Sains Malaysiana 52(6)(2023): 1855-1864

http://doi.org/10.17576/jsm-2023-5206-20

 

Bioelectricity Generation from Bamboo Leaves Waste in a Double Chambered Microbial Fuel Cell

(Penjanaan Bioelektrik daripada Sisa Daun Buluh dalam Sel Bahan Api Mikrob Dua Kebuk)

 

SITI KUDNIE SAHARI1,2,*, AMIR MAINA BUTIT1,  ZAINAB NGAINI3, YANUAR ZULARDIANSYAH ARIEF1,2, KURYATI KIPLI1, MARTIN ANYI1,2, ASMAHANI AWANG4, MUHAMMAD KASHIF5, MOHAMAD RUSOP MAHMOOD6 , ZAIDI EMBONG7, LILIK HASANAH8 , ABDUL RAHMAN KRAM1 & MARINI SAWAWI9

 

1Department of Electrical and Electronics Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarwawak, Malaysia

2Institute of Sustainable & Renewable Energy, Universiti Malaysia Sarawak 94300 Kota Samarahan, Sarawak, Malaysia

3Faculty of Resources Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

4Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

5School of Electrical and Information Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China

6Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

7Faculty of Applied Science and Technology, Universiti Tun Hussein Onn Malaysia, 86400 Muar, Johor, Malaysia

8Faculty of Mathematics and Sciences Education, Indonesia University of Education

9Department of Mechanical and Manufacturing, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

 

Received: 29 December 2022/Accepted: 14 June 2023

 

Abstract

This study investigated the utilization of bamboo leaf waste and two varieties of bacterial sources, chicken manure and effective microorganism, in a microbial fuel cell (MFC) at three substrate concentrations (40 g/liter, 80 g/liter, and 160 g/liter). The primary objective was to investigate the kinetics of bacterial growth at various substrate concentrations in the MFC, as well as the effect of light conditions and pH on MFC power generation. The MFC had dual chambers with graphite electrodes serving as the cathode and anode. Within 72 h, the highest power density of 90.05 mV was attained using the highest substrate concentration of bamboo leaf waste and chicken manure during the logarithmic growth phase, albeit with a shorter duration. The longest sustained phase of bacterial activity was observed during the stationary phase, at the highest substrate concentration of 160 g/liter, followed by 80 g/liter and 40 g/liter. These results indicate that the logarithmic phase is the optimal time for bacterial activity in the MFC. However, attaining long-term stability in power generation in the logarithmic phase requires careful parameter optimization.

 

Keywords: Bamboo leaves; bioelectricity generation; chicken manure; Microbial Fuel Cell; substrate concentration

 

Abstrak

Penyelidikan ini mengkaji penggunaan sisa daun buluh dan dua jenis punca bakteria, tahi ayam dan mikroorganisma berkesan, dalam sel bahan api mikrob (MFC) pada tiga kepekatan substrat (40 g/liter, 80 g/liter dan 160 g/liter). Objektif utama adalah untuk mengkaji kinetik pertumbuhan bakteria pada pelbagai kepekatan substrat dalam MFC, serta kesan keadaan cahaya dan pH pada penjanaan kuasa MFC. MFC mempunyai dua ruang dengan elektrod grafit berfungsi sebagai katod dan anod. Dalam masa 72 jam, ketumpatan kuasa tertinggi 90.05mV telah dicapai menggunakan kepekatan substrat tertinggi sisa daun buluh dan baja ayam semasa fasa pertumbuhan logaritma, walaupun dengan tempoh yang lebih singkat. Fasa paling lama berterusan aktiviti bakteria diperhatikan semasa fasa pegun, pada kepekatan substrat tertinggi 160 g/liter, diikuti oleh 80 g/liter dan 40 g/liter. Keputusan ini menunjukkan bahawa fasa logaritma adalah masa yang optimum untuk aktiviti bakteria dalam MFC. Walau bagaimanapun, untuk mencapai kestabilan jangka panjang dalam fasa logaritma untuk penjanaan kuasa memerlukan pengoptimuman parameter yang teliti.

 

Kata kunci: Baja ayam; daun buluh; kepekatan substrat; penjanaan bioelektrik; sel bahan api mikrob

 

REFERENCES

Akeredolu, D.O. & Ekundayo, A. 2017.  Microbiological examination of animal fertilizer and effects of associated pathogens on the health of farmers and farm animals. J. Adv. Res. Biotechnology 2(2): 1-5.

Azeez, M.A. & Orege, J.I. 2016. Bamboo, its chemical modification and products. IntechOpen DOI: 10.5772/intechopen.76359

Bodhipaksha, L.C., Sharpless, C.M., Chin, Y.P. & Mackay, AA. 2017.  Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin. Water Res. 110: 170-179.

Carena, L., Terrenzio, D., Mosley, L.M., Toldo, M., Minella, M. & Vione, D. 2019.  Photochemical consequences of prolonged hydrological drought: A model assessment of the Lower Lakes of the Murray-Darling Basin (Southern Australia). Chemosphere 236: 124356.

