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ABSTRACT

Ageing is a complex biological process that gradually alters cellular function and patterns of protein interaction. Standard
network-based measures such as degree, betweenness and clustering coefficient are widely used in protein—protein
interaction networks (PPINs), but these metrics may overlook subtle changes within local neighbourhoods. This study
applies Local Persistent Homology (LPH) to characterise age-related differences in the local topology of PPINs, providing
structural information that is not captured through global or node-level analyses. For each protein, a level 2 ego network is
constructed and its /, and H, features are summarised using persistence diagrams (PDs). The Wasserstein distance between
PDs from adult and elderly networks is then computed to quantify topological variation across age groups. The Wasserstein
distance for each protein was compared with its degree, betweenness, and local clustering coefficient to examine how
local topological structure relates to standard centrality measures. Proteins with many topological components tend to
exhibit higher degree and betweenness but lower clustering, while proteins in simpler neighbourhoods show longer average
persistence and more stable structural patterns. By integrating LPH results with gene-disease association data, 25 proteins
with notable age-related topological differences are identified, including several associated with neurodegenerative
diseases. Overall, LPH deepens the analysis of PPIN architecture by exposing subtle, age-linked structural patterns that
remain undetected using network centralities.
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ABSTRAK

Penuaan merupakan suatu proses biologi kompleks yang mengubah fungsi sel dan corak interaksi protein secara
beransur-ansur. Pengukuran rangkaian sedia ada seperti pemusatan darjah, pengantaraan dan pekali gugusan tempatan
digunakan dalam rangkaian interaksi protein—protein (RIPP), namun metrik ini mungkin tidak mampu menangkap
perubahan halus yang berlaku dalam kejiranan tempatan. Kajian ini menggunakan Homologi Gigih Tempatan (HGT)
untuk mencirikan perbezaan berkaitan usia dalam topologi tempatan RIPP, sekali gus menyediakan maklumat struktur
yang tidak dapat ditangkap melalui analisis peringkat global atau nod. Bagi setiap protein, rangkaian ego aras 2 dibina
dan ciri H, serta H, diringkaskan melalui rajah gigih (PD). Jarak Wasserstein antara PD bagi rangkaian dewasa dan warga
emas kemudiannya dikira untuk mengukur variasi topologi merentas kumpulan umur. Nilai jarak Wasserstein bagi setiap
protein dibandingkan dengan pemusatan darjah, pengantaraan dan pekali gugusan tempatan untuk menilai hubungan
antara struktur topologi tempatan dan pengukuran rangkaian tempatan. Protein dengan komponen topologi yang tinggi
cenderung mempunyai nilai pemusatan darjah dan pengantaraan yang lebih tinggi tetapi pekali gugusan yang lebih rendah,
manakala protein dalam kejiranan yang lebih ringkas menunjukkan purata jangka hayat yang lebih panjang dan struktur
yang lebih stabil. Dengan menggabungkan hasil HGT bersama data hubungan gen-penyakit, sebanyak 25 protein dikenal
pasti menunjukkan perbezaan topologi berkaitan usia yang ketara, termasuk beberapa yang berkaitan dengan penyakit
neurodegeneratif. Secara keseluruhannya, HGT memperkukuh analisis struktur RIPP dengan mendedahkan pola halus
yang berkait dengan usia, yang tidak dapat dikesan menggunakan pemusatan rangkaian.

Kata kunci: Homologi gigih tempatan; pemusatan rangkaian; penuaan
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INTRODUCTION

Ageing is recognised as a complex biological process
that involves a gradual decline in physiological function
and an increased susceptibility to age-related diseases.
These changes arise through a range of molecular, cellular
and systemic alterations that occur throughout the body
(Liu et al. 2019; Ni et al. 2022). At the cellular level,
ageing influences protein behaviour and disrupts normal
biological activity. The process is also shaped by genetic,
environmental and lifestyle factors, which reflects its
multifactorial nature (Partridge, Deelen & Slagboom
2018). Understanding the molecular mechanisms involved
in ageing is therefore important for supporting healthy
ageing and reducing disease risk.

Protein—protein interaction networks (PPINs) provide
a useful representation of how proteins interact within
the cell. By describing proteins as nodes and interactions
as edges, PPINs make it possible to examine signalling
pathways, regulatory processes and functional modules
(Mooney, Morgan & McAuley 2016). When PPINs
are studied across different age groups, they may show
key proteins and pathways involved in age-associated
functional decline or disease development (Calabrese,
Molzahn & Mayor 2022).

