Sains Malaysiana 49(12)(2020): 3007-3015
http://dx.doi.org/10.17576/jsm-2020-4912-12
Electrochemical
Properties of Natural Sensitizer from Garcinia mangostana and Archidendron
pauciflorum Pericarps for Dye-Sensitized Solar Cell (DSSC) Application
(Sifat Elektrokimia
Pemekaan Semula Jadi daripada Perikarpa Garcinia mangostana dan Archidendron
pauciflorum untuk Penggunaan Sel Suria Peka Pewarna (DSSC))
MASHASRIYAH
ISMAIL1, NORASIKIN AHMAD LUDIN1*, NORUL HISHAM HAMID2,
MAHMOUD A.M. AL-ALWANI3, NORANI MUTI MUHAMED4, SUHAILA
SEPEAI1, MOHD ADIB IBRAHIM1 & MOHD ASRI MAT TERIDI1
1Solar Energy Research Institute (SERI), Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Biocomposite Unit, Institute of Tropical Forestry and
Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul
Ehsan, Malaysia
3Department of Biology, College of Education for Pure
Sciences/Ibn Al-Haitham, University of Baghdad
Baghdad,
Iraq
4Centre of Innovative Nanostructures & Nanodevices
(COINN), Universiti Teknologi Petronas (UTP), 32610 Seri Iskandar, Perak Darul
Ridzuan, Malaysia
5Unit of Fundamental Studies, Faculty of Engineering
and Environment Built, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Diserahkan:
12 Ogos 2020/Diterima: 27 Ogos 2020
ABSTRACT
Dye-sensitized solar
cells (DSSC) create imitation photosynthesis by using chemical reactions to
produce electricity from sunlight. DSSC has been pursued in numerous studies
due to its capability to achieve efficiencies of up to 15% with artificial
photosensitizer in diffuse light. However, artificial photosensitizers present
a limitation because of the complex processing of metal compound. Therefore,
various types of sensitizers were developed and synthesized to surpass the
artificial sensitizer performances such as natural sensitizers from bio-based
materials including plants, due to simple processing techniques and low
environmental impact. Thus, this study examines the potential and properties of
natural sensitizers from the waste of bio-based materials from Garcinia mangostana (mangosteen fruit) and Archidendron
pauciflorum (jering fruit). Both fruits
pericarps have dark color pigments as dark purple and dark brown, respectively,
which promise a good absorption and has potential to be used as sensitizer for
DSSC. Each pericarps dye extracted using cold extraction method in methanol
solvent. Electrochemical properties and photovoltaic properties of the natural
photosensitizers were studied. The highest peaks of photoluminescence spectra
of mangosteen and jering sensitizers
were at 490 and 670 nm, respectively, due to their different types of dye
pigment extracted. We also obtained the absorption spectra for both mangosteen
and jering sensitizers at 380-500 and
400-600 nm, respectively, in blue shift behavior. The redox reaction was also
studied using cyclic voltammetry and identify their energy levels. The DSSC
device with mangosteen sensitizer achieved an efficiency of 0.38% with 35.43%
(IPCE at 337 nm) and 37.75 Ω (Rs), whereas that with jering sensitizer has
efficiency of 0.07% with 25.31% (IPCE at 337 nm) and 490.70 Ω (Rs).
Performance studies for both photosensitizers were weak due to their HOMO-LUMO
levels, but the results show that both natural dyes can be potentially applied
as photosensitizer in DSSC.
Keywords: Absorption;
DSSC; efficiency; natural dye; photosensitizer
ABSTRAK
Sel suria peka pewarna
(DSSC) membuat fotosintesis tiruan dengan menggunakan tindak balas kimia untuk
menghasilkan elektrik daripada cahaya matahari. Peranti DSSC telah digunakan
dalam banyak kajian kerana kemampuannya untuk mencapai kecekapan hingga 15%
dengan pemeka warna buatan dalam cahaya yang resap. Walau bagaimanapun, pemeka
warna buatan mempunyai batasan kerana mengandungi sebatian logam yang kompleks.
