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ABSTRACT

Ageing is a complex biological process that gradually alters cellular function and patterns of protein interaction. Standard 
network-based measures such as degree, betweenness and clustering coefficient are widely used in protein–protein 
interaction networks (PPINs), but these metrics may overlook subtle changes within local neighbourhoods. This study 
applies Local Persistent Homology (LPH) to characterise age-related differences in the local topology of PPINs, providing 
structural information that is not captured through global or node-level analyses. For each protein, a level 2 ego network is 
constructed and its H0 and H1 features are summarised using persistence diagrams (PDs). The Wasserstein distance between 
PDs from adult and elderly networks is then computed to quantify topological variation across age groups. The Wasserstein 
distance for each protein was compared with its degree, betweenness, and local clustering coefficient to examine how 
local topological structure relates to standard centrality measures. Proteins with many topological components tend to 
exhibit higher degree and betweenness but lower clustering, while proteins in simpler neighbourhoods show longer average 
persistence and more stable structural patterns. By integrating LPH results with gene-disease association data, 25 proteins 
with notable age-related topological differences are identified, including several associated with neurodegenerative 
diseases. Overall, LPH deepens the analysis of PPIN architecture by exposing subtle, age-linked structural patterns that 
remain undetected using network centralities.
Keywords: Ageing; local persistent homology; network centrality

ABSTRAK

Penuaan merupakan suatu proses biologi kompleks yang mengubah fungsi sel dan corak interaksi protein secara  
beransur-ansur. Pengukuran rangkaian sedia ada seperti pemusatan darjah, pengantaraan dan pekali gugusan tempatan 
digunakan dalam rangkaian interaksi protein–protein (RIPP), namun metrik ini mungkin tidak mampu menangkap 
perubahan halus yang berlaku dalam kejiranan tempatan. Kajian ini menggunakan Homologi Gigih Tempatan (HGT) 
untuk mencirikan perbezaan berkaitan usia dalam topologi tempatan RIPP, sekali gus menyediakan maklumat struktur 
yang tidak dapat ditangkap melalui analisis peringkat global atau nod. Bagi setiap protein, rangkaian ego aras 2 dibina 
dan ciri H0 serta H1 diringkaskan melalui rajah gigih (PD). Jarak Wasserstein antara PD bagi rangkaian dewasa dan warga 
emas kemudiannya dikira untuk mengukur variasi topologi merentas kumpulan umur. Nilai jarak Wasserstein bagi setiap 
protein dibandingkan dengan pemusatan darjah, pengantaraan dan pekali gugusan tempatan untuk menilai hubungan 
antara struktur topologi tempatan dan pengukuran rangkaian tempatan. Protein dengan komponen topologi yang tinggi 
cenderung mempunyai nilai pemusatan darjah dan pengantaraan yang lebih tinggi tetapi pekali gugusan yang lebih rendah, 
manakala protein dalam kejiranan yang lebih ringkas menunjukkan purata jangka hayat yang lebih panjang dan struktur 
yang lebih stabil. Dengan menggabungkan hasil HGT bersama data hubungan gen-penyakit, sebanyak 25 protein dikenal 
pasti menunjukkan perbezaan topologi berkaitan usia yang ketara, termasuk beberapa yang berkaitan dengan penyakit 
neurodegeneratif. Secara keseluruhannya, HGT memperkukuh analisis struktur RIPP dengan mendedahkan pola halus 
yang berkait dengan usia, yang tidak dapat dikesan menggunakan pemusatan rangkaian.
Kata kunci: Homologi gigih tempatan; pemusatan rangkaian; penuaan
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INTRODUCTION

Ageing is recognised as a complex biological process 
that involves a gradual decline in physiological function 
and an increased susceptibility to age-related diseases. 
These changes arise through a range of molecular, cellular 
and systemic alterations that occur throughout the body 
(Liu et al. 2019; Ni et al. 2022). At the cellular level, 
ageing influences protein behaviour and disrupts normal 
biological activity. The process is also shaped by genetic, 
environmental and lifestyle factors, which reflects its 
multifactorial nature (Partridge, Deelen & Slagboom 
2018). Understanding the molecular mechanisms involved 
in ageing is therefore important for supporting healthy 
ageing and reducing disease risk.

Protein–protein interaction networks (PPINs) provide 
a useful representation of how proteins interact within 
the cell. By describing proteins as nodes and interactions 
as edges, PPINs make it possible to examine signalling 
pathways, regulatory processes and functional modules 
(Mooney, Morgan & McAuley 2016). When PPINs 
are studied across different age groups, they may show 
key proteins and pathways involved in age-associated 
functional decline or disease development (Calabrese, 
Molzahn & Mayor 2022).