Several commonly used analytical strategies have
been applied to identify age-related proteins in PPING.
These include network-centric strategies such as
functional enrichment and standard centrality measures,
and standard network centrality measures such as degree,
betweenness and closeness (Ashtiani et al. 2018; Faisal,
Zhao & Milenkovic 2015). Such measures quantify
different aspects of protein importance, including
connectivity, communication flow and proximity to other
nodes. They have been shown to be helpful for detecting
influential proteins associated with biological ageing
(Faisal & Milenkovi¢ 2014; Syukor & Sakhinah 2019).

Changes in network connectivity and structure also
contribute to the identification of age-related proteins.
As protein interactions can shift over time, these changes
may be reflected through differences in network topology,
which includes the arrangement of nodes, edges, local
clusters and small-scale structural features (Faisal &
Milenkovi¢ 2014; Teuliére et al. 2023). Although node-level
centrality analysis has been widely used to rank proteins
according to their connectivity or clustering properties
(Kosch & Schreiber 2004), these metrics do not fully capture
neighbourhood-level structural variation. Some centrality
measures may also be sensitive to small perturbations in
the network and may implicitly assume uniform influence
across nodes (Aktas, Akbas & El Fatmaoui 2019). These
limitations highlight the need to incorporate additional
structural information when analysing PPINs.

Topological data analysis (TDA) has emerged as a
useful framework for describing structural patterns in
complex data. One of its main tools, Persistent Homology
(PH), captures topological features such as connected

components and loop-like structures across multiple
scales (Aktas, Akbas & El Fatmaoui 2019). PH has been
successfully applied to biological networks, including
brain networks, PPINs and genetic interaction studies
(Hazram, Bakar & Razak 2024; Ignacio & Darcy 2019;
Li et al. 2021; Song 2023). Its ability to identify subtle
structural patterns makes it well-suited for the analysis of
biological networks.

In this study, PH is applied in a local context through
Local Persistent Homology (LPH). Instead of examining
the global PPIN, LPH focuses on neighbourhood
subnetworks to characterise the local topology surrounding
each protein. Both H, (connected components) and H,
(loop-like  structures) are extracted from these
neighbourhoods, and persistence diagrams (PDs) are used
to represent their topological characteristics. Age-related
differences are then quantified using the Wasserstein
distance to measure the dissimilarity between PDs obtained
from adult and elderly PPINs.

Overall, this study aims to characterise age-dependent
changes in local PPIN topology and identify proteins
exhibiting pronounced structural variation across age
groups. By integrating LPH-derived information with
standard centrality measures and gene—disease associations,
this approach offers a complementary perspective for
understanding ageing-related molecular changes.

PERSISTENT HOMOLOGY OF BIOLOGICAL NETWORKS

Persistent Homology (PH) is used to capture intrinsic
geometric and structural properties of data by
quantifying the persistence of topological features across
multiple spatial scales. In biological network analysis,
PH offers several advantages over standard network
analysis methods. It enables complex network structures
to be examined in a consistent manner and allows
topological features to be detected even when they are
not easily observed through raw network representations
(Masoomy et al. 2021). Specifically, PH facilitates the
identification of robust and biologically meaningful
patterns, such as strongly connected clusters and stable
structural motifs within biological networks (Islambekov
& Gel 2019).

An additional advantage of PH is that it is largely
unaffected by specific choices of network representation or
parameter settings. This allows biological networks to be
analysed in a more objective manner, with results derived
from topological properties rather than assumptions about
node influence or network density.

The PH workflow generally consists of three main
components: data preparation, construction of a filtration,
and extraction of topological features. The complete process
used in this study is described in detail in the Materials and
Methods section. Understanding how ageing affects PPIN
topology is important, as changes in protein interactions
have been linked to altered physiological functions and
increased risk of age-related diseases (Faisal & Milenkovié¢



2014; Faisal et al. 2015; Liu et al. 2019). Investigating
these topological changes across different age groups may
therefore provide useful insight for disease detection and
drug targeting (Aktas, Akbas & El Fatmaoui 2019).

In this study, a computational framework based on PH
is developed to analyse PPINs and identify proteins that
exhibit notable age-related topological variation. These
proteins are subsequently characterised based on their
potential biological relevance and disease associations.

MATERIALS AND METHODS

The whole process of this study, from data collection to
analysis, is depicted in Figure 1.

DATA PREPARATION AND PPIN FORMATION

The protein list used in this study was obtained from
Berchtold et al. (2008), consisting of wet-lab samples from
55 individuals. A total of 172 probe arrays were available for
protein expression, and these were categorised according
to gender and age group. The age groups were defined
as follows: a) The adult age group consists of individuals
between the ages of 20 to 69 and b) Individuals between
the ages of 70 and 99 are considered elderly.