El-Nahhal, Y.Z., Al-Agha, M.R., El-Nahhal, I.Y., El Aila, N.A., El-Nahal, F.I. & Alhalabi, R.A. 2020. Electricity generation from animal manure. Biomass and Bioenergy 136(1): 105531.

Gazali, T.A. & Moqsud, M.A. 2017. The effectiveness of animal dungs and leaf mold for bioelectricity generation using microbial fuel cell with soils. J. Sustain. Bio-energy System. 7(4): 165-181.

Halim, M.A., Rahman, M.O., Ibrahim, M., Kundu, R. & Biswas, B.P. 2021. Effect of anolyte pH on the performance of a dual-chambered microbial fuel cell operated with different biomass feed. Journal of Chemistry 2021: 5465680.

Hongzhi, M., Cheng, P., Yan, J., Qunhui, W., Maobing, T. & Ming, G. 2018. Effect of fermentation stillage of food waste on bioelectricity production and microbial community structure in microbial fuel cells. R. Soc. Open Sci. 5(9): 180457.

Hossain, M.F., Islam, M.A. & Numan, S.M. 2016. Multipurpose uses of bamboo plants: A review. Inter. Res. J. Biol. Sci. 4(12): 57-60.

Jenol, M.A., Ibrahim, M.F., Bahrin, E.K., Kim, S.W. & Abd-Aziz, S. 2019. Direct bioe-lectricity generation from sago hampas by Clostridium beijerinckii SR1 using microbial fuel cell. Molecules 24: 2397.

Marashi, S.K.F. & Kariminia, H. 2015. Performance of a single chamber microbial fuel cell at different organic loads and pH values using purified terephthalic acid wastewater. Journal of Environmental Health Science & Engineering 13(27): 1-6.

Miersch, T., Czech, H., Hartikainen, A., Ihalainen, M., Orasche, J., Abbaszade, G., Tissari, J., Streibel, T., Jokiniemi, J., Sippula, O. & Zimmermann, R. 2019. Impact of photochemical ageing on Polycyclic Aromatic Hydrocarbons (PAH) and oxygenated PAH (Oxy-PAH/OH-PAH) in logwood stove emissions. Sci. Total Environ. 686: 382-392.

Nakamura, A., Ishiwata, D., Visootsat, A., Uchiyama, T., Mizutani, K., Kaneko, S., Murata, T., Igarashi, K. & Iino, R. 2020. Domain architecture di-vergence leads to functional divergence in binding and catalytic domains of bacterial and fungal cellobiohydrolases. Journal of Biological Chemistry 295(43): 14606-14617.

Ning, C.C., Gao, P.D., Wang, B.Q., Lin, W.P., Jiang, N.H. & Cao, K.Z. 2017. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agric. 26(8): 1819-1831.

Perera, F. 2017. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. Int. J. Environ. Res. Public Health 15(1): 16.

Qingliang, Z., Hang, Y., Zhang, W.Z., Felix, T.K., Junqiu, J., Zhang, Y., Wang, K. & Ding, J. 2017. Microbial fuel cell with high content solid wastes as substrates: A review. Frontiers of Environmental Science & Engineering 11: 13.

Reimers, C.E., Stecher, H.A., Westall, J.C., Alleau, Y., Howell, K.A., Soule, L., White, H.K. & Girguis, P.R. 2007. Substrate degradation kinetics, microbial diversity, and current efficiency of microbial fuel cells supplied with marine plankton. Appl. Environ. Microbiol. 73(21): 7029-7040.

Sahari, S.K., Rosli, M.Z.F., Butit, A.M., Kipli, K., Anyi, M., Awang, A., Sawawi, M., Mahmood, M.R., Hasanah, L., Kram, A.R., Embong, Z. & Nahrawi, H.  2022. Fabrication of single chamber microbial fuel cell (SMFC) using soil as a substrate. Pertanika J. Sci. & Technol. 30(2): 1103-1114.

Sankoda, K., Sugawara, Y., Aida, T., Yamamoto, C., Kobayashi, J., Sekiguchi, K. & Wang, Q. 2019. Aqueous photochemical degradation of mefenamic acid and triclosan: Role of wastewater effluent matrices. Water Sci. Technol. 79: 1853-1859.

Slate, A.I., Whitehead, K.A., Brownson, D.A.C. & Banks, CE. 2018. Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Reviews 10(1): 60-81.

Sonu, K., Sogani, M., Syed, Z.  & Rajvanshi, J. 2022. The effects of wheat and rice straw as a substrate on the treatment of reverse osmosis reject wastewater in a single chamber microbial fuel cell. Chemistry Select 7(8): e202103924.

Ullah, Z. & Zeshan, S. 2020. Effect of substrate type and concentration on the performance of a double chamber microbial fuel cell. Water Sci. Technol. 81(7): 1336-1344.

Yoshimura, Y., Nakashima, K., Kato, M., Inoue, K., Okazaki, F., Soyama, H. & Kawasaki, S. 2018.  Electricity generation from rice bran by a microbial fuel cell and the influence of hydrodynamic cavitation pretreatment. ACS Omega 3: 15267-15271.

 

*Corresponding author; email: sskudnie@unimas.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous