Sains
Malaysiana 50(12)(2021): 3493-3503
http://doi.org/10.17576/jsm-2021-5012-03
Determination
of the Heavy Metal Contents and the Benefit/Cost Analysis of Hypericum salsugineum in the Vicinity of
Salt Lake
(Penentuan
Kandungan Logam Berat dan Analisis Faedah/Kos Hypericum salsugineum di Sekitar Salt Lake)
AYNUR DEMIR*1, GÖKÇEN
BAYSAL FURTANA2, MEHTAP TEKŞEN3 & RUKIYE
TIPIRDAMAZ4
1Department of Urbanization and
Environmental Problems, Faculty of Economics and Administrative Sciences,
Aksaray University, 68100 Aksaray, Turkey
2Department of Biology, Faculty of Science, Gazi University,
06500 Ankara,Turkey
3Department of Biology, Faculty of Science and Letters,
Aksaray University, 68100 Aksaray, Turkey
4Department of Biology, Faculty of Science, Hacettepe
University, 06800 Ankara, Turkey
Received: 14
April 2020/Accepted: 21 April 2021
ABSTRACT
In this study, Hypericum
salsugineum, an endemic halophytic plant
growing around Salt Lake, was analyzed to determine the heavy metals (chromium,
lead, copper, zinc and nickel) on it and on the soil it grew. The
phytoremediation potential of H. salsugineum was evaluated. In addition, the benefit cost (B/C) analysis was
performed for its potential use in phytoremediation. The plant and soil samples were collected from Eskil and
Cihanbeyli between May and September in 2016. A total of 300 soil and plant
samples were analysed for heavy metal content. Statistical and standard
benefit/cost analyses were performed for assessment. The capacity of
accumulating the aforementioned heavy metals was found to be high in H.
salsugineum. It was found that Ni and Pb
ratio exceeded optimum values in its habitat, and H. salsugineum accumulated available Ni and Pb. When the
plant was evaluated in terms of benefit/cost, B/C ratio was greater than 1
during the useful life of the study. This conclusion increases the ecological
and economical values of H. Salsugineum,
effecting its potential use in phytoremediation.
Keywords: Economic
value analysis; halophyte; Hypericum salsugineum; phytoremediation; Salt Lake
ABSTRAK
Dalam kajian ini, Hypericum
salsugineum, sejenis tumbuhan halofit
endemik yang tumbuh di sekitar Salt Lake telah dianalisis untuk menentukan
kandungan logam berat (kromium, plumbum, kuprum, zink dan nikel) padanya dan
pada tanah tempat ia tumbuh. Potensi fitopemulihan H. salsugineum juga telah dinilai. Selain itu, analisis
nisbah faedah/kos (F/K) telah dilakukan untuk potensi kegunaan dalam
fitopemulihan. Sampel tumbuhan dan tanah telah dikumpul daripada Eskil dan
Cihanbeyli antara Mei dan September 2016. Sejumlah 300 sampel-sampel tanah dan
tumbuhan telah dianalisis untuk kandungan logam berat. Analisis statistik dan
analisis Piawai Faedah/Kos telah dilakukan sebagai penaksiran. Kapasiti
pengumpulan logam berat tersebut telah diperoleh dalam jumlah yang tinggi di
dalam H. salsugineum. Nisbah Ni dan
Pb didapati telah melebihi nilai optimum dalam habitat dan kandungan yang
dikumpul daripada H. salsugineum.
Apabila tumbuhan ini dinilai berdasarkan faedah/kos, nisbah (F/K) telah
menunjukkan nilai yang lebih besar daripada 1 sepanjang kajian dijalankan.
Rumusan ini menambah nilai ekologi dan ekonomi H. salsugineum, yang seterusnya memberi kesan kepada potensinya untuk digunakan dalam
fitopemulihan.
Kata kunci: Analisis nilai ekonomi; fitopemulihan; halofit; Hypericum salsugineum;
Salt Lake
REFERENCES
Abosede, A. & Mokin, I. 2017.
Review on heavy metals contamination in the environment. European Journal of Earth and Environment 4(1): 1-6.
Acosta,
J.A., Jansen, B., Kalbitz, K., Faz, A. & Martínez-Martínez, S. 2011.
Salinity increases mobility of heavy metals in soils. Chemosphere 85(8): 1318-324.
Adıgüzel, N., Byfield, A.,
Duman, H. & Vural, M. 2005. Tuz Gölü ve Stepleri. In Türkiye’nin 122 Önemli Bitki Alanı, edited by Özhatay, N.,
Byfield, A. & Atay, S. İstanbul: Türkiye WWF Türkiye (Doğal
Hayatı Koruma Vakfı) Yayını. pp. 289-292.
Anonymous. 2010. Salt Lake special
environmental protection area habitat monitoring report. T.C. Ministry of
Environment and Forestry Special Environmental Protection Agency.
https://tvk.csb.gov.tr/tuz-golu-ozel-cevre-koruma-bolgesi-tur-ile-habitat-koruma-ve-izleme-projesi-proje. Accessed on 15 December 2017.
Arshad, M., Silvestre, J., Pinelli,
E., Kallerhoff, J., Kaemmerer, M., Tarigo, A., Shahid, M., Guiresse, M.,
Pradere, P. & Dumat, C. 2008. A field study of lead phytoextraction by
various scented Pelargonium cultivars. Chemosphere 71(11):
2187-2192.
Ayan, A.K., Kizilkaya, R., Cirak, C. & Kevseroglu, K. 2006. Heavy metal contents of St.
John’s Wort (Hypericum perforatum L.) growing in northern
Turkey. Journal of Plant Sciences 1(3): 182-186.
Aybar, M., Bilgin, A.
& Sağlam, B. 2015. Removing heavy metals from the soil with
phytoremediation. Artvin Çoruh University
Natural Disasters Application and Research Center Journal of Natural Hazards
and Environment 1(1-2): 59-65.
Baker, A.J.M. & Brooks, R.R.
1989. Terrestrial higher plants which hyperaccumulate metallic elements - A
review of their distribution. Ecology and
Phytochemistry, Biorecovery 1: 81-126.
Basak, E. 2003. Economic and
socio-economic valuation of Tuz Gölü specially protected area, Central
Anatolia, Turkey. Wageningen University. M.Sc. Thesis (Unpublished).
Baysal Furtana, G., Duman, H. &
Tıpırdamaz, R. 2013. Seasonal changes of inorganic and organic
osmolyte content in three endemic Limonium species of Lake Tuz (Turkey). Turkish
Journal of Botany 37(3): 455-463.
Benavides, M.P., Gallego, S.M.
& Tomaro, M.L. 2005. Cadmium toxicity in plants. Brazilian Journal of
Plant Physiology 17(1):
21-34.
Bingöl, Ü., Cosge, B. & Gürbüz,
B. 2010. Hypericum species in the
flora of Turkey. Medicinal and Aromatic
Plant Science and Biotechnology 5(1): 86-90.
Blaylock, M.J. & Huang, J.W.
2000. Phytoextraction of metals. In Phytoremediation
of Toxic Metals: Using Plants to Clean-up the Environment, edited by Raskin,
I. & Ensley, B.D. New York: Wiley. pp. 53-70.
Brooks, R.R. 1998. General
introduction. In Plants that
Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology,
Archaeology, Mineral Exploration and Phytomining, edited by Brooks, R.R. New
York: CAB International. pp. 1-14.
Castro, R., Pereira, S., Ana Lima,
A., Corticeiro, S., V´alega, M., Pereira, E., Duarte, A. & Figueira, E.
2009. Accumulation, distribution and cellular partitioning of mercury in
several halophytes of a contaminated salt marsh. Chemosphere 76(10): 1348-1355.
Chibuike, U.G. & Obiora, C.S.
2014. Heavy metal polluted soils: Effect on plants and bioremediation methods. Applied and Environmental Soil Science 2014: 752708.