The list of interacting proteins, which serves as the set
of network edges, was retrieved from the IntAct database
(del Toro et al. 2022). IntAct contains detailed information
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on protein—protein interactions, including interaction
type, supporting references and a Mutual Information
(MI) score. The MI score ranges from 0 to 1 and reflects
interaction confidence by incorporating the frequency of
observed interactions, level of supporting evidence and
experimental methodology. Higher values indicate greater
experimental confidence and reproducibility. A total of
81,847 human protein—protein interactions with MI scores
of 0.49 or higher were included in this study, as higher MI
values indicate greater reliability and biological relevance
(Sugis & Hermajakob 2019).

Four PPINs were constructed by merging the
expressed protein lists with the interaction data, resulting
in undirected and weighted networks, with MI scores
assigned as edge weights. Only the largest connected
component of each network was considered for further
analysis, as proteins within this component are more likely
to be functionally relevant and integrated within essential
biological modules (Bhowmick & Seah 2016). These
components accounted for approximately 86 percent of
the full network. Small disconnected nodes, most of which
appeared as isolated singletons, were excluded because they
lack neighbourhood structure, which prevents meaningful
local topological analysis.

The networks were constructed based on gender and
age group, producing four categories: adult male, adult
female, elderly male and elderly female. This stratification

Protein-protein
interaction data

Neighborhood network - PPIN formation
. - Subnetwork for each
formation protein
Computation of local - Use VR Filtration
. - Barcode
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related proteins persistent diagram
Protein - GenAge and
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FIGURE 1. Workflow of the study
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allows network characteristics to be examined within
specific demographic subsets. Before analysing local
neighbourhood structure, global network properties were
evaluated to establish the overall organisation of each
PPIN.

Several network-level metrics were computed,
including the number of nodes (proteins), number of
edges (interactions), network diameter, density, number of
triangles, clustering coefficient and average edge weight.
The diameter represents the longest shortest path between
any two nodes, while density measures the proportion of
possible edges that are present in the network.

Local structural features were assessed using metrics
such as the number of triangles and the clustering coefficient,
which describe the extent to which neighbouring nodes form
interconnected clusters. The global clustering coefficient
(GCC) was computed using the formula (Aguilar-Alarcon,
Hernandez-Goémez & Romero-Valencia 2023).

Number of triangles * 3

GCC=
Number of connected triples of vertices

Average edge weight was also examined to indicate the
overall strength of protein—protein interactions. Together,
these metrics provide a comprehensive description of
network behaviour across the four demographic groups.

NEIGHBOURHOOD NETWORK FORMATION

Local Persistent Homology (LPH) is defined as
the computation of PH within a localised region or
neighbourhood (Fasy & Wang 2016). The original
computation is based on the point cloud data, and hence,
H, and H, were extracted around the fixed proximity of
every single point in the point cloud data. However, in a
network, the LPH can still be computed, but in this context,
the neighbourhood of the network can be defined around a
fixed number of step(s) from every single node.

Ego level 2

Ego level 1

In this study, for every node in every network G, we
constructed a level 2 ego network. The level 2 ego network
is a subnetwork of G such that the node v €V is the centre
of the subnetwork along with its immediate neighbours
and the second neighbours from v. From now on, the
neighbourhood in this study is referred to as a level 2 ego
network of node v. The example of the neighbourhood of a
node is depicted in Figure 2.

COMPUTATION OF LOCAL PERSISTENT HOMOLOGY
AND FEATURE EXTRACTION

Homology refers to the topological characteristics of a given
space. In the context of a topological space X, the homology
groups H,, H,, and H, represent the components, holes, and
voids of X, respectively. The construction of homology
groups starts by considering a chain complex C(X) that
represents information about X. This chain complex
consists of a sequence of Abelian groups Cy(X), Ci(X),
Cy(X),... connected by homomorphisms called boundary
operators 0, : Cy(X) — C,_; (X) . The k-th homology group
H(X) is defined as the kernel of the boundary operator 0
quotient by the image of the boundary operator o, ;. Our
main focus is on relative homology groups H,(X, A) (where
A < X. These groups are defined using the same formula
but with boundary maps on the quotient spaces Cy(X)/
Cl4) - C 1 (X)/ Cr i (A) .