Oleh itu, pelbagai jenis pemeka warna dikaji dan disintesis untuk mengatasi
prestasi pemekaan buatan seperti pemeka semula jadi daripada bahan berasaskan
bio termasuk tanaman, kerana teknik penghasilan pemeka yang mudah dan kesan
persekitaran yang rendah. Oleh itu, kajian ini mengkaji potensi dan sifat
pemekaan semula jadi daripada bahan buangan berasaskan bio daripada Garcinia mangostana (buah manggis) dan Archidendron
pauciflorum (buah jering). Kedua-dua buah
masing-masing mempunyai kulit perikarpa yang berwarna gelap iaitu ungu gelap
dan coklat gelap yang boleh membantu mendapatkan penyerapan cahaya yang baik
dan berkebolehan dijadikan pemeka untuk peranti DSSC. Pewarna diekstrak
menggunakan kaedah pengekstrakan sejuk di dalam larutan metanol. Sifat
elektrokimia dan fotovoltaik pemeka warna semula jadi ini dianalisis dalam
kajian ini. Puncak tertinggi spektrum fotoluminesen pemeka manggis dan jering
adalah masing-masing pada 490 dan 670 nm, kerana pelbagai jenis pigmen pewarna
yang diekstrak. Kami juga dapat memperoleh spektrum penyerapan untuk kedua-dua
pemeka manggis dan jering pada masing-masing 380-500 dan 400-600 nm, dalam
tingkah laku anjakan biru. Tindak balas redoks juga dikaji menggunakan
voltametri berkitar dan mengenal pasti tahap tenaga pemeka tersebut. Peranti DSSC
dengan pemeka warna manggis mencapai kecekapan peranti 0.38% dengan 35.43%
(IPCE pada 337 nm) dan 37.75 Ω (Rs), sedangkan pemeka warna jering
mempunyai kecekapan peranti 0.07% dengan 25.31% (IPCE at 337 nm) dan 490.70
Ω (Rs). Kajian prestasi peranti untuk kedua-dua pemeka warna tersebut
lemah kerana paras HOMO-LUMO pewarna, tetapi hasil kajian menunjukkan bahawa
kedua-dua pewarna semula jadi berpotensi digunakan sebagai pemeka cahaya dalam
DSSC.
Kata kunci: DSSC;
kecekapan; pemeka warna buatan; penyerapan; pewarna semula jadi
RUJUKAN
Al-Alwani,
M.A., Mohamad, A.B., Kadhum, A.A.H., Ludin, N.A., Safie, N.E., Razali, M.Z.,
Ismail, M. & Sopian, K. 2017. Natural dye extracted from Pandannus amaryllifolius leaves as
sensitizer in fabrication of dye-sensitized solar cells. International Journal of Electrochemical Science 12(1): 747-761.
Alias,
N.N. & Yaacob, K.A. 2016. Natural dye sensitizer in dye sensitized solar
cell. Sains Malaysiana 45(8):
1227-1234.
Attanayake,
C.I.F., de Silva, C., Premachandra, B.A.J.K., De Alwis, A.A.P. &
Senadheera, G.K.R. 2013. Dye-sensitized solar cells: using over 100 natural
dyes as sensitizers. 2013 AIChE Annual
Meeting. pp. 1-16.
Bunawan,
H., Dusik, L., Bunawan, S.N. & Amin, N.M. 2013. Botany, traditional uses,
phytochemistry and pharmacology of Archidendron
jiringa: A review. Global Journal of
Pharmacology 7(4): 474-478.
Godibo,
D.J., Anshebo, S.T. & Anshebo, T.Y. 2015. Dye sensitized solar cells using
natural pigments from five plants and quasi-solid state electrolyte. Journal of the Brazilian Chemical Society 26(1):
92-101.
Jinchu,
I., Sreekala, C.O., Sreelatha, K.S. & Mohan, R.E. 2016. Photovoltaic
parameters of DSSCs using natural dyes with TiO2 nanopowder and nanofiber as
photoanodes: A comparative study. 2016 International
Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) 4154-4157.
Jung,
H.A., Su, B.N., Keller, W.J., Mehta, R.G. & Kinghorn, A.D. 2006.
Antioxidant xanthones from the pericarp of Garcinia
mangostana (Mangosteen). Journal of
Agricultural and Food Chemistry 54(6): 2077-2082.
Kumar,
N.S., Ibrahim, A.A., Dhar, A. & Vekariya, R.L. 2019. Optoelectrical
characterization of different fabricated donor substituted benzothiazole based
sensitizers for efficient DSSCs. Journal of
Photochemistry and Photobiology A: Chemistry 372: 35-41.
Kushwaha,
R., Srivastava, P. & Bahadur, L. 2013. Natural pigments from plants used as
sensitizers for TiO2 based dye-sensitized solar cells. Journal of Energy 2013: Article ID. 654953.