Choi, Y.E., Harada, E., Wada, M.,
Tsuboi, H., Morita, Y., Kusano, T. & Sano, H. 2001. Detoxification of
cadmium in tobacco plants: Formation and active secretion of crystals
containing cadmium and calcium through trichomes. Planta 213(1): 45-50.
Clemens, S. 2006. Toxic metal
accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11): 1707-1719.
Cunningham, S.D. & Ow, D.W.
1996. Promises and prospects of phytoremediation. Plant Physiology 110(3):
715-719.
Davis, P.H. 1967. Flora of Turkey and the East Aegean Islands 2. Edinburgh: Edinburgh University
Press.
Demir, A. 2014. Recreational use value of Tuz Lake in Turkey. Journal of Food, Agriculture &
Environment 12(2):
1092-1096.
Duman, F., Aksoy, A. &
Demirezen, D. 2007. Seasonal variability of heavy metals in surface sediment of
Lake Sapanca, Turkey. Environmental
Monitoring and Assessment 133(1-3): 277-283.
Ellis, D.R. & Salt, D.E. 2003.
Plants selenium and human health. Current
Opinion in Plant Biology 6(3): 273-279.
Ghnaya, T., Slama, I., Messedi, D.,
Grignon, C., Ghorbel, M.H. & Abdelly, C. 2007. Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum:
Consequences on growth. Chemosphere 67(1): 72-79.
Ghnaya, T., Nouairi, I., Slama, I.,
Messedi, D., Grignon, C., Abdelly, C. & Ghorbel, M.H. 2005. Cadmium effects
on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Journal
of Plant Physiology 162(10): 1133-1140.
Ghosh, M. & Singh, S.P. 2005.
Comparative uptake and phytoextraction study of soil induced chromium by
accumulator and high biomass weed species. Applied
Ecology and Environmental Research 3(2): 67-79.
Glass, D.J. 1999. Economic potential
of phytoremediation. In Phytoremediation
of Toxic Metals: Using Plants to Clean Up the Environment, edited by
Raskin, I. & Ensley, B.D. New York: John Wiley & Sons. pp. 15-31.
Glass, D.J. 2000. The 2000 Phytoremediation Industry.
Needham: Glass Associates.
IUCN. 2019. Guidelines for Using the IUCN Red List Categories and Criteria: version
4. Gland: IUCN Standards and Petitions Committee.
Jordan, F.L., Robin-Abbott, M.,
Maier, R.M. & Glenn, E.P. 2002. A comparison of chelator-facilitated metal
uptake by a halophyte and a glycophyte. Environmental
Toxicology Chemistry 21(12): 2698-2704.
Lasat,
M.M. 2000. The Use of Plants for the
Removal of Toxic Metals from Contaminated Soil. Washington: U.S.
Environmental Protection Agency.
Lef´evre, I., Marchal,
G., Meerts, P., Corr´eal, E. & Lutts, S. 2009. Chloride salinity reduces
cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental Experimental Botany 65(1): 142-152.
Lintern, M., Anand, R., Ryan, C.
& Paterson, D. 2013. Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried
gold deposits. Nature Communications 4: 2274.
Lone, M.I., Raza, S.H., Muhammad,
S., Naeem, M.A. & Khalid, M. 2006. Lead content in soil and wheat tissue
along roads with different traffic loads in Rawalpindi District. Pakistan Journal of Botany 38(4):
1035-1042.
Long, X.X., Yang, X.E. & Ni,
W.Z. 2002. Current status and perspective on phytoremediation of heavy metal
polluted soils. Journal of Applied
Ecology 13: 757-762.
Lutts, S. & Lef’evre, I. 2015.
Review: Part of a special issue on halophytes and saline adaptations. How can
we take advantage of halophyte properties to cope with heavy metal toxicity in
salt-affected areas? Annals of Botany 115(3): 509-528.
Manousaki, E. & Kalogerakis, N.
2011. Halophytes - An emerging trend in phytoremediation. International Journal of Phytoremediation 13(10): 959-969.
Manousaki, E. & Kalogerakis, N.
2009. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): Metal uptake in
relation to salinity. Environmental
Science and Pollution Research 16(7): 844-854.