Several commonly used analytical strategies have 
been applied to identify age-related proteins in PPINs. 
These include network-centric strategies such as 
functional enrichment and standard centrality measures, 
and standard network centrality measures such as degree, 
betweenness and closeness (Ashtiani et al. 2018; Faisal, 
Zhao & Milenkovic 2015). Such measures quantify 
different aspects of protein importance, including 
connectivity, communication flow and proximity to other 
nodes. They have been shown to be helpful for detecting 
influential proteins associated with biological ageing  
(Faisal & Milenković 2014; Syukor & Sakhinah 2019).

Changes in network connectivity and structure also 
contribute to the identification of age-related proteins. 
As protein interactions can shift over time, these changes 
may be reflected through differences in network topology, 
which includes the arrangement of nodes, edges, local 
clusters and small-scale structural features (Faisal & 
Milenković 2014; Teulière et al. 2023). Although node-level 
centrality analysis has been widely used to rank proteins 
according to their connectivity or clustering properties  
(Kosch & Schreiber 2004), these metrics do not fully capture 
neighbourhood-level structural variation. Some centrality 
measures may also be sensitive to small perturbations in 
the network and may implicitly assume uniform influence 
across nodes (Aktas, Akbas & El Fatmaoui 2019). These 
limitations highlight the need to incorporate additional 
structural information when analysing PPINs.

Topological data analysis (TDA) has emerged as a 
useful framework for describing structural patterns in 
complex data. One of its main tools, Persistent Homology 
(PH), captures topological features such as connected 

components and loop-like structures across multiple 
scales (Aktas, Akbas & El Fatmaoui 2019). PH has been 
successfully applied to biological networks, including 
brain networks, PPINs and genetic interaction studies 
(Hazram, Bakar & Razak 2024; Ignacio & Darcy 2019; 
Li et al. 2021; Song 2023). Its ability to identify subtle 
structural patterns makes it well-suited for the analysis of 
biological networks.

In this study, PH is applied in a local context through 
Local Persistent Homology (LPH). Instead of examining 
the global PPIN, LPH focuses on neighbourhood 
subnetworks to characterise the local topology surrounding 
each protein. Both H0 (connected components) and H1  
(loop-like structures) are extracted from these 
neighbourhoods, and persistence diagrams (PDs) are used 
to represent their topological characteristics. Age-related 
differences are then quantified using the Wasserstein 
distance to measure the dissimilarity between PDs obtained 
from adult and elderly PPINs.

Overall, this study aims to characterise age-dependent 
changes in local PPIN topology and identify proteins 
exhibiting pronounced structural variation across age 
groups. By integrating LPH-derived information with 
standard centrality measures and gene–disease associations, 
this approach offers a complementary perspective for 
understanding ageing-related molecular changes.

PERSISTENT HOMOLOGY OF BIOLOGICAL NETWORKS

Persistent Homology (PH) is used to capture intrinsic 
geometric and structural properties of data by  
quantifying the persistence of topological features across 
multiple spatial scales. In biological network analysis, 
PH offers several advantages over standard network 
analysis methods. It enables complex network structures 
to be examined in a consistent manner and allows 
topological features to be detected even when they are 
not easily observed through raw network representations  
(Masoomy et al. 2021). Specifically, PH facilitates the 
identification of robust and biologically meaningful 
patterns, such as strongly connected clusters and stable 
structural motifs within biological networks (Islambekov 
& Gel 2019).

An additional advantage of PH is that it is largely 
unaffected by specific choices of network representation or 
parameter settings. This allows biological networks to be 
analysed in a more objective manner, with results derived 
from topological properties rather than assumptions about 
node influence or network density.

The PH workflow generally consists of three main 
components: data preparation, construction of a filtration, 
and extraction of topological features. The complete process 
used in this study is described in detail in the Materials and 
Methods section. Understanding how ageing affects PPIN 
topology is important, as changes in protein interactions 
have been linked to altered physiological functions and 
increased risk of age-related diseases (Faisal & Milenković 
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2014; Faisal et al. 2015; Liu et al. 2019). Investigating 
these topological changes across different age groups may 
therefore provide useful insight for disease detection and 
drug targeting (Aktas, Akbas & El Fatmaoui 2019).

In this study, a computational framework based on PH 
is developed to analyse PPINs and identify proteins that 
exhibit notable age-related topological variation. These 
proteins are subsequently characterised based on their 
potential biological relevance and disease associations.

MATERIALS AND METHODS

The whole process of this study, from data collection to 
analysis, is depicted in Figure 1.

