Sains Malaysiana 47(4)(2018): 811-817

http://dx.doi.org/10.17576/jsm-2018-4704-21 

Alloying Behavior and Microstructural Changes of a Ti-10%Mo-10%Cr Alloy on Sintering Process

 

 

(Sifat Pengaloian dan Perubahan Mikrostruktur Aloi Ti-10%Mo-10%Cr ke atas Proses Sinter)

 

JUNAIDI SYARIF1*, EKO KURNIAWAN2, TUBAGUS N. ROHMANNUDIN2, MOHAMAD RASIDI RASANI2 & ZAINUDDIN SAJURI2

 

1University of Sharjah, College of Engineering, Sharjah, UAE

 

2Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 17 Oktober 2016/Diterima: 25 Oktober 2017

 

ABSTRACT

 

This study aimed to investigate the effects of element diffusion on the alloying behaviour and microstructure of a Ti-10%Mo- 10%Cr alloy during sintering and furnace cooling. A theoretical calculation of the average diffusion distance for each element was performed to predict the alloying behaviour during sintering and furnace cooling. The Ti-10%Mo-10%Cr alloy was fabricated using a blended element powder metallurgy approach. Micrograph of the samples after sintering showed bright-circle structures and significantly decreased equiaxed structures. The number of plate-like structures increased with prolonged sintering time. Microstructural changes occurred because of element diffusion resulting from the prolonged sintering time. Moreover, the diffusion distance of each element also increased with prolonged sintering time. Although elements can sufficiently diffuse during both sintering and furnace cooling, the diffusion distance during sintering was considerably higher than that during furnace cooling for all elements. The diffusion distances of Cr and Mo were the highest and lowest, respectively, during sintering and furnace cooling. This study showed that alloying behaviour mostly occurred during sintering and was controlled by the diffusion of Mo atoms.

 

Keywords: Diffusion; microstructure; powder metallurgy; sintering; Ti alloy

 

 

ABSTRAK

 

Kajian ini bertujuan untuk mengkaji kesan peresapan unsur terhadap kelakuan pengaloian dan mikrostruktur pada aloi Ti-10%Mo-10%Cr semasa sinteran dan penyejukan relau. Pengiraan secara teori terhadap jarak peresapan purata bagi setiap unsur dilakukan untuk meramal kelakuan pengaloian semasa sinteran dan penyejukan relau. Aloi Ti-10%Mo- 10%Cr telah direka menggunakan pendekatan metalurgi serbuk unsur sebati. Mikrograf sampel selepas pensinteran menunjukkan struktur bulatan-terang dan struktur sama paksi yang menurun secara ketara. Bilangan struktur seperti plat meningkat dengan memanjangkan masa pensinteran. Perubahan mikrostruktur berlaku disebabkan penyebaran unsur yang dihasilkan semasa pensinteran yang berpanjangan. Selain itu, jarak resapan bagi setiap elemen juga meningkat dengan masa pensinteran berpanjangan. Walaupun unsur-unsur boleh cukup meresap semasa sinteran dan penyejukan relau, jarak resapan semasa sinteran adalah lebih tinggi daripada semasa penyejukan relau untuk semua unsur. Jarak peresapan Cr dan Mo masing-masing yang tertinggi dan terendah, semasa sinteran dan penyejukan relau. Kajian ini menunjukkan bahawa kelakuan pengaloian kebanyakannya berlaku semasa sinteran dan dikawal oleh resapan atom Mo.

 

Kata kunci: Aloi Ti; metalurgi serbuk; mikrostuktur; pensinteran; peresapan

 

RUJUKAN

Abkowitz, S., Abkowitz, S. & Fisher, H. 2015. Titanium alloy components manufacture from blended elemental powder and the qualification process. In Titanium Powder Metallurgy: Science, Technology and Applications, edited by Qian, M. & Froes, F.H. Oxford: Butterworth-Heinemann.

Atkins, P. & De Paula, J. 2006. Atkins’ Physical Chemistry. New York: Oxford University Press.

Balluffi, R.W., Allen, S. & Carter, W.C. 2005. Kinetics of Materials. New Jersey: John Wiley & Sons, Inc.

Carman, A., Zhang, L.C., Ivasishin, O.M., Savvakin, D.G., Matviychuk, M.V. & Pereloma, E.V. 2011. Role of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-β titanium alloy. Materials Science and Engineering: A 528: 1686-1693.

Fujita, T., Ogawa, A., Ouchi, C. & Tajima, H. 1996. Microstructure and properties of titanium alloy produced in the newly developed blended elemental powder metallurgy process. Materials Science and Engineering: A 213: 148-153.

Ganguly, J. 2002. Diffusion kinetics in minerals: Principles and applications to tectono-metamorphic processes. European Mineralogical Union Notes in Mineralogy 4(Chapter 10): 271-309.

Hagiwara, M. & Emura, S. 2003. Blended elemental P/M synthesis and property evaluation of Ti-1100 alloy. Materials Science and Engineering: A 352: 85-92.

Kakani, S.L. 2004. Material Science. New Delhi: New Age International (P) Limited.

Leyens, C. & Peters, M. 2003. Titanium and Titanium Alloys. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.

Lütjering, G. & Williams, J.C. 2007. Titanium. 2nd ed.  Berlin: Springer-Verlag.

Nakajima, H. & Koiwa, M. 1991. Diffusion in titanium. ISIJ International 31: 757-766.

Niinomi, M. 2003. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials 4: 445-454.

Niinomi, M. 2002. Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A 33: 477-486.

Oliveira, N. & Guastaldi, A. 2009. Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomaterialia 5: 399-405.

Philibert, J. 1991. Atom Movements: Diffusion and Mass Transport in Solids. Les ulis: Editions de Physique.

Shackelford, J.F. & Alexander, W. 2010. CRC Materials Science and Engineering Handbook. 3rd ed. Florida: Taylor & Francis.

Shewmon, P.G. 1989. Diffusion in Solids. 2nd ed. New York: McGraw-Hill.

Syarif, J., Rohmannudin, T.N., Omar, M.Z., Sajuri, Z. & Harjanto, S. 2013. Stability of the beta phase in Ti-Mo-Cr alloy fabricated by powder metallurgy. Journal of Mining and Metallurgy, Section B: Metallurgy 49: 285-292.

Syarif, J., Rohmannudin, T.N., Omar, M.Z., Sajuri, Z. & Daud, A.R. 2008. Study on formation of β single phase of a Ti-10at% Mo-10at% Cr alloy on sintering and solution treatment, Proceedings of the 1st WSEAS International Conference on Materials Science. pp. 48-52.

Yang, Y.F., Luo, S.D., Schaffer, G.B. & Qian, M. 2011. Sintering of Ti–10V–2Fe–3Al and mechanical properties. Materials Science and Engineering: A 528(22-23): 6719-6726.

Zhang, Y. 2008. Geochemical Kinetics. New Jersey: Princeton University Press.

 

*Pengarang untuk surat-menyurat; email: sjunaidi@sharjah.ac.ae

 

 

 

 

 

 

 

 

 

sebelumnya