Indian Journal of Pharmacology 42(5): 306-311.

Su’ait, M.S., Rahman, M.Y.A. & Ahmad, A. 2015. Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Solar Energy 115: 452-470.

Toor, R.A., Sayyad, M.H., Nasr, N., Sajjad, S., Shah, S.A.A. & Manzoor, T. 2016. Efficiency enhancement of dye sensitized solar cells with a low cost co-adsorbent in N719 dye. International Journal of Sustainable Energy and Environment Research 5(3): 46-50.

Vidhya, R. & Narain, A. 2011. Formulation and evaluation of preserved products utilizing under exploited fruit, wood apple (Limoniaacidissima). American-Eurasian J. Agric. & Environ. Sci. 10(1): 112-118.

Vittal, R. & Ho, K.C. 2017. Zinc oxide based dye-sensitized solar cells: A review. Renewable and Sustainable Energy Reviews 70: 920-935.

Wang, Z.S., Cui, Y., Dan-oh, Y., Kasada, C., Shinpo, A. & Hara, K. 2007. Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: Electron lifetime improved by coadsorption of deoxycholic acid. The Journal of Physical Chemistry C 111(19): 7224-7230.

Wongcharee, K., Meeyoo, V. & Chavadej, S. 2007. Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Solar Energy Materials and Solar Cells 91(7): 566-571.

Yamazaki, E., Murayama, M., Nishikawa, N., Hashimoto, N., Shoyama, M. & Kurita, O. 2007. Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells. Solar Energy 81(4): 512-516.

Yum, J.H., Jang, S.R., Humphry-Baker, R., Grätzel, M., Cid, J.J., Torres, T. & Nazeeruddin, M.K. 2008. Effect of coadsorbent on the photovoltaic performance of zinc pthalocyanine-sensitized solar cells. Langmuir 24(10): 5636-5640.

Zhang, G., Bala, H., Cheng, Y., Shi, D., Lv, X., Yu, Q. & Wang, P. 2009. High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer. Chemical Communications 16: 2198-2200.

Zhou, H., Wu, L., Gao, Y. & Ma, T. 2011. Dye-sensitized solar cells using 20 natural dyes as sensitizers. Journal of Photochemistry and Photobiology A: Chemistry 219(2-3): 188-194.

 

*Pengarang untuk surat-menyurat; email: sheekeen@ukm.edu.my

   

 

sebelumnya