DATA PREPARATION AND PPIN FORMATION

The protein list used in this study was obtained from 
Berchtold et al. (2008), consisting of wet-lab samples from 
55 individuals. A total of 172 probe arrays were available for 
protein expression, and these were categorised according 
to gender and age group. The age groups were defined 
as follows: a) The adult age group consists of individuals 
between the ages of 20 to 69 and b) Individuals between 
the ages of 70 and 99 are considered elderly.

The list of interacting proteins, which serves as the set 
of network edges, was retrieved from the IntAct database 
(del Toro et al. 2022). IntAct contains detailed information 

on protein–protein interactions, including interaction 
type, supporting references and a Mutual Information 
(MI) score. The MI score ranges from 0 to 1 and reflects 
interaction confidence by incorporating the frequency of 
observed interactions, level of supporting evidence and 
experimental methodology. Higher values indicate greater 
experimental confidence and reproducibility. A total of 
81,847 human protein–protein interactions with MI scores 
of 0.49 or higher were included in this study, as higher MI 
values indicate greater reliability and biological relevance 
(Sugis & Hermajakob 2019).

Four PPINs were constructed by merging the 
expressed protein lists with the interaction data, resulting 
in undirected and weighted networks, with MI scores 
assigned as edge weights. Only the largest connected 
component of each network was considered for further 
analysis, as proteins within this component are more likely 
to be functionally relevant and integrated within essential 
biological modules (Bhowmick & Seah 2016). These 
components accounted for approximately 86 percent of 
the full network. Small disconnected nodes, most of which 
appeared as isolated singletons, were excluded because they 
lack neighbourhood structure, which prevents meaningful 
local topological analysis.

The networks were constructed based on gender and 
age group, producing four categories: adult male, adult 
female, elderly male and elderly female. This stratification 

FIGURE 1. Workflow of the study
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allows network characteristics to be examined within 
specific demographic subsets. Before analysing local 
neighbourhood structure, global network properties were 
evaluated to establish the overall organisation of each 
PPIN.

Several network-level metrics were computed, 
including the number of nodes (proteins), number of 
edges (interactions), network diameter, density, number of 
triangles, clustering coefficient and average edge weight. 
The diameter represents the longest shortest path between 
any two nodes, while density measures the proportion of 
possible edges that are present in the network.

Local structural features were assessed using metrics 
such as the number of triangles and the clustering coefficient, 
which describe the extent to which neighbouring nodes form 
interconnected clusters. The global clustering coefficient 
(GCC) was computed using the formula (Aguilar-Alarcón, 
Hernández-Gómez & Romero-Valencia 2023).

GCC =
Number of triangles * 3

Number of connected triples of vertices

Average edge weight was also examined to indicate the 
overall strength of protein–protein interactions. Together, 
these metrics provide a comprehensive description of 
network behaviour across the four demographic groups.

NEIGHBOURHOOD NETWORK FORMATION

Local Persistent Homology (LPH) is defined as 
the computation of PH within a localised region or 
neighbourhood (Fasy & Wang 2016). The original 
computation is based on the point cloud data, and hence, 
H0 and H1 were extracted around the fixed proximity of 
every single point in the point cloud data. However, in a 
network, the LPH can still be computed, but in this context, 
the neighbourhood of the network can be defined around a 
fixed number of step(s) from every single node. 

In this study, for every node in every network G, we 
constructed a level 2 ego network. The level 2 ego network 
is a subnetwork of G such that the node v V is the centre 
of the subnetwork along with its immediate neighbours 
and the second neighbours from v. From now on, the 
neighbourhood in this study is referred to as a level 2 ego 
network of node v. The example of the neighbourhood of a 
node is depicted in Figure 2. 

COMPUTATION OF LOCAL PERSISTENT HOMOLOGY  
AND FEATURE EXTRACTION

Homology refers to the topological characteristics of a given 
space. In the context of a topological space X, the homology 
groups H0, H1, and H2 represent the components, holes, and 
voids of X, respectively. The construction of homology 
groups starts by considering a chain complex C(X) that 
represents information about X. This chain complex 
consists of a sequence of Abelian groups C0(X), C1(X), 
C2(X),... connected by homomorphisms called boundary 
operators ∂k : Ck(X) → Ck ‒1 (X) . The k-th homology group 
Hk(X) is defined as the kernel of the boundary operator ∂k 
quotient by the image of the boundary operator ∂k ‒1. Our 
main focus is on relative homology groups Hk(X, A) (where 
A ⸦ X. These groups are defined using the same formula 
but with boundary maps on the quotient spaces Ck(X)/ 
Ck(A) → Ck ‒1 (X)/ Ck ‒1 (A) . 