Manousaki, E., Galanaki, K.,
Papadimitriou, L. & Kalogerakis, N. 2013. Metal phytoremediation by the
halophyte Limoniastrum monopetalum (L.) Boiss.: two contrasting ecotypes. International
Journal Phytoremediation 16(7-8): 755-769.
Manousaki, E., Kadukova, J.,
Papadantonakis, N. & Kalogerakis, N. 2008. Phytoextraction and
phytoexcretion of Cd by Tamarix
smyrnensis growing on contaminated non saline and saline soils. Environmental Research 106(3): 326-332.
Memon, A.R., Aktopraklıgil, D.,
Özdemir, A. & Vertii, A. 2001. Heavy metal accumulation and detoxification
mechanisms in plants. Turkish Journal
Botany 25(3): 111-121.
Milner, M.J. & Kochian, L.V.
2008. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Annals of Botany 102(1): 3-13.
Mishan, E.J. 1972. The futility of
pareto-efficient distributions. The
American Economic Review 62(5): 971-976.
Nagajyoti, P.C., Lee, K.D. &
Sreekanth, T.V.M. 2010. Heavy metals, occurrence and toxicity for plants: A
review. Environmental Chemistry Letters 8(3): 199-216.
Niess, D.H. 1999. Microbial
heavy-metal resistance. Applied
Microbiology and Biotechnology 51: 730-750.
Oosten, M.J.V. & Maggio, A.
2015. Functional biology of halophytes in the phytoremediation of heavy metal
contaminated soils. Environmental and
Experimental Botany 111: 135-146.
Radanović,
D., Antić-Mladenović, S. & Jakovljević, M. 2002. Influence
of some soil characteristics on heavy metal content in Hypericum perforatum L. and Achillea millefolium L. Acta Horticulturae 576: 295-301.
Reeves, R.D. 2006. Hyperaccumulation
of trace elements by plants. In Phytoremediation
of Metal-Contaminated Soils NATO
Science Series: IV: Earth and Environmental Sciences, edited by Morel,
J.L., Echevarria, G. & Goncharova, N. New York: Springer. pp. 1-25.
Salt, D.E., Prince, R.C., Pickering,
I.J. & Raskin, I. 1995. Mechanisms of cadmium mobility and accumulation in
Indian Mustard. Plant Physiology 109(4): 1427-1433.
Shafaghat, A., Salimi, F., Valiei,
M., Salehzadeh, J. & Shafaghat, M. 2012. Removal of heavy metals (Pb2+,
Cu2+ and Cr3+) from aqueous solutions using five plants
materials. African Journal of
Biotechnology 11(4): 852-855.
Shi, W., Shao, H., Li, H., Shao, M. & Du, S. 2009. Progress in the remediation of hazardous heavy
metal-polluted soils by natural zeolite. Journal of Hazardous Materials 170(1):
1-6.
Srivastava, V., Sarkar, A., Singh,
S., Singh, P., Araujo, A.S.F. & Singh, R.P. 2017. Agroecological responses
of heavy metal pollution with special emphasis on soil health and plant
performances. Frontiers in Environmental
Science 5: 64-82.
Tuğ, G.N. 2006. Determination
of the factors effective on zonation of halophytic vegetation of Salt Lake,
Inner Anatolia, Turkey. Ankara University. PhD. Thesis (Unpublished).
Tuğ, G.N. & Duman, F. 2010.
Heavy metal accumulation in soils around Salt Lake in Turkey. Pakistan Journal of Botany 42(4):
2327-2333.
Wuana,
R.A. & Okieimen, F.E. 2011. Heavy metals in contaminated
soils: A review of sources, chemistry, risks and best available strategies for
remediation. International Scholarly
Research Notices 2011: 402647.
Yang, Y.Y., Jung, J.Y., Song, W.Y.,
Suh, H.S. & Lee, Y. 2000. Identification of rice varieties with high
tolerance or sensitivity to lead and characterization of the mechanism of
tolerance. Plant Physiology 124(3):
1019-1026.
*Corresponding author; email: aynurdemir_1@hotmail.com
|