Leonat,
L., Sbarcea, G. & Branzoi, I.V. 2013. Cyclic voltammetry for energy levels
estimation of organic materials. UPB
Scientific Bulletin, Series B: Chemistry and Materials Science 75(3):
111-118.
Maiaugree,
W., Lowpa, S., Towannang, M., Rutphonsan, P., Tangtrakarn, A., Pimanpang, S.,
Maiaugree, P., Ratchapolthavisin, N., Sang-Aroon, W., Jarernboon, W. &
Amornkitbamrung, V. 2015. A dye sensitized solar cell using natural counter
electrode and natural dye derived from mangosteen peel waste. Scientific Reports 5(1): 15230.
Mariey,
L., Signolle, J.P., Amiel, C. & Travert, J. 2001. Discrimination,
classification, identification of microorganisms using FTIR spectroscopy and
chemometrics. Vibrational Spectroscopy 26(2): 151-159.
O'regan,
B. & Grätzel, M. 1991. A low-cost, high-efficiency solar cell based on
dye-sensitized colloidal TiO2 films. Nature 353(6346): 737-740.
Ooyama,
Y., Hagiwara, Y., Mizumo, T., Harima, Y. & Ohshita, J. 2013. Photovoltaic
performance of dye-sensitized solar cells based on D–π–A type BODIPY dye
with two pyridyl groups. New Journal of
Chemistry 37(8): 2479-2485.
Park,
N.G., Kang, M.G., Ryu, K.S., Kim, K.M. & Chang, S.H. 2004. Photovoltaic
characteristics of dye-sensitized surface-modified nanocrystalline SnO2 solar
cells. Journal of Photochemistry and
Photobiology A: Chemistry 161(2-3): 105-110.
Rajkumar,
S. & Suguna, K. 2016. Analysis of natural sensitizers to enhance the
efficiency in dye sensitized solar cell. International
Journal of Engineering Research and Applications 6(5): 41-46.
Safie,
N.E., Hamid, N.H., Sepeai, S., Teridi, M.A.M., Ibrahim, M.A., Sopian, K. &
Arakawa, H. 2017a. Energy levels of natural sensitizers extracted from rengas
(Gluta spp.) and mengkulang (Heritiera elata) wood for dye-sensitized solar
cells. Materials for Renewable and
Sustainable Energy 6(2): 5.
Safie,
N.E., Ludin, N.A., Hamid, N.H., Tahir, P.M., Teridi, M.A.M., Sepeai, S.,
Ibrahim, M.A. & Sopian, K. 2017b. Electron transport studies of
dye-sensitized solar cells based on natural sensitizer extracted from rengas
(Gluta spp.) and mengkulang (Heritiera
elata) wood. Bioresources 12(4): 9227-9243.
San
Esteban, A.C.M. & Enriquez, E.P. 2013. Graphene-anthocyanin mixture as
photosensitizer for dye-sensitized solar cell. Solar Energy 98: 392-399.
Sathyajothi,
S., Jayavel, R. & Dhanemozhi, A.C. 2017. The fabrication of natural dye
sensitized solar cell (DSSC) based on TiO2 using henna and beetroot dye
extracts. Materials Today: Proceedings 4(2):
668-676.
Shahid,
M. & Mohammad, F. 2013. Recent advancements in natural dye applications: A
review. Journal of Cleaner Production 53: 310-331.
Tontapha,
S., Sang-Aroon, W., Kanokmedhakul, S., Promgool, T. & Amornkitbamrung, V.
2017. Effects of dye-adsorption solvents, acidification and dye combination on
efficiency of DSSCs sensitized by α-mangostin and anthocyanin from
mangosteen pericarp. Journal of Materials
Science: Materials in Electronics 28(10): 7454-7467.
Ye,
M., Wen, X., Wang, M., Iocozzia, J., Zhang, N., Lin, C. & Lin, Z. 2015.
Recent advances in dye-sensitized solar cells: From photoanodes, sensitizers
and electrolytes to counter electrodes. Materials
Today 18(3): 155-162.
Zhou,
H., Wu, L., Gao, Y. & Ma, T. 2011. Dye-sensitized solar cells using 20
natural dyes as sensitizers. Journal of
Photochemistry and Photobiology A: Chemistry 219(2-3): 188-194.
Zulkifili,
A.N.B., Kento, T., Daiki, M. & Fujiki, A. 2015. The basic research on the
dye-sensitized solar cells (DSSC). Journal
of Clean Energy Technologies 3(5): 382-387.
*Pengarang
untuk surat-menyurat; email: sheekeen@ukm.edu.my
|