Sains Malaysiana 52(6)(2023): 1759-1770
http://doi.org/10.17576/jsm-2023-5206-12
Methods of Evaluating Adaptation and
Accuracy of Additive Manufactured Removable Partial Dentures: A
Scoping Review
(Kaedah Menilai Penyesuaian dan Ketepatan Penghasilan Aditif Gigi Palsu Sebahagian Boleh Tanggal: Suatu Kajian Mengskop)
SAFA ELHADERY1,
NORLELA YACOB2, SYARIDA HASNUR SAFII1, NORLIZA IBRAHIM3, ZUBAIDAH ZANUL ABIDIN1 &
NOSIZANA MOHD SALLEH1*
1Department of Restorative Dentistry,
Faculty of Dentistry, Universiti Malaya, 50603, Kuala
Lumpur, Malaysia
2Department
of Conservative Dentistry & Prosthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia (USIM), 71800, Nilai, Negeri Sembilan, Malaysia
3Department
of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
Received: 11 January 2023/Accepted: 13 June 2023
Abstract
This study aimed to provide a comprehensive review of various recent methods
that can be used to assess the fit and accuracy of additive-manufactured removable
partial dentures (RPDs), focusing on 3D-printed RPDs. An
electronic search of the English language literature from January 2000 to February 2022 was performed using four
databases: Medline/PubMed, Scopus, Web of Science, and EBSCOhost, using
relevant keywords. The parameters of interest were extracted and tabulated. Of
936 retrieved studies, 26 studies were
included. Most of the studies were laboratory studies, conducted between
2011 and 2022, did not include control group, used stone cast model as
reference, used direct 3D printing method, and polished the final RPD
framework. Methods of assessment can be divided into two categories: 1) qualitative assessment which is based mainly on visual
inspection or tactile sense, and 2) quantitative assessment which includes optical assessment (with or without a
registration material) and computerized assessment based on surface-matching software programs. In conclusion, computerized assessment using different surface
matching software provides more accurate and precise
quantitative assessment of denture fit and allows researcher and practitioner to detect minute dimensional changes that
cannot be detected visually.
Keywords: Accuracy;
digital dentistry; fit; removable partial dentures; trueness; 3D-printing
Abstrak
Penyelidikan ini
bertujuan membuat tinjauan menyeluruh tentang kaedah yang digunakan untuk
menilai padanan dan ketepatan
gigi palsu sebahagian (RPD) memfokuskan kepada dentur yang dihasilkan secara
cetakan 3D. Pencarian kepustakaan elektronik berbahasa
Inggeris dari Januari 2000 hingga Februari 2022 dilakukan menggunakan empat
pangkalan data: Medline/PubMed, Scopus, Web of Science dan EBSCOhost
menggunakan kata kunci yang berkaitan. Beberapa parameter telah dinilai dan
dijadualkan. Daripada 936 kajian yang dijumpai, hanya 26 kajian dipilih.
Sebahagian besar adalah kajian makmal yang dijalankan di antara tahun 2011 dan
2022, tidak melibatkan kumpulan kawalan, menggunakan model tuangan sebagai
rujukan, menggunakan kaedah cetakan 3D secara langsung dan menggilap kerangka
RPD akhir. Kaedah penilaian dibahagi kepada dua kategori: 1) penilaian
kualitatif yang menggunakan pemeriksaan secara visual atau sentuhan dan 2)
penilaian kuantitatif termasuk secara optikal (menggunakan bahan registrasi
atau tanpanya) dan penilaian secara berkomputer menggunakan program perisian
padanan-permukaan. Kesimpulannya, penilaian secara berkomputer menggunakan
program perisian padanan-permukaan memberi keputusan penilaian kuantitatif yang
lebih tepat dan terperinci kepada padanan gigi palsu dan membolehkan pengkaji
dan pengamal pergigian mengesan perubahan dimensi walaupun kecil yang tidak
boleh dikesan oleh mata kasar.
