Sains Malaysiana 46(11)(2017): 2091-2099
http://dx.doi.org/10.17576/jsm-2017-4611-09
Case Study on Deformation Control of
Upper-Soft and Lower-Hard Large Span Tunnel Station Using Combined Control
Technology and Monitoring
Demonstration
(Kajian
Kes Kawalan Ubah Bentuk Lembut-Atas dan Keras-Bawah Stesen Terowong Jangka
Panjang Menggunakan Teknologi Kawalan Gabungan dan Demonstrasi Pemantauan)
YANLIANG SHANG1,2, SHOUJI DU1*, TONGYIN
HAN3 & BIAO SHAO4
1Department of Civil Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China
2Key Laboratory of Roads and
Railway Engineering, Safety Control of Ministry of Education
Shijiazhuang Tiedao
University, Shijiazhuang 050043, China
3Party Committee, Langfang
Teachers University, Langfang 065000, China
4Urban Rail Design Institute, The
Third Railway Survey and Design Institute Group Corporation, Tianjin 300142, China
Diserahkan: 8 Februari
2017/Diterima: 9 Jun 2017
ABSTRACT
A large number of shallow buried tunnels are built in
the city nowadays and the special strata such as large upper-soft and
lower-hard ground often encountered. Deformation control of strata is the focus
issue related to the construction safety. Based on Dalian metro Hing Street
station with the classical geological condition of upper-soft and lower-hard
ground, this paper fully used a combined control method including six different
support measures to control the deformation of surrounding rock. 3D finite element
model was setup to analyze the construction effect of combined control measures
and the monitoring in-site was carried out to verify the deformation control
effect of combined control method. It shows that the maximum surface subsidence
value is gradually reduced with the support measures gradually increasing. In
the case of various supports the maximum sedimentation value is 2.67 cm, which
is 42. 1% lower than that of not using control method and the control effect is
obvious. In addition, it can be seen that the two-layer initial support and
additional large arch foot have the best effect on controlling the ground
surface settlement with reduction of 11.7% and 20.2%, respectively. The
research results can provide practical experience for the construction of such
tunnels, and guide the design and construction of the tunnel in the future.
Keywords: Combined control method; deformation
monitoring large-span tunnel; rock deformation; upper-soft and lower-hard
ground; 3D numerical simulation
ABSTRAK
Pada masa ini, sebilangan besar terowong bawah tanah
telah dibina di bandar dan strata khas seperti tanah lembut-atas dan
keras-bawah sering ditemui. Kawalan ubah bentuk strata merupakan isu yang
berkaitan dengan keselamatan pembinaan. Berdasarkan stesen Dailan Metro Hing
Street dengan keadaan geologi klasik tanah lembut-atas dan keras-bawah, kajian
ini menggunakan sepenuhnya kaedah kawalan gabungan termasuklah enam langkah
sokongan yang berbeza untuk mengawal ubah bentuk batu sekitaran. Model unsur 3D
terhingga adalah persediaan untuk menganalisis kesan pembinaan langkah kawalan
gabungan dan pemantauan tapak telah dijalankan untuk mengesahkan kesan kawalan
ubah bentuk terhadap kaedah kawalan gabungan. Ia menunjukkan bahawa nilai
maksimum permukaan amblesan telah mengalami penurunan dan nilai ukuran sokongan
mengalami peningkatan. Dalam kes sokongan yang pelbagai, nilai pemendapan
maksimum ialah 2.67 cm, iaitu 42.1% lebih rendah daripada nilai tanpa kaedah
kawalan dan kesan kawalannya adalah jelas. Di samping itu, sokongan awal dua
lapisan dan penambahan kaki gerbang besar mempunyai kesan terbaik untuk
mengawal pemendapan permukaan tanah dengan pengurangan sebanyak 11.7% dan
20.2%. Keputusan penyelidikan dapat memberikan pengalaman praktik bagi
pembinaan terowong tersebut, serta membimbing reka bentuk dan pembinaan
terowong pada masa hadapan.