The shape of X can be more accurately described 
using PH, which is a concept that incorporates multiple 
scales of homology. PH is computed through a sequence 
of nested spaces connected by inclusions, known as 
a filtration. That is, we can regard the finite sequence 

. On the other hand, LPH 
focuses on the local structure of the data. The k-th local 
homology group of X at a point  is defined as the 
relative homology group Hk(X, X ‒ x0). Alternatively, it can 
be defined as the limit of the homology of X with respect to 
all elements except a gradually decreasing neighbourhood 
around x, represented by the expression  
, where Ur is a neighbourhood of x0 with a radius of r (Fasy 
& Wang 2016). 

FIGURE 2. Example of level 2 ego network of a protein. The ego protein acted as the 
centre of the neighbourhood, marked by the green node
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From a network perspective, these definitions have 
been revised using network terminologies. In this study, the 
variable X has been replaced by a graph object, specifically 
a weighted network denoted as G = (V, E, W) such that 
V is a set of nodes, E is a set of edges with W is set of  
non-negative real values assigned on every single edge. The 
neighbourhood graph is defined as the induced subgraph 
consisting of all nodes located within a fixed number of 
graph-theoretic steps from the chosen node. The detailed 
process of computing and extracting topological features 
of the neighbourhood network is described in Figure 3.

For every single neighbourhood network, we used the 
Laplacian approach to convert the adjacency matrix into 
a distance matrix before embedding it into metric space. 
This is because the weights in the adjacency matrix are 
based on the MI score. The MI score does not satisfy metric 
properties such as the triangle inequality, so the adjacency 
matrix must be converted into a metric distance matrix 
before constructing the filtration. Prior to computing the 
LPH, we used Commute-Time Distance (CTD) to represent 
the neighbourhood adjacency matrix of the node. The 
formula for CTD for any pair of nodes x and y is given by:

such that  is the generalised eigenvalues and 
 is the generalised eigenvector obtained from 

the Laplacian matrix of the PPIN, and V is the number of 
proteins in the PPIN (Hajij et al. 2018). Every pair of CTD 
distances of two proteins is recorded and represented in a 
distance matrix used to compute PH.

As mentioned, filtration is a process of extracting 
topological components from network data. Vietoris-Rips 
(VR) filtration is suitable for undirected and weighted 

networks and is defined as follows (Aktas, Akbas & El 
Fatmaoui 2019):
Definition 1. Consider an undirected and unweighted 
graph G = (V, E) with the weight function  
defined on E, and Gδ = (Vδ, Eδ) ⸦ G is a subgraph of G 
with Vδ = V and  containing edges with weight 
less than or equal to δ for any . For any , the 
VR complex is the simplicial complex of Gδ, Clδ, and the 
filtration is defined as .

In other words, this filtration begins with the vertex 
set. Next, we rank edge weights from wmin to wmax, and 
we let the parameter δ increase from wmin to wmax. Each 
step involves adding edges and reforming the simplicial 
complex of the thresholded subgraph Gδ. This construction 
produces VR filtration in the network.

This study focuses on using LPH to identify up to 
1-D topological components in a given dataset, which 
corresponds to the computation of H0 and H1 only. The 
0-dimensional topological components are commonly 
referred to as connected components. On the other hand, 
1-D topological components refer to any loop-like or hole-
like structures that exist in the network, and 2-D topological 
components are represented by the void structure of the 
network. Usually, 2-D topological components are omitted 
as it is difficult to obtain this structure unless the network is 
high in density (Aktas, Akbas & El Fatmaoui 2019). Figure 
4 displays several examples of topological components. 

As the filtration process progresses, each H0 and H1 
topological component that is captured will be returned as a 
barcode. This barcode represents the lines, and the length of 
each line corresponds to the persistency of the topological 
component. The lifetime of topological components 
in a network can be calculated by subtracting the birth 
time from the death time of each component. Besides, a 
Persistent Diagram (PD) is a graphical representation that 
illustrates the birth and death of topological components. 
Although both barcodes and persistence diagrams contain 

FIGURE 3. Flow of computing the LPH and extracting topological features
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the same information, this study uses persistence diagrams 
exclusively for all subsequent analyses. Figure 5 illustrates 
the example of a simple network along with the VR process 
with barcodes and PD representation.

In this study, we will initially analyse the 
neighbourhood network to gain a deeper understanding 
of its properties. The lifetime of topological components 
is one of the first characteristics of LPH that are needed 
for the analysis. Subsequently, we use a PD to identify the 
proteins associated with ageing.

