Sains Malaysiana 42(3)(2013):
347–358
A
Step Variational Iteration Method for Solving Non-chaotic and Chaotic Systems
(Kaedah Lelaran
Ubahan Langkah bagi Menyelesaikan Sistem Kalut dan Tak Kalut)
R. Yulita Molliq* *
Department of Mathematics,
Faculty of Mathematics and Natural Science, Universitas Negeri Medan
20221 Medan, Sumatera
Utara, Indonesia
M.S.M. Noorani & R.R.
Ahmad
School of Mathematical
Sciences, Faculty of Science and Technology
Universiti Kebangsaan Malaysia,
43600 Bangi, Selangor D.E. Malaysia
A.K. Alomari,
Department of Mathematics, Faculty of Science, Hashemite
University 13115 Zarqa, Jordan
Received: 25 May 2010/Accepted: 17 September
2012
ABSTRACT
In this paper, a new reliable method called the step variational
iteration method (SVIM) based on an adaptation of the
variational iteration method (VIM) is presented to solve non–chaotic
and chaotic systems. The SVIM uses the general Lagrange multipliers for
constructing the correction functional for the problems. The SVIM yields a step
analytical solution of the form of a rapidly convergent infinite power series
with easily computable terms and obtain a good approximate solution for larger
intervals. The accuracy of the presented solution obtained is in an excellent
agreement with the previously published solutions.
Keywords: Chaotic and non-chaotic systems; Lagrange multiplier;
multistage variational iteration method; step variational iteration method; variational
iteration method
ABSTRAK
Dalam kertas ini, kaedah baru dinamakan kaedah lelaran ubahan
langkah (KLUL)
berasaskan satu adaptasi kaedah lelaran ubahan digunakan untuk sistem tak-kalut
dan kalut. KLUL menggunakan pendarab Lagrange umum untuk membina fungsian
pembetulan bagi mengatasi masalah berkenaan. KLUL menghasilkan
penyelesaian analisis dalam bentuk siri kuasa tak terhingga yang menumpu pantas
dengan sebutan yang mudah dikira. Penyelesaian penghampiran diperoleh adalah
baik untuk selang yang lebih besar. Ketepatan penyelesaian yang diperoleh
adalah sangat baik bila dibandingkan dengan penyelesaian yang terdahulu.
Kata kunci: Kaedah lelaran ubahan; kaedah lelaran ubahan langkah;
kaedah lelaran ubahan multitahap; sistem tak-kalut dan kalut; pendarab Lagrange
REFERENCES
Alomari, A.K., Noorani, M.S.M. & Nazar, R.
2009. Adaptation of homotopy analysis method for the numeric-analytic solution
of Chen system. Commun. Nonlinear Sci. Numer. Simulat. 14: 2336-2346.
Alomari, A.K., Noorani, M.S.M. & Nazar, R.
& Li, C.P. 2010. Homotopy analysis method for solving fractional Lorenz
system. Commun. Nonlinear Sci. Numer. Simulat. 15(7): 1864-1872.
Batiha, B., Noorani, M.S.M. & Hashim, I.
2007a. Variational iteration method for solving multispecies Lotka–Volterra
equations. Comput. Math. Appl. 54: 903-909.
Batiha, B., Noorani, M.S.M. & Hashim, I.
2007b. The multistage variational iteration method for class of nonlinear
system of ODEs. Phys. Scr. 78: 388-392.
Chowdhury, M.S.H. & Hashim, I. 2009.
Application of multistage homotopy-perturbation method for the solutions of the
Chen system. Nonlinear Anal. Real World Anal. 10(1): 381-391.
Chowdhury, M.S.H., Hashim, I. & Momani, S.
2009. The multistage homotopy-perturbation method: A powerful scheme for
handling the Lorenz system. Chaos Solitons & Fractals 40(4):
1929-1937.
Faraz, N., Khan, Y. & Austin, F. 2010. An
alternative approach to differential-difference equations using the variational
iteration method, Zeitschrift fur Naturforschung - Section A J. Phys. Sci.
65(12): 1055-1059.
Faraz, N., Khan, Y. & Yildirim, A. 2011.
Analytical approach to two-dimensional viscous flow with a shrinking sheet via
variational iteration algorithm-II. J. King Saud University (Sci.) 23:
77-81.
