Sains Malaysiana 52(6)(2023):
1855-1864
http://doi.org/10.17576/jsm-2023-5206-20
Bioelectricity
Generation from Bamboo Leaves Waste in a Double Chambered Microbial Fuel Cell
(Penjanaan Bioelektrik daripada Sisa Daun Buluh dalam Sel Bahan Api Mikrob Dua Kebuk)
SITI
KUDNIE SAHARI1,2,*,
AMIR MAINA BUTIT1, ZAINAB
NGAINI3, YANUAR ZULARDIANSYAH ARIEF1,2, KURYATI KIPLI1,
MARTIN ANYI1,2, ASMAHANI AWANG4, MUHAMMAD KASHIF5,
MOHAMAD RUSOP MAHMOOD6 , ZAIDI EMBONG7, LILIK HASANAH8 , ABDUL RAHMAN KRAM1 & MARINI SAWAWI9
1Department of Electrical and Electronics Engineering,
Faculty of Engineering, Universiti Malaysia Sarawak,
94300 Kota Samarahan, Sarwawak,
Malaysia
2Institute of Sustainable & Renewable Energy, Universiti Malaysia Sarawak 94300 Kota Samarahan,
Sarawak, Malaysia
3Faculty of Resources Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan,
Sarawak, Malaysia
4Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu,
Sabah, Malaysia
5School of Electrical and Information Engineering,
Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
6Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia
7Faculty of Applied Science and Technology, Universiti Tun Hussein Onn
Malaysia, 86400 Muar, Johor, Malaysia
8Faculty of Mathematics and Sciences Education,
Indonesia University of Education
9Department of Mechanical and Manufacturing, Faculty of
Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
Received:
29 December 2022/Accepted: 14 June 2023
Abstract
This
study investigated the utilization of bamboo leaf waste and two varieties of
bacterial sources, chicken manure and effective microorganism, in a microbial
fuel cell (MFC) at three substrate concentrations (40 g/liter, 80 g/liter, and
160 g/liter). The primary objective was to investigate the kinetics of
bacterial growth at various substrate concentrations in the MFC, as well as the
effect of light conditions and pH on MFC power generation. The MFC had dual
chambers with graphite electrodes serving as the cathode and anode. Within 72
h, the highest power density of 90.05 mV was attained using the highest
substrate concentration of bamboo leaf waste and chicken manure during the
logarithmic growth phase, albeit with a shorter duration. The longest sustained
phase of bacterial activity was observed during the stationary phase, at the
highest substrate concentration of 160 g/liter, followed by 80 g/liter and 40
g/liter. These results indicate that the logarithmic phase is the optimal time
for bacterial activity in the MFC. However, attaining long-term stability in
power generation in the logarithmic phase requires careful parameter
optimization.
Keywords: Bamboo
leaves; bioelectricity generation; chicken manure; Microbial Fuel Cell;
substrate concentration
Abstrak
Penyelidikan ini mengkaji penggunaan sisa daun buluh dan dua jenis punca bakteria, tahi ayam dan mikroorganisma berkesan, dalam sel bahan api mikrob (MFC) pada tiga kepekatan substrat (40 g/liter, 80 g/liter dan 160 g/liter). Objektif utama adalah untuk mengkaji kinetik pertumbuhan bakteria pada pelbagai kepekatan substrat dalam MFC, serta kesan keadaan cahaya dan pH pada penjanaan kuasa MFC. MFC mempunyai dua ruang dengan elektrod grafit berfungsi sebagai katod dan anod. Dalam masa 72 jam, ketumpatan kuasa tertinggi 90.05mV telah dicapai menggunakan kepekatan substrat tertinggi sisa daun buluh dan baja ayam semasa fasa pertumbuhan logaritma, walaupun dengan tempoh yang lebih singkat. Fasa paling lama berterusan aktiviti bakteria diperhatikan semasa fasa pegun, pada kepekatan substrat tertinggi 160 g/liter, diikuti oleh 80 g/liter dan 40 g/liter. Keputusan ini menunjukkan bahawa fasa logaritma adalah masa yang
optimum untuk aktiviti bakteria dalam MFC. Walau bagaimanapun, untuk mencapai kestabilan jangka panjang dalam fasa logaritma untuk penjanaan kuasa memerlukan pengoptimuman parameter yang teliti.
Kata kunci: Baja ayam; daun buluh; kepekatan substrat; penjanaan bioelektrik; sel bahan api mikrob
REFERENCES
Akeredolu, D.O. & Ekundayo, A. 2017. Microbiological examination of animal fertilizer and effects of
associated pathogens on the health of farmers and farm animals. J. Adv. Res. Biotechnology 2(2): 1-5.
Azeez, M.A. & Orege,
J.I. 2016. Bamboo, its chemical modification and products. IntechOpen DOI: 10.5772/intechopen.76359
Bodhipaksha, L.C., Sharpless, C.M., Chin, Y.P. & Mackay, AA. 2017. Role of effluent organic matter in the
photochemical degradation of compounds of wastewater origin. Water Res. 110: 170-179.
Carena, L., Terrenzio, D., Mosley, L.M., Toldo,
M., Minella, M. & Vione,
D. 2019. Photochemical consequences of
prolonged hydrological drought: A model assessment of the Lower Lakes of the
Murray-Darling Basin (Southern Australia). Chemosphere 236: 124356.