The shape of X can be more accurately described
using PH, which is a concept that incorporates multiple
scales of homology. PH is computed through a sequence
of nested spaces connected by inclusions, known as
a filtration. That is, we can regard the finite sequence
®=Xy,< X, €€ X, = X. On the other hand, LPH
focuses on the local structure of the data. The A-th local
homology group of X at a point Xo € X is defined as the
relative homology group Hy(X, X — xo). Alternatively, it can
be defined as the limit of the homology of X with respect to
all elements except a gradually decreasing neighbourhood
around x, represented by the expression 9_1,11 Hy (X, X\U,)
, where Ur is a neighbourhood of x, with a radius of » (Fasy
& Wang 2016).

FIGURE 2. Example of level 2 ego network of a protein. The ego protein acted as the
centre of the neighbourhood, marked by the green node



From a network perspective, these definitions have
been revised using network terminologies. In this study, the
variable X has been replaced by a graph object, specifically
a weighted network denoted as G = (¥ E, W) such that
V' is a set of nodes, F is a set of edges with W is set of
non-negative real values assigned on every single edge. The
neighbourhood graph is defined as the induced subgraph
consisting of all nodes located within a fixed number of
graph-theoretic steps from the chosen node. The detailed
process of computing and extracting topological features
of the neighbourhood network is described in Figure 3.

For every single neighbourhood network, we used the
Laplacian approach to convert the adjacency matrix into
a distance matrix before embedding it into metric space.
This is because the weights in the adjacency matrix are
based on the MI score. The MI score does not satisfy metric
properties such as the triangle inequality, so the adjacency
matrix must be converted into a metric distance matrix
before constructing the filtration. Prior to computing the
LPH, we used Commute-Time Distance (CTD) to represent
the neighbourhood adjacency matrix of the node. The
formula for CTD for any pair of nodes x and y is given by:

1
CTDGey) = | ) 1 (#i0)— i)’

i=1

such that {ll}lzln_l is the generalised eigenvalues and
{qbl}lﬂ,_l is the generalised eigenvector obtained from
the Laplacian matrix of the PPIN, and / is the number of
proteins in the PPIN (Hajij et al. 2018). Every pair of CTD
distances of two proteins is recorded and represented in a
distance matrix used to compute PH.

As mentioned, filtration is a process of extracting
topological components from network data. Vietoris-Rips
(VR) filtration is suitable for undirected and weighted
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networks and is defined as follows (Aktas, Akbas & El
Fatmaoui 2019):

Definition 1. Consider an undirected and unweighted
graph G = (¥, E) with the weight function W:V XV - R
defined on E, and G; = (V;, Es) < G is a subgraph of G
with V; = V and Es € E containing edges with weight
less than or equal to J for any § € R. For any § € R, the
VR complex is the simplicial complex of Gy, Cls, and the
filtration is defined as {Cl(Gs) = Cl(Gg/)}o<s<5.

In other words, this filtration begins with the vertex
set. Next, we rank edge weights from w,,;, to w,,, and
we let the parameter J increase from w,,;, to w,,. Each
step involves adding edges and reforming the simplicial
complex of the thresholded subgraph G;. This construction
produces VR filtration in the network.

This study focuses on using LPH to identify up to
1-D topological components in a given dataset, which
corresponds to the computation of H, and H, only. The
0-dimensional topological components are commonly
referred to as connected components. On the other hand,
1-D topological components refer to any loop-like or hole-
like structures that exist in the network, and 2-D topological
components are represented by the void structure of the
network. Usually, 2-D topological components are omitted
as it is difficult to obtain this structure unless the network is
high in density (Aktas, Akbas & El Fatmaoui 2019). Figure
4 displays several examples of topological components.

As the filtration process progresses, each H, and H,
topological component that is captured will be returned as a
barcode. This barcode represents the lines, and the length of
each line corresponds to the persistency of the topological
component. The lifetime of topological components
in a network can be calculated by subtracting the birth
time from the death time of each component. Besides, a
Persistent Diagram (PD) is a graphical representation that
illustrates the birth and death of topological components.
Although both barcodes and persistence diagrams contain

| Neighbourhood Distance | Vlgzogls Barcodes
etwork matrix 3l [ e
| n filtration
| v B
| . . Lifetime, Feature
Chara;terlzatlon Number of extraction Persistent
of neighbourhood |- . :
| topological for Diagram
network :
| components analysis

| | TopoLoeICAL
CHANGE

FIGURE 3. Flow of computing the LPH and extracting topological features
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the same information, this study uses persistence diagrams
exclusively for all subsequent analyses. Figure 5 illustrates
the example of a simple network along with the VR process
with barcodes and PD representation.