LOCAL TOPOLOGICAL CHANGE

The identification of age-related proteins will be 
conducted separately based on gender. We generated 
the neighbourhood networks for every protein in adult 
and elderly PPINs. For every protein, we obtained the 
PD resulting from both adult and elderly PPINs for 
computation. Given two persistence diagrams X and Y 
obtained from the neighbourhood network of the protein in 
both adult and elderly PPIN, respectively, we can calculate 

the similarity (or dissimilarity) between the topological 
components using the Wasserstein distance. The formula 
for Wasserstein distance, Wq is as follows:

such that η is the bijection between points in the diagrams. 
In this study, the value of q is 2 (Hajij et al. 2018). In other 
words, the Wasserstein distance quantifies persistence 
diagram similarity by considering the total distance 
between the matched pair of points. 

Subsequently, age-related proteins were identified by 
selecting proteins whose Wasserstein distances fall within 
the 90th percentile of the distribution. Proteins in this range 
are considered to exhibit the largest topological differences 
between adult and elderly PPINs. Since there is no 
established threshold for determining when a topological 
change becomes biologically significant, the 90th percentile 
was used as a practical and systematic cutoff to capture 
proteins with notably high variation.

FIGURE 4. Example of topological components. From left: 0-D (connected components), 
1-D (loop-like structure), and 2-D (void) topological components

FIGURE 5. Example of (a) network with weight, (b) VR filtration process on the network, and (c) PD, 
the graphical representation of barcodes, with birth filtration value as the x-axis and death filtration 

value as the y-axis
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For example, if a network contains 1,200 proteins, the 
Wasserstein distances are first arranged in ascending order. 
The top 90th percentile of these values, corresponding to 
the highest 120 proteins, are then selected. Proteins within 
this group are regarded as having substantial differences in 
their neighbourhood topology across age groups and are 
prioritised for further biological interpretation.

AGE-RELATED PROTEIN CHARACTERIZATION  
AND VALIDATIONS

After potential age-related proteins had been identified 
using LPH, the next step involved verifying their essentiality 
in relation to ageing. The list of proteins associated with 
ageing was retrieved from the Human Ageing Genomics 
Resource (HAGR) (De Magalhães & Toussaint 2004). 
More than 800 age-related proteins were identified, 
including proteins linked to longevity, cellular senescence 
and ageing-related genetic pathways (Budovsky et al. 
2013; de Magalhães et al. 2009; Tacutu et al. 2018, 2013).

In addition, information on neurodegenerative 
diseases was obtained from the Disease Ontology 
database. The analysis focused on the relationship between 
proteins with high local topological differences between 
age groups, as determined through LPH, and several major 
neurodegenerative conditions. These include Huntington’s 
disease, Parkinson’s disease, Alzheimer’s disease and 
dementia (Piñero et al. 2020).

RESULTS

This section will elaborate on the properties of all four 
PPINs to get the basic ideas of the overall network structure 
before further discussion on the local network topology. 
The properties of the network are included in Table 1.

In comparison, the number of nodes and edges 
decreased between age classes for male PPIN while 
growing for female PPIN. This led to a decrease in network 
density for male PPINs. Even when the number of nodes 
and edges for female PPIN grows, the density of PPIN 
across age groups decreases. This suggests that PPIN 
organisation undergoes measurable structural shifts with 
age (Corriveau-Lecavalier et al. 2023).

The clustering coefficient is another observable 
property. Across age groups, the Global Clustering 
Coefficient (GCC) values for both male and female PPINs 
are decreasing. There are several causes contributing 
to the drop in clustering coefficient values, as stated 
herewith: (a) Decrease local connectivity. The clustering 
coefficient is calculated primarily using the number of 
triangles. The decrease in local connectivity in the network 
can be attributed to the nodes’ connections, which create 
fewer triangles or closed loops, and (b) Modularity 
changes. The clustering coefficient is closely related to 
network modularity, meaning the network’s degree can 
be separated into distinct modules or communities. As a 
result, the elderly PPIN’s modular partitioning or network 
structure is less modular than adults. This explanation 
is also consistent with the proportion of triangles in the 
network between adult and elderly PPINs (Erciyes 2023). 
a) Network evolution and reconfiguration. Networks, 
especially biological networks, are dynamic entities. Thus, 
the PPIN’s transformation has been demonstrated to change 
over time, as evidenced by the number of nodes and edges 
in both male and female PPINs. The number of proteins 
expressed is not the only element that influences evolution. 
The number and weight of edges are also important 
considerations, which may result in a drop in clustering 
coefficient value due to an alteration in protein interaction 
(Teulière et al. 2023).

While global network analysis provides an overview 
of the overall PPIN, node-level analysis is required to 
understand the precise roles and functions of individual 
proteins within the network. Both approaches are 
complementary and contribute to a better understanding 
cellular processes and disease molecular mechanisms. 
Based on global network change across age groups, we 
intend to study the local H0 and H1 topological features of 
each protein expressed in the network.

