Sains Malaysiana 47(4)(2018): 811-817
http://dx.doi.org/10.17576/jsm-2018-4704-21
Alloying Behavior and Microstructural Changes
of a Ti-10%Mo-10%Cr Alloy on Sintering Process
(Sifat Pengaloian
dan Perubahan
Mikrostruktur Aloi Ti-10%Mo-10%Cr
ke atas Proses
Sinter)
JUNAIDI
SYARIF1*, EKO KURNIAWAN2, TUBAGUS N. ROHMANNUDIN2,
MOHAMAD RASIDI RASANI2 & ZAINUDDIN SAJURI2
1University of Sharjah, College
of Engineering, Sharjah, UAE
2Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan,
Malaysia
Diserahkan: 17 Oktober 2016/Diterima: 25 Oktober 2017
ABSTRACT
This study
aimed to investigate the effects of element diffusion on the alloying
behaviour
and microstructure of a Ti-10%Mo-
10%Cr alloy during sintering and furnace cooling. A theoretical
calculation of the average diffusion distance for each element was performed to predict the alloying behaviour during sintering and furnace cooling. The Ti-10%Mo-10%Cr
alloy was fabricated using a blended element powder metallurgy approach.
Micrograph of the samples after sintering showed bright-circle structures
and significantly decreased equiaxed structures.
The number of plate-like structures increased with
prolonged sintering
time. Microstructural changes
occurred because of element diffusion
resulting from
the prolonged sintering time. Moreover,
the diffusion distance of each element also increased with
prolonged sintering time. Although elements can sufficiently diffuse during both sintering and furnace cooling,
the diffusion distance
during sintering was considerably higher than that during
furnace cooling for all elements. The diffusion distances of Cr
and Mo were the highest and lowest, respectively, during sintering
and furnace cooling. This study showed that alloying behaviour
mostly occurred during sintering and was controlled by the diffusion
of Mo atoms.
Keywords: Diffusion; microstructure; powder
metallurgy; sintering; Ti alloy
ABSTRAK
Kajian ini bertujuan untuk mengkaji kesan peresapan unsur terhadap kelakuan pengaloian dan mikrostruktur pada aloi Ti-10%Mo-10%Cr
semasa sinteran dan penyejukan relau. Pengiraan secara teori terhadap jarak peresapan purata bagi setiap unsur
dilakukan untuk
meramal kelakuan pengaloian semasa sinteran dan penyejukan
relau.
Aloi Ti-10%Mo-
10%Cr telah direka
menggunakan pendekatan metalurgi serbuk unsur sebati. Mikrograf sampel selepas pensinteran menunjukkan struktur bulatan-terang dan struktur sama paksi yang menurun secara ketara. Bilangan struktur seperti plat meningkat dengan memanjangkan masa pensinteran. Perubahan mikrostruktur berlaku disebabkan penyebaran unsur yang dihasilkan semasa pensinteran yang berpanjangan. Selain itu, jarak resapan bagi setiap
elemen juga meningkat
dengan masa pensinteran berpanjangan. Walaupun unsur-unsur boleh cukup meresap semasa sinteran dan penyejukan relau, jarak resapan semasa sinteran adalah lebih tinggi daripada semasa penyejukan relau untuk semua unsur.
Jarak peresapan Cr dan
Mo masing-masing yang tertinggi
dan terendah,
semasa sinteran dan penyejukan relau. Kajian ini menunjukkan bahawa kelakuan pengaloian kebanyakannya berlaku semasa sinteran dan dikawal oleh resapan atom
Mo.
Kata kunci: Aloi Ti;
metalurgi serbuk;
mikrostuktur; pensinteran; peresapan
RUJUKAN
Abkowitz, S., Abkowitz, S.
& Fisher,
H. 2015.
Titanium
alloy components manufacture from blended elemental powder
and the qualification process. In Titanium
Powder Metallurgy: Science,
Technology and Applications, edited
by Qian,
M. & Froes,
F.H. Oxford: Butterworth-Heinemann.
Atkins, P. &
De Paula,
J. 2006. Atkins’ Physical Chemistry. New York: Oxford University
Press.
Balluffi, R.W., Allen, S. & Carter, W.C. 2005.
Kinetics of Materials. New Jersey: John Wiley & Sons, Inc.
Carman, A., Zhang,
L.C., Ivasishin, O.M., Savvakin,
D.G., Matviychuk,
M.V. & Pereloma, E.V. 2011. Role of alloying elements in microstructure evolution
and alloying elements behaviour during sintering of a near-β titanium alloy. Materials Science and Engineering: A 528:
1686-1693.
Fujita, T., Ogawa, A., Ouchi, C. & Tajima, H. 1996. Microstructure and properties of titanium
alloy produced in the newly developed blended elemental powder metallurgy
process. Materials Science
and Engineering: A 213: 148-153.
Ganguly,
J. 2002. Diffusion kinetics in
minerals: Principles and applications to tectono-metamorphic processes.
European
Mineralogical Union Notes in Mineralogy 4(Chapter 10):
271-309.
Hagiwara, M. &
Emura, S. 2003. Blended elemental P/M synthesis and property evaluation of Ti-1100
alloy. Materials Science and Engineering: A 352:
85-92.
Kakani, S.L. 2004. Material Science. New Delhi: New Age International (P) Limited.
Leyens, C. &
Peters, M. 2003. Titanium and Titanium Alloys. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.
Lütjering, G. & Williams, J.C. 2007. Titanium. 2nd ed. Berlin:
Springer-Verlag.
Nakajima, H. & Koiwa,
M. 1991. Diffusion
in titanium. ISIJ International
31: 757-766.
Niinomi, M. 2003. Recent research and development
in titanium alloys for biomedical applications and healthcare goods.
Science and Technology of
Advanced Materials 4: 445-454.
Niinomi, M. 2002. Recent metallic materials for
biomedical applications. Metallurgical and Materials Transactions A 33: 477-486.
Oliveira, N. &
Guastaldi, A. 2009. Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomaterialia 5:
399-405.
Philibert, J. 1991. Atom Movements:
Diffusion and Mass Transport in Solids. Les ulis:
Editions de Physique.
Shackelford, J.F. &
Alexander, W. 2010. CRC Materials Science and Engineering Handbook. 3rd ed. Florida:
Taylor & Francis.
Shewmon, P.G. 1989. Diffusion in Solids.
2nd ed.
New York: McGraw-Hill.
Syarif, J., Rohmannudin, T.N., Omar,
M.Z., Sajuri, Z. & Harjanto,
S. 2013. Stability of the beta phase in Ti-Mo-Cr
alloy fabricated by powder metallurgy. Journal of Mining and Metallurgy, Section B: Metallurgy 49: 285-292.
Syarif, J., Rohmannudin,
T.N., Omar, M.Z., Sajuri, Z. & Daud, A.R. 2008.
Study on formation of β
single phase of a Ti-10at% Mo-10at% Cr alloy on sintering and
solution treatment, Proceedings of the 1st WSEAS International
Conference on Materials Science. pp.
48-52.
Yang, Y.F., Luo, S.D.,
Schaffer, G.B.
& Qian,
M. 2011. Sintering of Ti–10V–2Fe–3Al and
mechanical properties.
Materials Science and Engineering: A 528(22-23): 6719-6726.
Zhang, Y. 2008. Geochemical Kinetics.
New Jersey: Princeton University Press.
*Pengarang untuk surat-menyurat; email: sjunaidi@sharjah.ac.ae
|