In this study, we will initially analyse the
neighbourhood network to gain a deeper understanding
of its properties. The lifetime of topological components
is one of the first characteristics of LPH that are needed
for the analysis. Subsequently, we use a PD to identify the
proteins associated with ageing.

LOCAL TOPOLOGICAL CHANGE

The identification of age-related proteins will be
conducted separately based on gender. We generated
the neighbourhood networks for every protein in adult
and elderly PPINs. For every protein, we obtained the
PD resulting from both adult and elderly PPINs for
computation. Given two persistence diagrams X and Y
obtained from the neighbourhood network of the protein in
both adult and elderly PPIN, respectively, we can calculate

the similarity (or dissimilarity) between the topological
components using the Wasserstein distance. The formula
for Wasserstein distance, W, is as follows:

1/q
N _ q
W,(X,Y) = U:’?—f’Y E |12 — ()]s

xEX

such that # is the bijection between points in the diagrams.
In this study, the value of ¢ is 2 (Hajij et al. 2018). In other
words, the Wasserstein distance quantifies persistence
diagram similarity by considering the total distance
between the matched pair of points.

Subsequently, age-related proteins were identified by
selecting proteins whose Wasserstein distances fall within
the 90" percentile of the distribution. Proteins in this range
are considered to exhibit the largest topological differences
between adult and elderly PPINs. Since there is no
established threshold for determining when a topological
change becomes biologically significant, the 90" percentile
was used as a practical and systematic cutoff to capture
proteins with notably high variation.
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FIGURE 4. Example of topological components. From left: 0-D (connected components),
1-D (loop-like structure), and 2-D (void) topological components

[o]

0.92

[N

0.45

0.55

Death of topological components

0.2 0.4 0.6

Filtration parameter &

0.8 10

Birth of topological components

FIGURE 5. Example of (a) network with weight, (b) VR filtration process on the network, and (c) PD,
the graphical representation of barcodes, with birth filtration value as the x-axis and death filtration
value as the y-axis



For example, if a network contains 1,200 proteins, the
Wasserstein distances are first arranged in ascending order.
The top 90" percentile of these values, corresponding to
the highest 120 proteins, are then selected. Proteins within
this group are regarded as having substantial differences in
their neighbourhood topology across age groups and are
prioritised for further biological interpretation.

AGE-RELATED PROTEIN CHARACTERIZATION
AND VALIDATIONS

After potential age-related proteins had been identified
using LPH, the next step involved verifying their essentiality
in relation to ageing. The list of proteins associated with
ageing was retrieved from the Human Ageing Genomics
Resource (HAGR) (De Magalhdes & Toussaint 2004).
More than 800 age-related proteins were identified,
including proteins linked to longevity, cellular senescence
and ageing-related genetic pathways (Budovsky et al.
2013; de Magalhaes et al. 2009; Tacutu et al. 2018, 2013).

In addition, information on neurodegenerative
diseases was obtained from the Disease Ontology
database. The analysis focused on the relationship between
proteins with high local topological differences between
age groups, as determined through LPH, and several major
neurodegenerative conditions. These include Huntington’s
disease, Parkinson’s disease, Alzheimer’s disease and
dementia (Pifiero et al. 2020).

RESULTS

This section will elaborate on the properties of all four
PPINSs to get the basic ideas of the overall network structure
before further discussion on the local network topology.
The properties of the network are included in Table 1.

In comparison, the number of nodes and edges
decreased between age classes for male PPIN while
growing for female PPIN. This led to a decrease in network
density for male PPINs. Even when the number of nodes
and edges for female PPIN grows, the density of PPIN
across age groups decreases. This suggests that PPIN
organisation undergoes measurable structural shifts with
age (Corriveau-Lecavalier et al. 2023).
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The clustering coefficient is another observable
property. Across age groups, the Global Clustering
Coefficient (GCC) values for both male and female PPINs
are decreasing. There are several causes contributing
to the drop in clustering coefficient values, as stated
herewith: (a) Decrease local connectivity. The clustering
coefficient is calculated primarily using the number of
triangles. The decrease in local connectivity in the network
can be attributed to the nodes’ connections, which create
fewer triangles or closed loops, and (b) Modularity
changes. The clustering coefficient is closely related to
network modularity, meaning the network’s degree can
be separated into distinct modules or communities. As a
result, the elderly PPIN’s modular partitioning or network
structure is less modular than adults. This explanation
is also consistent with the proportion of triangles in the
network between adult and elderly PPINs (Erciyes 2023).
a) Network evolution and reconfiguration. Networks,
especially biological networks, are dynamic entities. Thus,
the PPIN’s transformation has been demonstrated to change
over time, as evidenced by the number of nodes and edges
in both male and female PPINs. The number of proteins
expressed is not the only element that influences evolution.
The number and weight of edges are also important
considerations, which may result in a drop in clustering
coefficient value due to an alteration in protein interaction
(Teuliere et al. 2023).

While global network analysis provides an overview
of the overall PPIN, node-level analysis is required to
understand the precise roles and functions of individual
proteins within the network. Both approaches are
complementary and contribute to a better understanding
cellular processes and disease molecular mechanisms.
Based on global network change across age groups, we
intend to study the local H, and H, topological features of
each protein expressed in the network.

Identifying the proteins that contribute to changes
in the network topology may provide additional
characterisation of the protein. By introducing LPH into the
study, the local ranking value is based on the subnetwork’s
topological qualities, which include information about
direct connections, the number of triangles and closed
loops, as well as the edge attributes.

TABLE 1. Characteristics of all the PPIN according to gender and age class

Properties Male adult  Male elderly ~ Female adult  Female elderly
Nodes 2920 2914 2869 2292
Edges 6790 6686 6622 6714
Number of triangles 3324 3165 3144 3180
Diameter 11.11000 11.11000 11.11000 11.11000
Density 0.001593 0.001575 0.001610 0.001573
Global Clustering Coefficient  0.026472 0.025862 0.026104 0.026035
Average edge weight 3.754932 3.713802 3.737985 3.714114
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LOCAL NETWORK CHARACTERIZATION

To characterise the structural dynamics surrounding each
protein, it is important to learn more about the LPH to
illuminate the subtle yet profound topological changes
occurring within localised regions. Therefore, this section
will elaborate on the persistence of the topological
components for every protein. Since our approach is novel,
evaluating its relevance in relation to centrality methods
is crucial. Through a comparative analysis with existing
centrality measures, our objective is to show how LPH
analysis may be related to existing network centralities.
Several network centralities involved are:

eDegree centralities are measured by the number of
edges a protein has with its immediate neighbours.
eBetweenness centralities, measures of the frequency
of a protein being a mediator in pathways of other
pairs of proteins, using the following formula
(Brandes 2001):

BC(w) = z 75 (v)

(2]
st
s¥FtFV

such that o,(v)/ st is the proportion of the shortest path
between points s and ¢ through v and the overall shortest
path from s to z.

oThe local clustering coefficient, used to determine
the tendency of a protein to form a clique and
calculated by dividing the number of edges between
a protein’s neighbour by the number of edges that
could possibly exist, in which calculated using the
following formula:

2E,

LCC(v) = ———
W =it D
such that LCC(v) is the local clustering coefficient of node
v, E, is the number of edges in between the immediate
neighbours of v, and £, is the degree of node v (Aguilar-
Alarcon, Hernandez-Goémez & Romero-Valencia 2023).
The features extracted from LPH consist of the
number of topological components and the persistence of
these components, which is represented by their lifetime.
The term lifetime refers to the difference between the birth
and death values of each topological feature. In this study,
the topological components considered are H, (connected
components) and H, (loop-like structures). The barcode
serves as a visual representation of these lifetimes, while
the numerical features used in the analysis are obtained
from the lifetimes themselves. These numerical features
include the average lifetime, maximum lifetime and the
total number of topological components. The average
lifetime represents the mean duration of all A, and H,
features, whereas the maximum lifetime corresponds

to the longest persisting feature in the neighbourhood.
The number of topological components is determined
by counting all bars in the barcode, which correspond to
the total number of H, and H, features extracted from the
filtration. Figure 6 displays the correlation coefficients
among the variables, illustrating the relationships among
different local characteristics.

The correlation analysis for every subnetwork in
all PPINs shows a weak negative association between
maximum and average persistence. This indicates that
subnetworks with a longer maximum lifetime tend to
have a shorter average lifetime. While a subnetwork
may contain a highly persistent topological feature, it
may also include many features with shorter persistence
values. A moderately negative correlation was also
observed between the average lifetime and the number of
topological components, suggesting that subnetworks with
fewer components tend to have longer average lifetimes.
In contrast, the correlation between the maximum lifetime
and the number of components was moderately positive,
indicating that subnetworks with more components are
more likely to contain at least one long-lasting feature.

Overall, the local topology of each protein indicated
that proteins with high local connectivity tended to possess
highly persistent topological features and greater variability
in their lifetimes. From the PPIN perspective, these patterns
are influenced by both node connectivity and the edge
weights derived from the MI score. A persistent feature
generally reflects strong or well-supported interactions,
suggesting that proteins with greater local structural
richness are more biologically relevant.