Identifying the proteins that contribute to changes 
in the network topology may provide additional 
characterisation of the protein. By introducing LPH into the 
study, the local ranking value is based on the subnetwork’s 
topological qualities, which include information about 
direct connections, the number of triangles and closed 
loops, as well as the edge attributes.

TABLE 1. Characteristics of all the PPIN according to gender and age class

Properties Male adult Male elderly Female adult Female elderly
Nodes 2920 2914 2869 2292
Edges 6790 6686 6622 6714
Number of triangles 3324 3165 3144 3180
Diameter 11.11000 11.11000 11.11000 11.11000
Density 0.001593 0.001575 0.001610 0.001573
Global Clustering Coefficient 0.026472 0.025862 0.026104 0.026035
Average edge weight 3.754932 3.713802 3.737985 3.714114
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LOCAL NETWORK CHARACTERIZATION

To characterise the structural dynamics surrounding each 
protein, it is important to learn more about the LPH to 
illuminate the subtle yet profound topological changes 
occurring within localised regions. Therefore, this section 
will elaborate on the persistence of the topological 
components for every protein. Since our approach is novel, 
evaluating its relevance in relation to centrality methods 
is crucial. Through a comparative analysis with existing 
centrality measures, our objective is to show how LPH 
analysis may be related to existing network centralities. 
Several network centralities involved are: 

●Degree centralities are measured by the number of 
edges a protein has with its immediate neighbours.
●Betweenness centralities, measures of the frequency 
of a protein being a mediator in pathways of other 
pairs of proteins, using the following formula 
(Brandes 2001):

such that σst(v)/ σst is the proportion of the shortest path 
between points s and t through v and the overall shortest 
path from s to t.

●The local clustering coefficient, used to determine 
the tendency of a protein to form a clique and 
calculated by dividing the number of edges between 
a protein’s neighbour by the number of edges that 
could possibly exist, in which calculated using the 
following formula:

such that LCC(v) is the local clustering coefficient of node 
v, Ev is the number of edges in between the immediate 
neighbours of v, and kv is the degree of node v (Aguilar-
Alarcón, Hernández-Gómez & Romero-Valencia 2023).

The features extracted from LPH consist of the 
number of topological components and the persistence of 
these components, which is represented by their lifetime. 
The term lifetime refers to the difference between the birth 
and death values of each topological feature. In this study, 
the topological components considered are H0 (connected 
components) and H1 (loop-like structures). The barcode 
serves as a visual representation of these lifetimes, while 
the numerical features used in the analysis are obtained 
from the lifetimes themselves. These numerical features 
include the average lifetime, maximum lifetime and the 
total number of topological components. The average 
lifetime represents the mean duration of all H0 and H1  
features, whereas the maximum lifetime corresponds 

to the longest persisting feature in the neighbourhood. 
The number of topological components is determined 
by counting all bars in the barcode, which correspond to 
the total number of H0 and H1 features extracted from the 
filtration. Figure 6 displays the correlation coefficients 
among the variables, illustrating the relationships among 
different local characteristics.

The correlation analysis for every subnetwork in 
all PPINs shows a weak negative association between 
maximum and average persistence. This indicates that 
subnetworks with a longer maximum lifetime tend to 
have a shorter average lifetime. While a subnetwork 
may contain a highly persistent topological feature, it 
may also include many features with shorter persistence 
values. A moderately negative correlation was also 
observed between the average lifetime and the number of 
topological components, suggesting that subnetworks with 
fewer components tend to have longer average lifetimes. 
In contrast, the correlation between the maximum lifetime 
and the number of components was moderately positive, 
indicating that subnetworks with more components are 
more likely to contain at least one long-lasting feature.

Overall, the local topology of each protein indicated 
that proteins with high local connectivity tended to possess 
highly persistent topological features and greater variability 
in their lifetimes. From the PPIN perspective, these patterns 
are influenced by both node connectivity and the edge 
weights derived from the MI score. A persistent feature 
generally reflects strong or well-supported interactions, 
suggesting that proteins with greater local structural 
richness are more biologically relevant.

PH also offers a useful node-level characterisation 
that complements standard centrality measures such as 
degree, betweenness and the local clustering coefficient. 
The persistence of topological components captures 
structural prominence within the network. Figures 7 and 
8 show the relationship between the number of topological 
components and the degree or betweenness of each protein. 
Each point in the plot represents the level 2 ego network 
of a single protein and the horizontal axis reflects the 
centrality value of the ego protein, while the vertical axis 
captures the corresponding topological feature count.

