Sains Malaysiana 46(11)(2017): 2083-2089
http://dx.doi.org/10.17576/jsm-2017-4611-08
Pilot Test of a Fermentation Tank for
Producing Coal Methane through Anaerobic Fermentation
(Ujian Perintis Penapaian Tangki untuk Menghasilkan Arang Batu Metana melalui
Penapaian Anaerob)
DAPING XIA1,2,3, HUAIWEN ZHANG3, XIANBO SU1,3*,
XILE LIU3 & CHAOYONG FU3
1College of Resource and Environment, Henan Polytechnic University.
Jiaozuo 454000
China
2Henan Collaborative Innovation Center of Coalbed, Methane and
Shale Gas for Central Plains Economic Region, Jiaozuo 454000, China
3School of Energy Science and Engineering, Henan Polytechnic
University, Jiaozuo Henan 454000
China
Diserahkan: 3 Januari 2017/Diterima: 12 Mei 2017
ABSTRACT
The development and utilization of clean energy has
long been a focus of research. In the coal bed methane field, most coal bed
biogenic methane experiments are small static sample tests in which the initial
conditions are set and the process cannot be batch-fed elements and microbial
strains, and the gas cannot be collected in batches. Although significant
results have been achieved in the coal-to-biogenic methane conversion in China,
findings are restricted to the laboratory scale. No successful
commercialization of coal bed biogenic methane production has been achieved
yet. This study used a large-capacity fermentation tank (5 L) to conduct
biogenic methane experiments. Results were compared to those from the
traditional laboratory test. The gas production rate and gas concentration were
higher when the 250 mL methane test volume was increased to a 5 L fermentation
volume, increasing by 20.9% and 2.3%, respectively. The inhibition effect of
the liquid phase products was reduced in the large fermentation tank, and the
microbial activity was extended by batch feeding trace elements (iron and
nickel) and methane strains and by semi-continuous collection of the gas.
However, the gas conversion rate can be increased by retaining the H2 and CO2 in the intermediate gas products in the fermentation tank. The gas
production rate was increased from 17.9 to 24.6 mL/g, increasing by 37.4%. The
simulation pilot test can lay a foundation for the transition from a coal bed
biogenic methane laboratory static small sample test to a dynamic pilot test,
optimizing the process parameters to improve the reaction efficiency and move
forward to commercialization test.
Keywords: Batch-fed trace elements and strains; batch
gas collection; coal bed biogenic methane; pilot test
ABSTRAK
Pembangunan dan penggunaan tenaga bersih telah lama
menjadi tumpuan penyelidikan. Dalam bidang lapisan batu arang metana,
kebanyakan uji kaji lapisan biogen metana adalah ujian sampel statik kecil
dengan syarat permulaan ditetapkan dan proses tidak boleh menjadi elemen
berkelompok dan strain mikrob, serta gas tidak boleh dikumpulkan secara
kelompok. Walaupun keputusan yang bagus telah dicapai dalam penukaran batu
arang-kepada-biogen metana di China, namun terhad kepada skala makmal. Tiada
pengeluaran secara komersial batu arang biogen metana telah dicapai. Kajian ini
menggunakan tangki penapaian berkapasiti besar (5 L) untuk menjalankan uji kaji
biogen metana. Keputusan dibandingkan dengan kaedah makmal tradisi. Kadar
pengeluaran dan kepekatan gas adalah lebih tinggi apabila 250 mL isi padu ujian
metana meningkat kepada 5 L isi padu penapaian, masing-masing sebanyak 20.9%
dan 2.3%. Kesan perencatan pada produk dalam fasa cecair dikurangkan dalam
tangki penapaian yang besar dan aktiviti mikrob dilanjutkan dengan pemberian
berkelompok unsur surih (besi dan nikel) dan strain metana dengan pengumpulan
gas secara separa selanjar. Walau bagaimanapun, kadar penukaran gas boleh
dinaikkan dengan mengekalkan H2 dan CO2 dalam produk gas pertengahan dalam tangki penapaian.
Kadar pengeluaran gas meningkat daripada 17.9 kepada 24.6 mL/g, peningkatan
sebanyak 37.4%. Ujian simulasi rintis boleh meletakkan asas bagi peralihan
daripada ujian lapisan batu arang biogen metana statik makmal pada sampel kecil
kepada ujian rintis yang dinamik, mengoptimumkan proses parameter untuk
meningkatkan kecekapan reaksi dan mara kepada ujian pengkomersialan.
Kata kunci: Koleksi kelompok gas;
lapisan arang batu biogen metana; pemberian-berkelompok unsur surih dan strain;
ujian rintis
RUJUKAN
Chen, L. & Qian,
C. 2012. Obligate anaerobes fermentation tank hydrogen preparation process. Journal
of Southeast University: Natural Science Edition 42(3): 498-502.
Faison, B.D. 1992.
The chemistry of low rank coal and its relationship to the biochemical
mechanisms of coal biotransformation. In Microbial Transformations of Low
Rank Coals, edited by Crawford, D.L. Boca Raton: CRC Press. pp. 1-26.