Kata kunci: Cetakan
3D; gigi palsu sebahagian; ketepatan; padanan; pergigian digital
REFERENCES
Academy of Prosthodontics. 1995. Principles, concepts,
and practices in prosthodontics. J.
Prosthet. Dent. 73(1): 73-94. doi: 10.1016/s0022-3913(05)80276-8
Ahmed, N., Abbasi, M.S., Haider, S., Ahmed, N., Habib,
S.R., Altamash, S., Zafar, M.S. & Alam, M.K. 2021. Fit accuracy of
removable partial denture frameworks fabricated with CAD/CAM, rapid
prototyping, and conventional techniques: A systematic review. Biomed. Res. Int. 2021: 3194433. doi:
10.1155/2021/3194433
Al Mortadi, N., Alzoubi, K.H. & Williams, R. 2020.
A scoping review on the accuracy of fit of removable partial dentures in a
developing digital context. Clin. Cosmet.
Investig. Dent. 12: 551-562. doi: 10.2147/ccide.S282300
Alharbi, N., Wismeijer, D. & Osman, R.B. 2017.
Additive manufacturing techniques in prosthodontics: Where do we currently
stand? A critical review. Int. J.
Prosthodont. 30(5): 474-484. doi: 10.11607/ijp.5079
Alifui-Segbaya, F., Williams, R.J. & George, R.
2017. Additive manufacturing: A novel method for fabricating cobalt-chromium
removable partial denture frameworks. Eur.
J. Prosthodont. Restor. Dent. 25(2): 73-78. doi: 10.1922/EJPRD_1598Alifui-Segbaya06
Almufleh, B., Emami, E., Alageel, O., de Melo, F.,
Seng, F., Caron, E., Nader, S.A., Al-Hashedi, A., Albuquerque, R., Feine, J.
& Tamimi, F. 2018. Patient satisfaction with laser-sintered removable
partial dentures: A crossover pilot clinical trial. J. Prosthet. Dent. 119(4): 560-567.e1. doi:
10.1016/j.prosdent.2017.04.021
Arnold, C., Hey, J., Schweyen, R. & Setz, J.M.
2018. Accuracy of CAD-CAM-fabricated removable partial dentures. J. Prosthet. Dent. 119(4): 586-592. doi:
10.1016/j.prosdent.2017.04.017
Azari, A. & Nikzad, S. 2009. The evolution of
rapid prototyping in dentistry: A review. Rapid Prototyping Journal 15(3): 216-225. doi: 10.1108/13552540910961946
Baig, M.R., Tan, K.B. & Nicholls, J.I. 2010.
Evaluation of the marginal fit of a zirconia ceramic computer-aided machined
(CAM) crown system. J. Prosthet. Dent. 104(4): 216-27. doi: 10.1016/s0022-3913(10)60128-x
Bajunaid, S.O., Altwaim, B., Alhassan, M. &
Alammari, R. 2019. The fit accuracy of removable partial denture metal frameworks
using conventional and 3D printed techniques: An in vitro study. J. Contemp. Dent. Pract. 20(4): 476-481.
Batalha, A.E.F. & Araújo, R.M. 2017. Development
of removable partial dentures by using additive manufacture and casting
processes. Archives of Materials Science
and Engineering 87(1): 33-40.
Bibb, R., Eggbeer, D. & Williams, R. 2006. Rapid
manufacture of removable partial denture frameworks. Rapid Prototyping Journal 12(2): 95-99. doi:
10.1108/13552540610652438
British Society for the Study of Prosthetic Dentistry.
1981. Guides to standards in prosthetic dentistry. A report by the British
Society for the study of prosthetic dentistry. Br. Dent. J. 150(6): 167-169. doi: 10.1038/sj.bdj.4804565
Brudvik, J.S. & Reimers, D. 1992. The
tooth-removable partial denture interface. J.
Prosthet. Dent. 68(6): 924-927. doi: 10.1016/0022-3913(92)90552-l
Cabrita, J.P., Mendes, T.A., Martins, J.P. &
Lopes, L.P. 2021. Removable partial denture metal framework manufactured by
selective laser melting technology - A clinical report. Revista
Portuguesa de Estomatologia, Medicina Dentária e Cirurgia Maxilofacial 62(2): 109-113.
Campbell, S.D., Cooper, L., Craddock, H., Hyde, T.P.,
Nattress, B., Pavitt, S.H. & Seymour, D.W. 2017. Removable partial
dentures: The clinical need for innovation. J.
Prosthet. Dent. 118(3): 273-280. doi: 10.1016/j.prosdent.2017.01.008
Carneiro Pereira, A.L., Martins de Aquino, L.M.,
Carvalho Porto de Freitas, R.F., Soares Paiva Tôrres, A.C. & da Fonte Porto
Carreiro, A. 2019. CAD/CAM-fabricated removable partial dentures: A case
report. Int. J. Comput. Dent. 22(4): 371-379.
Chen, G.X. & Guang, K. 2012. Research of metallic
part fabrication by selective laser melting. Applied Mechanics and Materials 120: 284-287. doi: 10.4028/www.scientific.net/AMM.120.284
Chen, G.X., Zeng, X.Y., Wang, Z.M., Guan, K. &
Peng, C.W. 2011. Fabrication of removable partial denture framework by
selective laser melting. Advanced
Materials Research 317-319: 174-178. doi:
10.4028/www.scientific.net/AMR.317-319.174
Chen, H., Li, H., Zhao, Y., Zhang, X., Wang, Y. &
Lyu, P. 2019. Adaptation of removable partial denture frameworks fabricated by
selective laser melting. J. Prosthet.
Dent. 122(3): 316-324. doi: 10.1016/j.prosdent.2018.11.010
Dunham, D., Brudvik, J.S., Morris, W.J., Plummer, K.D.
& Cameron, S.M. 2006. A clinical investigation of the fit of removable partial
dental prosthesis clasp assemblies. J.
Prosthet. Dent. 95(4): 323-326. doi: 10.1016/j.prosdent.2006.02.001
Eggbeer, D., Bibb, R. & Williams, R. 2005. The
computer-aided design and rapid prototyping fabrication of removable partial
denture frameworks. Proc. Inst. Mech.
Eng. H. 219(3): 195-202. doi: 10.1243/095441105x9372
Fenlon, M.R., Juszczyk, A.S., Hughes, R.J., Walter,
J.D. & Sherriff, M. 1993. Accuracy of fit of cobalt-chromium removable
partial denture frameworks on master casts. Eur.
J. Prosthodont. Restor. Dent. 1(3): 127-130.
Frank, R.P., Brudvik, J.S., Leroux, B., Milgrom, P.
& Hawkins, N. 2000. Relationship between the standards of removable partial
denture construction, clinical acceptability, and patient satisfaction. J. Prosthet. Dent. 83(5): 521-527. doi:
10.1016/s0022-3913(00)70008-4
Gan, N., Ruan, Y., Sun, J., Xiong, Y. & Jiao, T.
2018. Comparison of adaptation between the major connectors fabricated from
intraoral digital impressions and extraoral digital impressions. Sci. Rep. 8(1): 529. doi:
10.1038/s41598-017-17839-4
Hodson, T.O. 2022. Root mean square error (RMSE) or
mean absolute error (MAE): When to use them or not. Geoscientific Model Development Discussions 15(14): 5481-5487.
Hu, F., Pei, Z. & Wen, Y. 2019. Using intraoral
scanning technology for three-dimensional printing of Kennedy Class I removable
partial denture metal framework: A clinical report. J. Prosthodont. 28(2): e473-e476. doi: 10.1111/jopr.12712
International Organization for Standardization. 1998. Accuracy
(Trueness and Precision) of Measurement Methods and Results - Part 1: General
Principles and Definitions - Technical Corrigendum 1. Geneva, Switzerland:
International Organization for Standardization.
Kattadiyil, M.T., Mursic, Z., AlRumaih, H. &
Goodacre, C.J. 2014. Intraoral scanning of hard and soft tissues for partial
removable dental prosthesis fabrication. J.
Prosthet. Dent. 112(3): 444-448. doi: 10.1016/j.prosdent.2014.03.022
Lang, L.A. & Tulunoglu, I. 2014. A critically
appraised topic review of computer-aided design/computer-aided machining of
removable partial denture frameworks. Dent.
Clin. North Am. 58(1): 247-255. doi: 10.1016/j.cden.2013.09.006
Lee, J.W., Park, J.M., Park, E.J., Heo, S.J., Koak,
J.Y. & Kim, S.K. 2017. Accuracy of a digital removable partial denture
fabricated by casting a rapid prototyped pattern: A clinical study. J. Prosthet. Dent. 118(4): 468-474. doi:
10.1016/j.prosdent.2016.12.007
Mai, H.Y., Mai, H.N., Kim, H.J., Lee, J. & Lee,
D.H. 2022. Accuracy of removable partial denture metal frameworks fabricated by
computer-aided design/computer-aided manufacturing method: A systematic review
and meta-analysis. J. Evid. Based Dent.
Pract. 22(3): 101681. doi: 10.1016/j.jebdp.2021.101681
Mendes, T.A., Marques, D., Lopes, L.P. & Caramês,
J. 2019. Total digital workflow in the fabrication of a partial removable
dental prostheses: A case report. SAGE
Open Med. Case Rep. 7: 2050313x19871131. doi: 10.1177/2050313x19871131
Negm, E.E., Aboutaleb, F.A. & Alam-Eldein, A.M.
2019. Virtual evaluation of the accuracy of fit and trueness in maxillary
poly(etheretherketone) removable partial denture frameworks fabricated by
direct and indirect CAD/CAM techniques. J.
Prosthodont. 28(7): 804-810. doi: 10.1111/jopr.13075
Oka, Y., Sasaki, J., Wakabayashi, K., Nakano, Y.,
Okamura, S.Y., Nakamura, T., Imazato, S. & Yatani, H. 2016. Fabrication of
a radiopaque fit-testing material to evaluate the three-dimensional accuracy of
dental prostheses. Dent. Mater. 32(7): 921-928. doi: 10.1016/j.dental.2016.03.011
Peng, P-W., Hsu, C-Y., Huang, H-Y., Chao, J-C. &
Lee, W-F. 2020. Trueness of removable partial denture frameworks additively
manufactured with selective laser melting. J.
Prosthet. Dent. 127(1): 122-127.
Preshaw, P.M., Walls, A.W., Jakubovics, N.S.,
Moynihan, P.J., Jepson, N.J. & Loewy, Z. 2011. Association of removable
partial denture use with oral and systemic health. J. Dent. 39(11): 711-719. doi: 10.1016/j.jdent.2011.08.018
Rudd, R.W. & Rudd, K.D. 2001. A review of 243
errors possible during the fabrication of a removable partial denture: Part I. J. Prosthet. Dent. 86(3): 251-261. doi:
10.1067/mpr.2001.118021
Soltanzadeh, P., Suprono, M.S., Kattadiyil, M.T.,
Goodacre, C. & Gregorius, W. 2019. An in vitro investigation of
accuracy and fit of conventional and CAD/CAM removable partial denture
frameworks. J. Prosthodont. 28(5):
547-555. doi: 10.1111/jopr.12997
Stern, M.A., Brudvik, J.S. & Frank, R.P. 1985.