Moreover, the local clustering coefficient, which 
measures the level of clustering or connectivity between a 
protein’s neighbouring nodes, can also be deduced from the 
persistence of H0 and H1 topological components. Proteins 
with a high average persistent of these components may 
exhibit higher local clustering coefficients, indicating 
their participation in closely connected subnetworks or 
functional modules within the PPIN. Figure 9 indicates that 
proteins with a high average persistency tend to have a low 
number of topological components. It can be demonstrated 
that proteins with a low number of topological components 
generally exhibit a higher LCC in comparison to proteins 
with a high number of topological components, as depicted 
in Figure 9. 
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Male Adult Male Elderly

Female Adult Female Elderly

FIGURE 6. Correlogram of the topological properties for every subnetwork in all four PPINs

FIGURE 7. Scatter plot representing the number of topological components in the ego network against the 
degree of the ego protein



112

FIGURE 8. Scatter plot representing the number of topological components in the ego network 
against the betweenness of the ego protein 

FIGURE 9. Scatter plot representing the number value of the local clustering coefficient of the 
proteins against the number of 1-D topological components in the neighbourhood

Overall, every subnetwork in the PPINs lies in the 
spectrum based on the number of topological components, 
where the high number of topological components 
may potentially have a high degree of centrality, high 
betweenness as well as low clustering coefficient. A 
subnetwork with a low number of topological components, 
on the other hand, may have a low degree, low betweenness 
centrality, and high topological persistency. 

These results highlight the usefulness of PH in 
capturing important information about local network 
topology. This leads to a thorough understanding of PPINs 
and their biological importance in terms of identifying the 
dynamic change of local topology. The study’s goal is to 
identify any topological changes via Wasserstein distance 
that may be associated with age-related properties.

LOCAL TOPOLOGICAL CHANGE OF PROTEINS  
PPINS AND DISEASE ASSOCIATION

For each protein expressed in the male and female PPINs, 
topological information was extracted from its persistence 
diagram (PD). The PD obtained from the adult PPIN was 
compared with the PD obtained from the elderly PPIN for 
the same protein. The Wasserstein distance was used to 
measure the dissimilarity between the two PDs. In cases 
where a protein was not present in either the adult or 
the elderly PPIN, one of the PDs was empty. When this 
occurred, the empty PD was compared to the diagonal by 
matching each point in the existing PD to its projection 

on the diagonal. For example, a feature with birth 0.3 and 
death 0.8 would be matched to the diagonal point (0.3, 0.3) 
(Cohen-Steiner, Edelsbrunner & Harer 2007; Dey, Shi & 
Wang 2015).

Once the Wasserstein distance for each protein 
had been obtained, the protein names were matched to 
entries in the DisGeNET disease ontology database (de 
Magalhães et al. 2009). Each protein was then assigned 
the corresponding Gene Disease Association (GDA) values 
provided by DisGeNET. These values represent the level 
of evidence supporting the association between a gene and 
a disease.

The analysis focused on four neurodegenerative 
diseases, namely Alzheimer’s disease, Parkinson’s 
disease, Huntington’s disease and dementia. The GDA 
score for each protein was retrieved for all four diseases.  
Figure 10 illustrates the relationship between the 
Wasserstein distance and the GDA score for these 
neurodegenerative diseases.

We expect that proteins exhibiting substantial 
variations in their structure will be strongly correlated to 
Neurological Diseases (NDs) in both males and females. 
Nevertheless, proteins with high GDA scores do not always 
demonstrate correspondingly high Wasserstein distances. 
Thus, there is a possibility that local connectivity may vary 
or remain constant with age. This also implies that several 
proteins associated with ND have a topological structure 
in the subnetwork that remains relatively stable across 
different age groups.
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However, it is crucial to consider external variables 
when examining this finding. For example, while the 
general topological structure may remain the same, there 
may still be changes in other factors, such as protein 
expression levels or post-translational modifications, that 
contribute to the progression of disease (Dong et al. 2023; 
Hwang, Lee & Kho 2022; Kurtishi et al. 2019). In addition, 
a thorough study is needed to determine why there are no 
big changes in the structural differences between protein 
networks in young and older people linked to age-related 
diseases.

By focusing on the 90th percentile of proteins with 
the most pronounced topological changes, we can identify 
potential candidates that may play important roles in age-
related biological processes. To support this approach, 
information from the GenAge and LongevityMap 
databases in the HAGR resource was used as external 
evidence (de Magalhães et al. 2009). The analysis initially 
aimed to detect proteins exhibiting substantial topological 
shifts between age groups, with the Wasserstein distance 
used to quantify the degree of dissimilarity in local network 
structure.

For each gender, the Wasserstein distances between 
the adult and elderly PPINs were computed for all proteins 
expressed in either age group. The 90th percentile of these 
distances was then determined separately for males and 
females. Proteins with Wasserstein distance values at or 
above their respective percentile thresholds were selected 
as candidates with the largest age-related topological 
differences. After combining the male and female candidate 
sets and removing duplicates, a total of 25 unique proteins 
were obtained. These proteins, summarised in Table 2, 
represent those with the most pronounced changes in local 
PPIN topology across age groups.