Finlayson, B.A. 1972. The Method of Weighted
Residuals and Variational Principles. New York: Academic Press.
Genesio, R. & Tesi, A. 1992. A harmonic
balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28: 531-548.
Goh, S.M., Noorani, M.S.M. & Hashim, I.
2009a. Efficiency of variational iteration method for chaotic Genesio
system-Classical and multistage approach. Chaos Solitons & Fractals 40:
2152-2159.
Goh, S.M., Noorani, M.S.M. & Hashim, I. 2009b. A new
application of variational iteration method for the chaotic Rössler system. Chaos
Solitons Fractals 42(3): 1604-1610.
Goh, S.M., Noorani, M.S.M. & Hashim, I.
2008. Prescribing a multistage analytical method to a prey-predator dynamical
system. Phys. Lett. A 373: 107-110.
He, J.H. 1997a. Semi-inverse method of
establishing generalized principles for fluid mechanics with emphasis on
turbomachinery aerodynamics. Int. J. Turbo Jet–Engines 14: 23-28.
He, J.H. 1997b. Variational iteration method for
delay differential equations. Commun. Nonlinear Sci. Numer. Simulat. 2:
235-236.
He, J.H. 1998. Approximate analytical solutions
for seepage flow with fractional derivatives in porous media. Comput.
Methods Appl. Mech. Engrg. 167(1-2): 57-68.
He, J.H. & Wu, X.H. 2007. Variational
iteration method: New developments and applications. Comput. Math. Appl. 54:
881-894.
He, J.H. & Wu, X.H. 2006. Construction of
solitary solution and compaction-like solution by variational iteration method. Chaos, Solitons & Fractals 29(1): 108-113.
He, J.H. 2007. The variational iteration method
for eighth-order initial boundary value problems, Phys. Scr. 76(6):
680-682.
Inokuti, M., Sekine, H. & Mura, T. 1978.
General use of the Lagrange multiplier in nonlinear mathematical physics. In:
Nemat-Naseer, S. (ed.) Variational Method in the Mechanics of Solids New
York: Pergamon Press. pp. 156-162.
Ivancevic, V.G. & Ivancevic, T.T. 2008. Complex
Nonlinearity: Chaos, Phase Transitions, Topology Change, and Path Integrals.
New York: Springer.
Khan, Y., Faraz, N., Yildirim, A. & Wu, Q.
2011. Fractional variational iteration method for fractional initial-boundary
value problems arising in the application of nonlinear science. Comput.
Math. Appl. 62: 2273-2278.
Noorani, M.S.M., Hashim, I., Ahmad, R., Bakar,
S.A., Ismail, E.S. & Zakaria, A.M. 2007. Comparing numerical methods for
the solutions of the Chen system. Chaos Solitons & Fractals 32:
1296-304.
Rangkuti, Y.M. & Noorani, M.S.M. 2012. The
exact solution of delay differential equations using coupling variational
iteration with taylor series and small term. Bull. Math. 4(1): 1-15.
Rössler, O.E. 1976. An equation for continuous
chaos. Phys Lett A. 573: 97-398.
Serletis, A. & Gogas, P. 1997. Chaos in east
European black market exchange rates. Research Economics 51(4): 359-385.
Serletis, A. & Gogas, P. 2000. Purchasing
power parity nonlinearity and chaos. Appl. Financial Economics 10(6):
615-622.
Serletis, A. & Gogas, P. 1999. The north
American gas markets are chaotic. Energy J. 20: 83-103.
Werndl, C. 2009. What are the new implications of
chaos for unpredictability? The British J. Phil. Sci. 60(1): 195-220.
Yulita Molliq, R., Noorani, M.S.M. & Hashim,
I. 2009a. Variational iteration method for fractional heat–and
wave–like equations. Nonlinear Anal. Real World Appl. 10(3):
1854-1869.
Yulita Molliq, R., Noorani, M.S.M., Hashim, I.
& Ahmad, R.R. 2009b. Variational iteration method for fractional
Zakhanov–Kuznetsov equations. J. Comput. Appl. Math. 233: 103-108.
Yulita Molliq, R. & Batiha, B. 2012. Approximate
analytic solutions of fractional Zakharov-Kuznetsov equations by fractional
complex transform. Int. J. Engin. Tech. 1(1): 1-13.
*Corresponding author; email: yulitamolliq@yahoo.com
|