Li, S., Mei, Z., Chang,
M., 2014. Scum biogas production potential of corn stalk biogas
fermentation tank at different heights. China Biogas 32(5):
33-35.
Li, G., Yang, L.Z. & Ouyang, F. 2001. Analysis on the control
factors of anaerobic digestion process and influence of pH and Eh. Journal
of Southwest Jiaotong University 36(5): 518-521.
Lion, M., Shamsuddin, S.A. & Ahmad, W.M.S.W. 2017. Sap flow
study on two different diameter sizes of Tectona grandis. Sains
Malaysiana 46(3): 359-363.
Harris, S.H., Smith,
R.L. & Barker, C.E. 2008. Microbial and chemical factors influencing
methane production in laboratory incubations of low-rank subsurface coals. International
Journal of Coal Geology 76(1-2): 46-51.
Heller, R., Vermylen,
J. & Zoback, M. 2014. Experimental investigation of matrix permeability of
gas shales. AAPG Bulletin 98(5): 975-995.
He, R.Y., Yan, Z.Y.,
Liu, X.F., Yuan, Y.X., Liao, Y.Z., Wang, J.J., He, R.N. & Li, X.D. 2007.
Enhancement of biogas production by dry fermentation with straws. Journal of
Applied and Environmental Biology 13(4): 583-585.
Hu, Y., Yuan, Y.,
Yan, Z., Liao, Y., Liu, X., He, R., Zhang, H. & Guan, Y. 2009.
Identification and phylogenetic analysis of a strain methanogen with wide range
of growing pH. Chinese Journal of Applied and Environmental Biology 15(4):
554-558.
Huang, Z., Urynowicz,
M.A. & Colberg, P.J.S. 2013. Stimulation of biogenic methane generation in
coal samples following chemical treatment with potassium permanganate. Fuel 111(5):
813-819.
Ijaz, U. & Yasin,
M. 2017. Determination of ground water potential by electric resistivity method
in Rawalakot and adjoining areas of the Sub-Himalayan fold and thrust Belt of
Pakistan. Pakistan Journal of Geology 1(1): 01-04.
Jiang, H., Duan, C.,
Jiang, P., Liu, M., Luo, M. & Xing, X.H. 2016. Characteristics of scale-up
fermentation of mixed methane-oxidizing bacteria. Biochemical Engineering
Journal 109: 112-117.
Kamiński, M.,
Kartanowicz, R., Jastrzębski, D. & Kamiński, M.M. 2003.
Determination of carbon monoxide, methane and carbon dioxide in refinery
hydrogen gases and air by gas chromatography. Journal of Chromatography A 989(2):
277-283.
Opara, A., Adams,
D.J., Free, M.L., McLennan, J. & Hamilton, J. 2012. Microbial production of
methane and carbon dioxide from lignite, bituminous coal, and coal waste
materials. International Journal of Coal Geology 96-97: 1-8.
Pan, L., Wu, B.,
Duan, S., Lan, W., Liang, W. & Shen, P. 2009. The effect of urea addition
on fermentating methane in the simulate fermentation tank. Genomics and
Applied Biology 28(6): 487-494.
Park, S.Y. &
Liang, Y. 2016. Biogenic methane production from coal: A review on recent
research and development on microbially enhanced coalbed methane (MECBM). Fuel 166: 258-267.
Rezaeian, M., Beakes,
G.W. & Chaudhry, A.S. 2005. Relative fibrolytic activities of anaerobic
rumen fungi on untreated and sodium hydroxide treated barley straw in in
vitro culture. Anaerobe 11(3): 163-175.
Roslee, R., Tongkul,
F., Simon, N. & Norhisham, M.N. 2017. Flood potential analysis
(FPAn) using geo-spatial data in Penampang area, Sabah. Malaysian
Journal of Geoscience 1(1): 1-6.
Senthamaraikkannan,
G., Gates, I. & Prasad, V. 2015. Development of a multiscale microbial
kinetics coupled gas transport model for the simulation of biogenic coalbed
methane production. Fuel 167: 188-198.
Sharma, S.K., Mishra,
I.M., Sharma, M.P. & Saini, J.S. 1988. Effect of particle size on biogas
generation from biomass residues. Biomass 17(4): 251-263.
Su, X.B., Wu, Y.,
Xia, D.P. & Chen, X. 2013a. Experimental design schemes for bio-methane
production from coal and optimal selection. Natural Gas Industry 33(5):
132-136.
Su, X.B., Wu, Y.,
Xia, D.P. & Chen, X. 2013b. Experimental study on the simulated biological
methane production process with lean coal. Journal of China Coal Society 38(6):
1055-1059.
Thararoop, P.,
Karpyn, Z.T. & Ertekin, T. 2012. Development of a multi-mechanistic,
dual-porosity, dual-permeability, numerical flow model for coalbed methane
reservoirs. Journal of Natural Gas Science & Engineering 8(9):
121-131.
*Pengarang untuk surat-menyurat; email: 1054608403@qq.com
|