Sains Malaysiana 47(4)(2018):
819-827
http://dx.doi.org/10.17576/jsm-2018-4704-22
Pengaruh Suhu Sinteran terhadap Kebioaktifan Wolastonit daripada Abu Sekam Padi dan Batu
Kapur
(Influence of Sintering Temperature on the Bioactivity of Wollastonite Derived from Rice Husk Ash and Limestone)
FARAH ATIQAH
ABDUL AZAM1, HAMISAH ISMAIL1, ROSLINDA SHAMSUDIN1*,
MIN HWEI NG2, ZALITA ZAINUDDIN1 & MUHAMMAD
AZMI ABDUL HAMID1
1Pusat Pengajian Fizik Gunaan, Fakulti
Sains & Teknologi,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Pusat Kejuruteraan Tisu Tingkat 12, Blok Klinikal,
Pusat Perubatan Universiti
Kebangsaan Malaysia, 56000 Cheras, Kuala
Lumpur, Wilayah Persekutuan, Malaysia
Diserahkan: 18
September 2017/Diterima: 7 November 2017
ABSTRAK
Tujuan kajian ini adalah
untuk mengenal
pasti kesan rawatan
suhu yang berbeza
terhadap kebioaktifan wolastonit yang disintesis menggunakan teknik sol gel. Abu sekam padi
dan batu kapur
digunakan sebagai
bahan awalan untuk
menghasilkan wolastonit.
Nisbah
campuran kalsium oksida dan silika
dioksida CaO/SiO2
ditentukan pada
55:45 dan dimasukkan ke dalam autoklaf
pada suhu 135°C
dengan tekanan 0.26 MPa selama 8 jam. Campuran serbuk CaO dan
SiO2 tersebut disinter pada
suhu yang berbeza
(1150°C dan 1250°C)
dan diuji sifat kebioaktifan secara rendaman dalam larutan cecair
badan tersimulasi
(SBF) selama 1,3,5,7 dan 14 hari secara in vitro. Sifat fizikal dan kebioaktifan wolastonit sebelum dan selepas
direndam dalam
larutan SBF dan beberapa pencirian telah dijalankan menggunakan teknik analisis XRD, FESEM, EDX dan FTIR.
Campuran serbuk
CaO-SiO2 yang telah diautoklaf
dan disinter pada
suhu 1250°C menghasilkan puncak tunggal pseudowolastonit. Ujian kebioaktifan menunjukkan lapisan amorfus kalsium fosfat (ACP)
dengan
julat nisbah Ca/P 1.9-1.51
terbentuk
lebih pantas pada sampel wolastonit yang disinter
pada
suhu 1250°C berbanding pembentukan ACP pada sampel tersinter 1150°C.
Kata kunci: Abu sekam padi; batu
kapur; kebioaktifan;
wolastonit
ABSTRACT
The aim of this work was to identify
the sintering effect
on the in-vitro bioactivity of the synthesized wollastonite material using sol gel method. Rice
husk ash and calcium
oxide from limestone
were taken as a precursor
to produce wollastonite. Calcium
oxide and silicon dioxide CaO/SiO2
were measured at an average ratio of 55:45 and placed in an autoclave
at the
temperature of 135°C with
0.26 MPa pressure for 8 h. The CaO and SiO2 powder
mixtures have been
sintered at different temperatures (1150°C and 1250°C) and then immersed in
a simulated body liquid (SBF) solution for 1,3,5,7 and 14 days for
in vitro bioactivity test. The physical properties and wolastonite
bioactivity before and after immersed in SBF solution and some characterizations
were carried out using XRD, FESEM, EDX and FTIR analysis techniques.
The autoclaved CaO-SiO2 powder mixture sintered at 1250°C
yields a single peak of pseudowolastonite.
The bioactivity test showed that,
the amorphous
layer of calcium
phosphate (ACP) with
the Ca/P
ratio of 1.9-2.01 was formed faster
on wolastonite samples sintered
at 1250°C compared to the formation of ACP layer for sample sintered
at 1150°C.
Keywords: Bioactivity; limestone; rice husk
ash; wollastonite
RUJUKAN
Anjaneyulu, U. &
Sasikumar, S. 2014.
Bioactive nanocrystalline
wollastonite
synthesized by sol - gel combustion. Materials Science 37(2): 207-212.
ASTM F1538-03. 2012. Standard Specification
for Glass and Glass Ceramic Biomaterials for Implantation (Reapproved 2011). pp. 1-4.
Best, S.M., Porter, A.E., Thian, E.S. & Huang, J. 2008. Bioceramics: Past,
present and for the future. Journal of the
European Ceramic Society 28(7):
1319-1327.
Brohede, U., Zhao,
S., Lindberg,
F., Mihranyan, A., Forsgren, J., Strømme, M. &
Engqvist,
H. 2009. A
novel graded
bioactive high adhesion implant coating. Applied Surface Science 255(17): 7723-7728.
Chen, C.C., Ho, C.C., Lin, S.Y.
