Sains Malaysiana 46(11)(2017): 2091-2099

http://dx.doi.org/10.17576/jsm-2017-4611-09

 

 Case Study on Deformation Control of Upper-Soft and Lower-Hard Large Span Tunnel Station Using Combined Control Technology and Monitoring Demonstration

(Kajian Kes Kawalan Ubah Bentuk Lembut-Atas dan Keras-Bawah Stesen Terowong Jangka Panjang Menggunakan Teknologi Kawalan Gabungan dan Demonstrasi Pemantauan)

YANLIANG SHANG1,2, SHOUJI DU1*, TONGYIN HAN3 & BIAO SHAO4

 

1Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

 

2Key Laboratory of Roads and Railway Engineering, Safety Control of Ministry of Education

Shijiazhuang Tiedao University, Shijiazhuang 050043, China

 

3Party Committee, Langfang Teachers University, Langfang 065000, China

 

4Urban Rail Design Institute, The Third Railway Survey and Design Institute Group Corporation, Tianjin 300142, China

 

Diserahkan: 8 Februari 2017/Diterima: 9 Jun 2017

 

ABSTRACT

A large number of shallow buried tunnels are built in the city nowadays and the special strata such as large upper-soft and lower-hard ground often encountered. Deformation control of strata is the focus issue related to the construction safety. Based on Dalian metro Hing Street station with the classical geological condition of upper-soft and lower-hard ground, this paper fully used a combined control method including six different support measures to control the deformation of surrounding rock. 3D finite element model was setup to analyze the construction effect of combined control measures and the monitoring in-site was carried out to verify the deformation control effect of combined control method. It shows that the maximum surface subsidence value is gradually reduced with the support measures gradually increasing. In the case of various supports the maximum sedimentation value is 2.67 cm, which is 42. 1% lower than that of not using control method and the control effect is obvious. In addition, it can be seen that the two-layer initial support and additional large arch foot have the best effect on controlling the ground surface settlement with reduction of 11.7% and 20.2%, respectively. The research results can provide practical experience for the construction of such tunnels, and guide the design and construction of the tunnel in the future.

Keywords: Combined control method; deformation monitoring large-span tunnel; rock deformation; upper-soft and lower-hard ground; 3D numerical simulation

 

ABSTRAK

Pada masa ini, sebilangan besar terowong bawah tanah telah dibina di bandar dan strata khas seperti tanah lembut-atas dan keras-bawah sering ditemui. Kawalan ubah bentuk strata merupakan isu yang berkaitan dengan keselamatan pembinaan. Berdasarkan stesen Dailan Metro Hing Street dengan keadaan geologi klasik tanah lembut-atas dan keras-bawah, kajian ini menggunakan sepenuhnya kaedah kawalan gabungan termasuklah enam langkah sokongan yang berbeza untuk mengawal ubah bentuk batu sekitaran. Model unsur 3D terhingga adalah persediaan untuk menganalisis kesan pembinaan langkah kawalan gabungan dan pemantauan tapak telah dijalankan untuk mengesahkan kesan kawalan ubah bentuk terhadap kaedah kawalan gabungan. Ia menunjukkan bahawa nilai maksimum permukaan amblesan telah mengalami penurunan dan nilai ukuran sokongan mengalami peningkatan. Dalam kes sokongan yang pelbagai, nilai pemendapan maksimum ialah 2.67 cm, iaitu 42.1% lebih rendah daripada nilai tanpa kaedah kawalan dan kesan kawalannya adalah jelas. Di samping itu, sokongan awal dua lapisan dan penambahan kaki gerbang besar mempunyai kesan terbaik untuk mengawal pemendapan permukaan tanah dengan pengurangan sebanyak 11.7% dan 20.2%. Keputusan penyelidikan dapat memberikan pengalaman praktik bagi pembinaan terowong tersebut, serta membimbing reka bentuk dan pembinaan terowong pada masa hadapan.

Kata kunci: Deformasi batu; kaedah kawalan gabungan; pemantauan ubah bentuk terowong jangka panjang; tanah lembut-atas dan keras-bawah; simulasi berangka 3D

RUJUKAN

Chadwick, S. 2015. Bond street station upgrade - using 3D analysis to optimise tunnel design. Structural Engineer 93(7): 24-26.

Esen Sze, Y.S., Jim Yee, T.C., Henry Kim, I., Osborne, N.H., Chang, K.B. & Siew, R. 2016. Tunnelling undercrossing existing live MRT tunnels. Tunnelling and Underground Space Technology 57: 241-256.

Hong, K.R. 2015. State-of-art and prospect of tunnels and underground works in China. Tunnel Construction 35(2): 95-107.

Issaka, S. & Ashraf, M.A. 2017. Impact of soil erosion and degradation on water quality: A review. Geology, Ecology, and Landscapes 1(1): 1-11.

Lerner, U., Yacobi, T., Levy, I., Moltchanov, S.A., Cole-Hunter, T. & Fishbain, B. 2015. The effect of ego-motion on environmental monitoring. Science of the Total Environment 533: 8-16.

Li, X.Z., Li, S.C. & Li, S.C. 2011. A study on surface subsidence and deformation characteristics during construction of shallow buried large span tunnel. Journal of Rock Mechanics and Engineering 30(S1): 3348-3353.

Moffat, R.A., Beltran, J.F. & Herrera, R. 2015. Applications of BOTDR fiber optics to the monitoring of underground structures. Geomechanics and Engineering 9(3): 397-414.

Nasri, V. & Haynes, C.E. 2015. New tunnel system to eliminate sanitary sewer overflows and control combined sewer overflows in Hartford, Connecticut. Water Practice and Technology 10(2): 282-290.

Rabensteiner, K. & Chmelina, K. 2016. Tunnel monitoring in urban environments. Geomechanik und Tunnelbau 9(1): 23-28.

Richards, D.J., Wiggan, C.A. & Powrie, W. 2016. Seepage and pore pressures around contiguous pile retaining walls. Geotechnique 66(7): 523-532.

Roslee, R., Bidin, K., Musta, B., Tahir, S., Tongku, F. & Norhisham, M.N. 2017. GIS application for comprehensive spatial soil erosion analysis with MUSLE model in Sandakan town area, Sabah, Malaysia. Geological Behavior 1(1): 1-5.

Xia, C.C., Na, T. X., Peng, G.C. & Chen, Z.Q. 2016. Discussion on deformation monitoring accuracy of highway tunnel construction. Tunnel Construction 36(5): 508-512.

Yu, J., Standing, J., Vollum, R., Potts, D. & Burland, J. 2015. Stress and strain monitoring at Tottenham court road station, London, UK. Proceedings of the Institution of Civil Engineers: Structures and Buildings 168(2): 107-117.

Zainordin, N.S., Ramli, N.A. & Elbayoumi, M. 2017. Distribution and temporal behaviour of O3 and NO2 near selected schools in Seberang Perai, Pulau Pinang and Parit Buntar, Perak, Malaysia. Sains Malaysiana 46(2): 197-207.

Zhang, Z.G. & Qiu, W.G. 2015. Discussion and case study of the rational ratio of rock mass thickness and tunnel span of mined subway tunnels in upper-soft and lower-hard ground. Modern Tunneling Technology 52(6): 28-42.

Zhu, H.H. 2015. Design and construction of shield-bored metro tunnels in hard-soft heterogeneous ground. Tunnel Construction 35(2): 144-148.

 

*Pengarang untuk surat-menyurat; email: sty1980926@163.com

 

 

 

 

 

 

sebelumnya