El-Nahhal, Y.Z., Al-Agha, M.R., El-Nahhal,
I.Y., El Aila, N.A., El-Nahal,
F.I. & Alhalabi, R.A. 2020. Electricity
generation from animal manure. Biomass
and Bioenergy 136(1): 105531.
Gazali, T.A. & Moqsud, M.A. 2017. The effectiveness of animal dungs and
leaf mold for bioelectricity generation using microbial fuel cell with soils. J. Sustain. Bio-energy System. 7(4):
165-181.
Halim,
M.A., Rahman, M.O., Ibrahim, M., Kundu, R. &
Biswas, B.P. 2021. Effect of anolyte pH on the
performance of a dual-chambered microbial fuel cell operated with different
biomass feed. Journal of Chemistry 2021: 5465680.
Hongzhi, M., Cheng, P.,
Yan, J., Qunhui, W., Maobing,
T. & Ming, G. 2018. Effect of fermentation stillage of food waste on
bioelectricity production and microbial community structure in microbial fuel
cells. R. Soc. Open Sci. 5(9):
180457.
Hossain,
M.F., Islam, M.A. & Numan, S.M. 2016.
Multipurpose uses of bamboo plants: A review. Inter. Res. J. Biol. Sci. 4(12): 57-60.
Jenol, M.A., Ibrahim, M.F., Bahrin, E.K., Kim, S.W. & Abd-Aziz,
S. 2019. Direct bioe-lectricity generation from sago hampas by Clostridium beijerinckii SR1 using microbial fuel cell. Molecules 24: 2397.
Marashi, S.K.F. & Kariminia, H. 2015. Performance of a single chamber
microbial fuel cell at different organic loads and pH values using purified terephthalic acid wastewater. Journal of Environmental
Health Science & Engineering 13(27): 1-6.
Miersch, T., Czech, H., Hartikainen, A., Ihalainen, M., Orasche, J., Abbaszade, G., Tissari, J., Streibel, T., Jokiniemi, J., Sippula, O. &
Zimmermann, R. 2019. Impact of photochemical ageing on Polycyclic Aromatic
Hydrocarbons (PAH) and oxygenated PAH (Oxy-PAH/OH-PAH) in logwood stove
emissions. Sci. Total Environ. 686: 382-392.
Nakamura,
A., Ishiwata, D., Visootsat,
A., Uchiyama, T., Mizutani, K., Kaneko, S., Murata,
T., Igarashi, K. & Iino, R. 2020. Domain architecture di-vergence leads to functional divergence in binding and
catalytic domains of bacterial and fungal cellobiohydrolases. Journal of Biological Chemistry 295(43): 14606-14617.
Ning,
C.C., Gao, P.D., Wang, B.Q., Lin, W.P., Jiang, N.H. & Cao, K.Z. 2017.
Impacts of chemical fertilizer reduction and organic amendments supplementation
on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agric. 26(8): 1819-1831.
Perera, F. 2017.
Pollution from fossil-fuel combustion is the leading environmental threat to
global pediatric health and equity: Solutions exist. Int. J. Environ. Res.
Public Health 15(1): 16.
Qingliang, Z., Hang, Y.,
Zhang, W.Z., Felix, T.K., Junqiu, J., Zhang, Y.,
Wang, K. & Ding, J. 2017. Microbial fuel cell with high content solid
wastes as substrates: A review. Frontiers of Environmental Science &
Engineering 11: 13.
Reimers, C.E., Stecher, H.A., Westall, J.C., Alleau, Y., Howell, K.A., Soule, L., White, H.K. & Girguis, P.R. 2007. Substrate degradation kinetics,
microbial diversity, and current efficiency of microbial fuel cells supplied
with marine plankton. Appl. Environ. Microbiol. 73(21): 7029-7040.
Sahari, S.K., Rosli, M.Z.F., Butit, A.M., Kipli, K., Anyi, M., Awang, A., Sawawi, M., Mahmood,
M.R., Hasanah, L., Kram,
A.R., Embong, Z. & Nahrawi,
H. 2022. Fabrication of single chamber
microbial fuel cell (SMFC) using soil as a substrate. Pertanika J. Sci. & Technol. 30(2): 1103-1114.
Sankoda, K., Sugawara,
Y., Aida, T., Yamamoto, C., Kobayashi, J., Sekiguchi,
K. & Wang, Q. 2019. Aqueous photochemical degradation of mefenamic acid and triclosan:
Role of wastewater effluent matrices. Water
Sci. Technol. 79: 1853-1859.
Slate,
A.I., Whitehead, K.A., Brownson, D.A.C. & Banks,
CE. 2018. Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Reviews 10(1): 60-81.
Sonu, K., Sogani,
M., Syed, Z. & Rajvanshi,
J. 2022. The effects of wheat and rice straw as a substrate on the treatment of
reverse osmosis reject wastewater in a single chamber microbial fuel cell. Chemistry Select 7(8): e202103924.
Ullah, Z. & Zeshan,
S. 2020. Effect of substrate type and concentration on the performance of a
double chamber microbial fuel cell. Water
Sci. Technol. 81(7): 1336-1344.
Yoshimura,
Y., Nakashima, K., Kato, M., Inoue, K., Okazaki, F., Soyama,
H. & Kawasaki, S. 2018. Electricity
generation from rice bran by a microbial fuel cell and the influence of
hydrodynamic cavitation pretreatment. ACS
Omega 3: 15267-15271.
*Corresponding author; email: sskudnie@unimas.my
|