PH also offers a useful node-level characterisation
that complements standard centrality measures such as
degree, betweenness and the local clustering coefficient.
The persistence of topological components captures
structural prominence within the network. Figures 7 and
8 show the relationship between the number of topological
components and the degree or betweenness of each protein.
Each point in the plot represents the level 2 ego network
of a single protein and the horizontal axis reflects the
centrality value of the ego protein, while the vertical axis
captures the corresponding topological feature count.

Moreover, the local clustering coefficient, which
measures the level of clustering or connectivity between a
protein’s neighbouring nodes, can also be deduced from the
persistence of H,, and H, topological components. Proteins
with a high average persistent of these components may
exhibit higher local clustering coefficients, indicating
their participation in closely connected subnetworks or
functional modules within the PPIN. Figure 9 indicates that
proteins with a high average persistency tend to have a low
number of topological components. It can be demonstrated
that proteins with a low number of topological components
generally exhibit a higher LCC in comparison to proteins
with a high number of topological components, as depicted
in Figure 9.
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FIGURE 6. Correlogram of the topological properties for every subnetwork in all four PPINs
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Overall, every subnetwork in the PPINs lies in the
spectrum based on the number of topological components,
where the high number of topological components
may potentially have a high degree of centrality, high
betweenness as well as low clustering coefficient. A
subnetwork with a low number of topological components,
on the other hand, may have a low degree, low betweenness
centrality, and high topological persistency.

These results highlight the usefulness of PH in
capturing important information about local network
topology. This leads to a thorough understanding of PPINs
and their biological importance in terms of identifying the
dynamic change of local topology. The study’s goal is to
identify any topological changes via Wasserstein distance
that may be associated with age-related properties.

LOCAL TOPOLOGICAL CHANGE OF PROTEINS
PPINS AND DISEASE ASSOCIATION

For each protein expressed in the male and female PPINs,
topological information was extracted from its persistence
diagram (PD). The PD obtained from the adult PPIN was
compared with the PD obtained from the elderly PPIN for
the same protein. The Wasserstein distance was used to
measure the dissimilarity between the two PDs. In cases
where a protein was not present in either the adult or
the elderly PPIN, one of the PDs was empty. When this
occurred, the empty PD was compared to the diagonal by
matching each point in the existing PD to its projection

on the diagonal. For example, a feature with birth 0.3 and
death 0.8 would be matched to the diagonal point (0.3, 0.3)
(Cohen-Steiner, Edelsbrunner & Harer 2007; Dey, Shi &
Wang 2015).

Once the Wasserstein distance for each protein
had been obtained, the protein names were matched to
entries in the DisGeNET disease ontology database (de
Magalhaes et al. 2009). Each protein was then assigned
the corresponding Gene Disease Association (GDA) values
provided by DisGeNET. These values represent the level
of evidence supporting the association between a gene and
a disease.

The analysis focused on four neurodegenerative
diseases, namely Alzheimer’s disease, Parkinson’s
disease, Huntington’s disease and dementia. The GDA
score for each protein was retrieved for all four diseases.
Figure 10 illustrates the relationship between the
Wasserstein distance and the GDA score for these
neurodegenerative diseases.

We expect that proteins exhibiting substantial
variations in their structure will be strongly correlated to
Neurological Diseases (NDs) in both males and females.
Nevertheless, proteins with high GDA scores do not always
demonstrate correspondingly high Wasserstein distances.
Thus, there is a possibility that local connectivity may vary
or remain constant with age. This also implies that several
proteins associated with ND have a topological structure
in the subnetwork that remains relatively stable across
different age groups.



However, it is crucial to consider external variables
when examining this finding. For example, while the
general topological structure may remain the same, there
may still be changes in other factors, such as protein
expression levels or post-translational modifications, that
contribute to the progression of disease (Dong et al. 2023;
Hwang, Lee & Kho 2022; Kurtishi et al. 2019). In addition,
a thorough study is needed to determine why there are no
big changes in the structural differences between protein
networks in young and older people linked to age-related
diseases.

By focusing on the 90™ percentile of proteins with
the most pronounced topological changes, we can identify
potential candidates that may play important roles in age-
related biological processes. To support this approach,
information from the GenAge and LongevityMap
databases in the HAGR resource was used as external
evidence (de Magalhaes et al. 2009). The analysis initially
aimed to detect proteins exhibiting substantial topological
shifts between age groups, with the Wasserstein distance
used to quantify the degree of dissimilarity in local network
structure.