Kata kunci: Deformasi batu; kaedah
kawalan gabungan; pemantauan ubah bentuk terowong jangka panjang; tanah
lembut-atas dan keras-bawah; simulasi berangka 3D
RUJUKAN
Chadwick, S. 2015. Bond street
station upgrade - using 3D analysis to optimise tunnel design. Structural
Engineer 93(7): 24-26.
Esen Sze, Y.S., Jim Yee, T.C.,
Henry Kim, I., Osborne, N.H., Chang, K.B. & Siew, R. 2016. Tunnelling
undercrossing existing live MRT tunnels. Tunnelling and Underground Space
Technology 57: 241-256.
Hong, K.R. 2015. State-of-art and
prospect of tunnels and underground works in China. Tunnel Construction 35(2):
95-107.
Issaka, S. & Ashraf, M.A. 2017.
Impact of soil erosion and degradation on water quality: A review.
Geology, Ecology, and Landscapes 1(1): 1-11.
Lerner, U., Yacobi, T., Levy, I.,
Moltchanov, S.A., Cole-Hunter, T. & Fishbain, B. 2015. The effect of
ego-motion on environmental monitoring. Science of the Total Environment 533:
8-16.
Li, X.Z., Li, S.C. & Li, S.C.
2011. A study on surface subsidence and deformation characteristics
during construction of shallow buried large span tunnel. Journal
of Rock Mechanics and Engineering 30(S1): 3348-3353.
Moffat, R.A., Beltran, J.F. &
Herrera, R. 2015. Applications of BOTDR fiber optics to the monitoring of
underground structures. Geomechanics and Engineering 9(3): 397-414.
Nasri, V. & Haynes, C.E.
2015. New tunnel system to eliminate sanitary sewer overflows and control
combined sewer overflows in Hartford, Connecticut. Water Practice and
Technology 10(2): 282-290.
Rabensteiner, K. & Chmelina,
K. 2016. Tunnel monitoring in urban environments. Geomechanik und Tunnelbau 9(1):
23-28.
Richards, D.J., Wiggan, C.A.
& Powrie, W. 2016. Seepage and pore pressures around contiguous pile
retaining walls. Geotechnique 66(7): 523-532.
Roslee, R., Bidin, K., Musta, B.,
Tahir, S., Tongku, F. & Norhisham, M.N. 2017. GIS application
for comprehensive spatial soil erosion analysis with MUSLE model
in Sandakan town area, Sabah, Malaysia. Geological Behavior 1(1):
1-5.
Xia, C.C., Na, T. X., Peng, G.C.
& Chen, Z.Q. 2016. Discussion on deformation monitoring accuracy of highway
tunnel construction. Tunnel Construction 36(5): 508-512.
Yu, J., Standing, J., Vollum, R.,
Potts, D. & Burland, J. 2015. Stress and strain monitoring at Tottenham
court road station, London, UK. Proceedings of the Institution of Civil
Engineers: Structures and Buildings 168(2): 107-117.
Zainordin, N.S., Ramli, N.A.
& Elbayoumi, M. 2017. Distribution and temporal behaviour of O3 and NO2 near selected schools in Seberang Perai, Pulau Pinang and Parit Buntar, Perak,
Malaysia. Sains Malaysiana 46(2): 197-207.
Zhang, Z.G. & Qiu, W.G. 2015.
Discussion and case study of the rational ratio of rock mass thickness and
tunnel span of mined subway tunnels in upper-soft and lower-hard ground. Modern
Tunneling Technology 52(6): 28-42.
Zhu, H.H. 2015. Design and
construction of shield-bored metro tunnels in hard-soft heterogeneous ground. Tunnel
Construction 35(2): 144-148.
*Pengarang
untuk surat-menyurat; email: sty1980926@163.com
|