Sains Malaysiana 42(3)(2013):
341–346
A
Fourth-order Compact Finite Difference Scheme for the Goursat Problem
(Skema Beza Terhingga Padat
Peringkat Empat untuk Masalah Goursat)
Mohd Agos Salim bin Nasir*
Faculty
of Computer and Mathematical Sciences, Universiti Teknologi MARA Malaysia
40450
Shah Alam, Selangor D.E., Malaysia
Ahmad
Izani bin Md Ismail
School
of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM,
Pulau Pinang, Malaysia
Received: 3 February
2012/Accepted: 17 September 2012
ABSTRACT
A high-order uniform Cartesian grid
compact finite difference scheme for the Goursat problem is developed. The
basic idea of high-order compact schemes is to find the compact approximations
to the derivatives terms by differentiating centrally the governing equations.
Our compact scheme will approximate the derivative terms by involving the
higher terms and reducing the number of grid points. The compact finite
difference scheme is given for general form of the Goursat problem in uniform
domain and illustrates the performance by applying a linear problem. Numerical
experiments have been conducted with the new scheme and encouraging results
have been obtained. In this paper we present the compact finite difference
scheme for the Goursat problem. With the aid of computational software the
scheme was programmed for determining the relative errors of linear Goursat
problem.
Keywords: Compact finite difference;
consistency; convergence; Goursat problem; stability
ABSTRAK
Skema beza
terhingga padat bagi grid Kartesan seragam peringkat tinggi untuk masalah
Goursat dibincangkan. Idea asas bagi skema
padat peringkat tinggi ialah untuk mendapatkan penghampiran padat
sebutan-sebutan terbitan dengan membezakan secara memusat persamaan yang
bersekutu. Skema padat kami akan membuat
penghampiran sebutan-sebutan terbitan dengan melibatkan sebutan-sebutan
peringkat lebih tinggi dan mengurangkan bilangan titik-titik grid. Skema beza
terhingga padat diberikan dalam bentuk am untuk masalah Goursat di dalam domain
seragam dan prestasinya digambarkan dengan mengaplikasi satu masalah linear.
Uji kaji berangka dengan skema baru telah dijalankan dan keputusan
memberangsangkan telah diperoleh. Dalam kertas ini kami
berikan skema beza terhingga padat untuk masalah Goursat. Dengan
bantuan perisian pengkomputeran, skema telah diatur cara untuk menentukan
pelbagai ralat relatif bagi masalah Goursat linear.
Kata
kunci: Beza terhingga padat; ketekalan; kestabilan; masalah Goursat;
penumpuan
REFERENCES
Ahmed, M.O.
1997. An exploration of compact finite difference methods for
the numerical solution of PDE. PhD dissertation. Western Ontario London
University (unpublished).
Boersma,
B.J. 2005. A staggered compact finite difference formulation
for the compressible Navier-Stokes equations. Journal of
Computational Physics 208: 675-690.
Bodenmann,
R. & Schroll, H.J. 1996. Compact difference methods applied to initial
boundary value problems for mixed systems. Numer. Math. 73: 291-309.
Day, J.T.
1966. A Runge-Kutta method for the numerical solution of the
Goursat problem in hyperbolic partial differential equations. Computer
Journal 9: 81-83.
Evans, D.J.
& Sanugi, B.B. 1988. Numerical solution of the Goursat
problem by a nonlinear trapezoidal formula. Applied Mathematics
Letter 3: 221-223.
Fletcher,
C.A.J. 1990. Computational Techniques for Fluid Dynamics. 2nd ed.
Berlin: Springer Verlag.
Frisch, R.A.
& Cheo, B.R. 1972. On a bounded one dimensional Poisson-Vlasov system. Society for Industry and Applied Mathematics 3:
362-368.
Garabedian, P. 1964. Partial Differential Equations. New York: John Wiley
& Sons Inc.
Hillion, P.
1992. A note on the derivation of paraxial equation in
nonhomogeneous media. SIAM Journal of Applied Mathematics 2:
337-346.
Kyei, Y.
2004. Higher order Cartesian grid based finite difference methods for elliptic
equations on irregular domains and interface problems and their applications.
PhD dissertation. North Carolina State University, USA (unpublished).
Kaup, D.J.
& Newell, A.C. 1978. The Goursat and Cauchy problems for
the Sine Gordon equation. SIAM Journal of Applied Mathematics 1:
37-54.
Li, J. &
Visbal, M.R. 2006. High order compact schemes for nonlinear
dispersive waves. Journal of Scientific Computing 26: 1-23.
Li, J. &
Chen, Y. 2004. High order compact schemes for dispersive
media. Electronics Letters 40: 14.
Li, M. & Tang, T. 2001. A compact
fourth order finite difference scheme for unsteady viscous incompressible
flows. Journal of Scientific Computing 16: 29-45.
Mclaughlin,
J.R., Polyakov, P.L. & Sacks, P.E. 1994. Reconstruction
of a spherical symmetric speed of sound. SIAM Journal of Applied
Mathematics 5: 1203-1223.
Nasir,
M.A.S. & Ismail, A.I.M. 2005. A new finite difference
scheme for the Goursat problem. IASME Transactions 2: 98-103.
Nasir,
M.A.S. & Ismail, A.I.M. 2004. Numerical solution of a linear Goursat
problem: Stability, consistency and convergence. WSEAS Transactions on
Mathematics 3: 616-620.
Richtmyer,
R. & Morton, K.W. 1967. Difference Methods for Initial
Value Problems. New York: John Wiley & Sons.
Spotz, W.F.
1995. High order compact finite difference schemes for computational mechanics.
PhD dissertation. Texas University. Austin, USA (unpublished).
Twizell,
E.H. 1984. Computational Methods for Partial Differential
Equations. Chichester: Ellis Horwood Limited.
Wazwaz, A.M.
1995. The decomposition method for approximate solution of
the Goursat problem. Applied Mathematics and Computation 69:
299-311.
Wazwaz, A.M.
1993. On the numerical solution for the Goursat problem. Applied Mathematics and Computation 59: 89-95.
Zhao, J.,
Zhang, T. & Corless, R.M. 2006. Convergence of the
compact finite difference method for second order elliptic equations. Applied
Mathematics and Computation 182: 1454-1469.
Zhao, J., Corless, R.M. & Davison, M. 2005. Financial applications of
symbolically generated compact finite difference formulae. Dept.
of Applied Mathematics. London: Western Ontario London University.
*Corresponding author; email: masn@tmsk.uitm.edu.my
|