Clinical evaluation of removable partial denture rest seat adaptation. J. Prosthet. Dent. 53(5): 658-662. doi:
10.1016/0022-3913(85)90015-0
Takahashi, K., Torii, M., Nakata, T., Kawamura, N.,
Shimpo, H. & Ohkubo, C. 2020. Fitness accuracy and retentive forces of
additive manufactured titanium clasp. Journal
of Prosthodontic Research 64(4): 468-477.
Tasaka, A., Kato, Y., Odaka, K., Matsunaga, S., Goto,
T.K., Abe, S. & Yamashita, S. 2019. Accuracy of clasps fabricated with
three different CAD/CAM technologies: Casting, milling, and selective laser
sintering. Int. J. Prosthodont. 32(6): 526-529. doi: 10.11607/ijp.6363
Tasaka, A., Shimizu, T., Kato, Y., Okano, H., Ida, Y.,
Higuchi, S. & Yamashita, S. 2020. Accuracy of removable partial denture
framework fabricated by casting with a 3D printed pattern and selective laser
sintering. Journal of Prosthodontic
Research 64(2): 224-230.
Torabi, K., Farjood, E. & Hamedani, S. 2015. Rapid
prototyping technologies and their applications in prosthodontics, a review of
literature. J. Dent. (Shiraz) 16(1):
1-9.
Torii, M., Nakata, T., Takahashi, K., Kawamura, N.,
Shimpo, H. & Ohkubo, C. 2018. Fitness and retentive force of
cobalt-chromium alloy clasps fabricated with repeated laser sintering and
milling. J. Prosthodont. Res. 62(3):
342-346. doi: 10.1016/j.jpor.2018.01.001
Tregerman, I., Renne, W., Kelly, A. & Wilson, D.
2019. Evaluation of removable partial denture frameworks fabricated using 3
different techniques. J. Prosthet. Dent. 122(4): 390-395. doi: 10.1016/j.prosdent.2018.10.013
Tricco, A.C., Lillie, E., Zarin, W., O'Brien, K.K.,
Colquhoun, H., Levac, D., Moher, D., Peters, M.D.J., Horsley, T., Weeks, L.,
Hempel, S., Akl, E.A., Chang, C., McGowan, J., Stewart, L., Hartling, L.,
Aldcroft, A., Wilson, M.G., Garritty, C., Lewin, S., Godfrey, C.M., Macdonald,
M.T., Langlois, E.V., Soares-Weiser, K., Moriarty, J., Clifford, T., Tunçalp,
Ö. & Straus, S.E. 2018. PRISMA extension for scoping reviews (PRISMA-ScR):
Checklist and explanation. Ann. Intern.
Med. 169(7): 467-473. doi: 10.7326/m18-0850
Williams, R.J., Bibb, R., Eggbeer, D. & Collis, J.
2006. Use of CAD/CAM technology to fabricate a removable partial denture
framework. J. Prosthet. Dent. 96(2):
96-99. doi: 10.1016/j.prosdent.2006.05.029
Wu, J., Li, Y. & Zhang, Y. 2017. Use of intraoral
scanning and 3-dimensional printing in the fabrication of a removable partial
denture for a patient with limited mouth opening. J. Am. Dent. Assoc. 148(5): 338-341. doi:
10.1016/j.adaj.2017.01.022
Xie, W., Zheng, M., Wang, J. & Li, X. 2020. The
effect of build orientation on the microstructure and properties of selective
laser melting Ti-6Al-4V for removable partial denture clasps. J. Prosthet. Dent. 123(1): 163-172. doi:
10.1016/j.prosdent.2018.12.007
Ye, H., Ning, J., Li, M., Niu, L., Yang, J., Sun, Y.
& Zhou, Y. 2017. Preliminary clinical application of removable partial
denture frameworks fabricated using computer-aided design and rapid prototyping
techniques. Int. J. Prosthodont. 30(4): 348-353. doi: 10.11607/ijp.5270
*Corresponding author; email:
nosizana@um.edu.my
|