For each gender, the Wasserstein distances between
the adult and elderly PPINs were computed for all proteins
expressed in either age group. The 90" percentile of these
distances was then determined separately for males and
females. Proteins with Wasserstein distance values at or
above their respective percentile thresholds were selected
as candidates with the largest age-related topological
differences. After combining the male and female candidate
sets and removing duplicates, a total of 25 unique proteins
were obtained. These proteins, summarised in Table 2,
represent those with the most pronounced changes in local
PPIN topology across age groups.
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Some proteins remain highly stable in their topological
features across a wide range of age groups, which
contrasts with the general expectation that protein—protein
interactions change with age. This behaviour, in which
certain proteins maintain consistent A, and H, features
derived from persistent homology, suggests a degree of
functional resilience. For example, proteins involved
in essential cellular processes such as DNA replication,
transcription and translation often preserve their structural
roles, leading to persistent H, connectivity patterns or stable
H, loop-like features that reflect long-lasting functional
organisation (Ogrodnik, Salmonowicz & Gladyshev 2019).

In addition, several ageing-related proteins may
possess structural or functional properties that reduce
their sensitivity to age-associated changes in the cellular
environment. Heat shock proteins and other molecular
chaperones, for instance, stabilise protein folding and
maintain proteostasis. These proteins may show stable
H, and H, topological patterns because their interactions
help prevent misfolding or aggregation commonly linked
to ageing (Hipp, Park & Hartl 2014). Other proteins may
form durable protein complexes or functional modules
that preserve their interaction profiles over time. Proteins
embedded in stable complexes tend to retain similar
neighbourhood connectivity across age groups, supporting
the maintenance of core cellular processes as the organism
ages (Alberts et al. 2007).

Finally, our integrative approach, which relies on
network centrality measures and topological analysis,
sheds light on the molecular underpinnings of ageing. We
identify proteins with high topological variability across
age groups, showing potential targets for future research
and therapeutic intervention in age-related diseases. Our
findings help advance our understanding of the complex
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Huntington’s, and Dementia for every protein according to gender
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TABLE 2. List of age-related proteins that exhibit high topological change from adult to elderly PPINs

UniprotID Gender Sources
000206 Both Longevity Map
014920 Male Gene Age
043464 Female Gene Age
075771 Female Longevity Map
095229 Both Longevity Map
P00533 Male Gene Age
PO1137 Female Both
P02649 Both Both
P02654 Male Longevity Map
P09601 Female Longevity Map
P10599 Male Gene Age
P23025 Male Gene Age
P25445 Both Both
P27695 Female Gene Age
P42229 Both Gene Age
P42345 Female Both
P45984 Male Gene Age
P50402 Male Gene Age
P61586 Female Longevity Map
P63165 Male Gene Age
Q08050 Both Gene Age
Q09472 Female Gene Age
Q8N122 Female Longevity Map
Q92889 Male Gene Age

interplay between protein networks and ageing processes,
paving the way for developing precision medicine
strategies to combat age-related disorders.

CONCLUSIONS

This study applied Local Persistent Homology to protein—
protein interaction networks to characterise how local
network structure changes with age. By focusing on level
2 ego networks and extracting H, and H, features from
persistence diagrams, we quantified age related differences
in local topology using the Wasserstein distance. These
topological features were then related to standard network
centrality measures, providing a complementary node level
characterisation of proteins within PPINS.

The results showed that proteins with many
topological components in their neighbourhoods tend to
have higher degree and betweenness centrality but lower
local clustering coefficients. In contrast, proteins embedded
in simpler neighbourhoods with fewer components often
display higher average persistence and higher clustering,

suggesting the presence of more stable and tightly organised
local structures. These findings indicate that LPH can show
aspects of local organisation that are not fully captured by
degree, betweenness or clustering coefficient alone.

By combining LPH based measurements with
gene and disease association databases, we identified
25 unique proteins that exhibit pronounced age-related
topological changes, including several associated with
neurodegenerative diseases. At the same time, some
proteins showed stable H, and H, patterns across age
groups, which may reflect functional resilience in core
cellular processes. Together, these observations suggest
that both highly variable and structurally stable proteins
can be important for understanding ageing mechanisms.

Future work could extend this framework by
incorporating additional biological information, such
as expression levels or post translational modifications,
and by applying LPH to other age related or disease
specific PPINs. Overall, this study demonstrates that local
persistent homology provides a useful and interpretable
tool for studying age related changes in protein interaction



networks and for generating hypotheses about proteins
that may play key roles in ageing and age associated
diseases. These results demonstrate that LPH provides a
powerful complementary framework for uncovering subtle
molecular patterns associated with ageing and disease.
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