Some proteins remain highly stable in their topological 
features across a wide range of age groups, which 
contrasts with the general expectation that protein–protein 
interactions change with age. This behaviour, in which 
certain proteins maintain consistent H0 and H1 features 
derived from persistent homology, suggests a degree of 
functional resilience. For example, proteins involved 
in essential cellular processes such as DNA replication, 
transcription and translation often preserve their structural 
roles, leading to persistent H0 connectivity patterns or stable 
H1 loop-like features that reflect long-lasting functional 
organisation (Ogrodnik, Salmonowicz & Gladyshev 2019).

In addition, several ageing-related proteins may 
possess structural or functional properties that reduce 
their sensitivity to age-associated changes in the cellular 
environment. Heat shock proteins and other molecular 
chaperones, for instance, stabilise protein folding and 
maintain proteostasis. These proteins may show stable 
H0 and H1 topological patterns because their interactions 
help prevent misfolding or aggregation commonly linked 
to ageing (Hipp, Park & Hartl 2014). Other proteins may 
form durable protein complexes or functional modules 
that preserve their interaction profiles over time. Proteins 
embedded in stable complexes tend to retain similar 
neighbourhood connectivity across age groups, supporting 
the maintenance of core cellular processes as the organism 
ages (Alberts et al. 2007).

Finally, our integrative approach, which relies on 
network centrality measures and topological analysis, 
sheds light on the molecular underpinnings of ageing. We 
identify proteins with high topological variability across 
age groups, showing potential targets for future research 
and therapeutic intervention in age-related diseases. Our 
findings help advance our understanding of the complex 

FIGURE 10. Scatter plot of Wasserstein distance against GDA Score for Alzheimer’s, Parkinson’s, 
Huntington’s, and Dementia for every protein according to gender 
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interplay between protein networks and ageing processes, 
paving the way for developing precision medicine 
strategies to combat age-related disorders.

CONCLUSIONS

This study applied Local Persistent Homology to protein–
protein interaction networks to characterise how local 
network structure changes with age. By focusing on level 
2 ego networks and extracting H0 and H1 features from 
persistence diagrams, we quantified age related differences 
in local topology using the Wasserstein distance. These 
topological features were then related to standard network 
centrality measures, providing a complementary node level 
characterisation of proteins within PPINs.

The results showed that proteins with many 
topological components in their neighbourhoods tend to 
have higher degree and betweenness centrality but lower 
local clustering coefficients. In contrast, proteins embedded 
in simpler neighbourhoods with fewer components often 
display higher average persistence and higher clustering, 

TABLE 2. List of age-related proteins that exhibit high topological change from adult to elderly PPINs

UniprotID Gender Sources
O00206 Both Longevity Map
O14920 Male Gene Age
O43464 Female Gene Age
O75771 Female Longevity Map
O95229 Both Longevity Map
P00533 Male Gene Age
P01137 Female Both
P02649 Both Both
P02654 Male Longevity Map
P09601 Female Longevity Map
P10599 Male Gene Age
P23025 Male Gene Age
P25445 Both Both
P27695 Female Gene Age
P42229 Both Gene Age
P42345 Female Both
P45984 Male Gene Age
P50402 Male Gene Age
P61586 Female Longevity Map
P63165 Male Gene Age
Q08050 Both Gene Age
Q09472 Female Gene Age
Q8N122 Female Longevity Map
Q92889 Male Gene Age

suggesting the presence of more stable and tightly organised 
local structures. These findings indicate that LPH can show 
aspects of local organisation that are not fully captured by 
degree, betweenness or clustering coefficient alone.

By combining LPH based measurements with 
gene and disease association databases, we identified 
25 unique proteins that exhibit pronounced age-related 
topological changes, including several associated with 
neurodegenerative diseases. At the same time, some 
proteins showed stable H0 and H1 patterns across age 
groups, which may reflect functional resilience in core 
cellular processes. Together, these observations suggest 
that both highly variable and structurally stable proteins 
can be important for understanding ageing mechanisms.

Future work could extend this framework by 
incorporating additional biological information, such 
as expression levels or post translational modifications, 
and by applying LPH to other age related or disease 
specific PPINs. Overall, this study demonstrates that local 
persistent homology provides a useful and interpretable 
tool for studying age related changes in protein interaction 
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networks and for generating hypotheses about proteins 
that may play key roles in ageing and age associated 
diseases. These results demonstrate that LPH provides a 
powerful complementary framework for uncovering subtle 
molecular patterns associated with ageing and disease.
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