& Ding, S.J. 2015. Green synthesis
of calcium silicate bioceramic powders. Ceramics International 41(4): 5445-5453.
De Aza,
P.N.,
Guitián, F., De Aza,
S. &
Valle, F.J. 1998. Analytical control of wollastonite
for biomedical applications by use of
atomic absorption spectrometry and inductively coupled plasma atomic emission
spectrometry. The Analyst
123(4): 681-685.
De La Casa-Lillo, M.A., Velásquez, P. &
De Aza, P.N. 2011. Influence of thermal treatment
on the “in vitro” bioactivity
of wollastonite materials. Journal of Materials Science: Materials in Medicine 22(4): 907-915.
Dorozhkin, S.V. 2009. Calcium orthophosphates in nature, biology
and medicine. Materials
2(2): 399-498.
Harabi, A. & Chehlatt, S. 2013.
Preparation process of a highly
resistant wollastonite bioceramics using
local raw materials. Journal of Thermal Analysis and Calorimetry 111(1):
203-211.
Hassan, J.U.,
Noh, M.Z. & Ahmad, Z.A. 2012.
Chemical and mineralogical properties of rice husk ash (RHA). Jurnal Teknologi Pertanian 8(1): 1-3.
Imam, S.H., Bilbao-Sainz, C.,
Chiou, B.S., Glenn, G.M. & Orts, W.J. 2013. Biobased adhesives, gums, emulsions,
and binders: Current trends and future prospects. Journal of Adhesion Science and Technology
27(18-19): 1972-1997.
Ismail, H., Shamsudin, R. & Hamid, M.A.A. 2016a. Effect of autoclaving and
sintering on
the formation of β-wollastonite. Materials Science and Engineering C 58: 1077-1081.
Ismail, H.,
Shamsudin, R., Hamid,
M.A.A. & Awang, R. 2016b. Mechanism of apatite formation on β-wollastonite sample surface synthesized from rice husk ash.
Sains Malaysiana 45(12):
1779-1785.
Jones, F.H. 2001. Teeth and
bones: Applications of surface science
to dental materials and related biomaterials. Surface Science
Reports 42: 75-205.
Kokubo, T. & Takadama,
H. 2006. How useful is
SBF in predicting in vivo
bone bioactivity? Biomaterials 27(15): 2907-2915.
Lakshmi, R. & Sasikumar, S. 2012. Synthesis, characterization
and bioactivity studies of calcium silicate bioceramics. Advanced
Materials Research 584: 479-483.
Lim, P.N., Chang, L. & Thian, E.S. 2015. Development of nanosized silver-substituted
apatite for biomedical
applications: A review. Nanomedicine:
Nanotechnology, Biology, and Medicine 11(6): 1331-1344.
Mami, M., Lucas-Girot,
A., Oudadesse, H., Dorbez-Sridi,
R., Mezahi,
F. & Dietrich,
E. 2008. Investigation of the surface reactivity of a sol-gel derived glass
in the ternary system SiO2-CaO-P2O5. Applied
Surface Science 254(22):
7386-7393.
Meiszterics,
A. &
Sinkó,
K. 2008. Sol-gel derived
calcium silicate
ceramics. Colloids and Surfaces A: Physicochemical and Engineering Aspects 319(1-3): 143-148.
Mour, M., Das, D., Winkler, T., Hoenig, E., Mielke, G., Morlock, M.M. & Schilling, A.F. 2010.
Advances in porous biomaterials
for dental and orthopaedic applications. Materials
3(5): 2947-2974.
Mozafari, M., Moztarzadeh, F. &
Tahriri, M. 2010. Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2-CaO-P2O5 glass in simulated body fluid. Journal of Non-Crystalline
Solids 356(28-30): 1470-1478.
Podporska,
J., Błażewicz, M., Trybalska, B. &
Zych,
Ł. 2008. A novel ceramic material with medical application. Processing and Application of Ceramics 2(1): 19-22.
Rashid, R.A.,
Shamsudin, R., Hamid,
M.A.A. & Jalar, A. 2014. Low
temperature production of
wollastonite from limestone and silica sand through solid-state reaction. Ceramics International 40(5): 6847-6853.
Shamsudin, R., Ismail, H. & Hamid, M.A.A. 2016.
The suitability of rice straw ash as a precursor
for synthesizing β-wollastonite.
Materials Science Forum 846:
216-222.
Toledo-Fernández, J.A., Mendoza-Serna, R., Morales, V., de la Rosa-Fox, N., Piñero, M., Santos,
A. & Esquivias, L. 2008. Bioactivity of wollastonite/aerogels
composites obtained from a TEOS-MTES matrix. Journal of Materials Science:
Materials in Medicine 19(5):
2207-2213.
Vallet-Regí, M. 2010. Evolution of bioceramics within
the field of biomaterials. Comptes Rendus Chimie 13: 174-185.
Zhao, W. & Chang, J.
2004. Sol-gel synthesis and in vitro
bioactivity of tricalcium silicate powders. Materials
Letters 58(19): 2350-2353.
*Pengarang untuk surat-menyurat; email: linda@ukm.edu.my
|