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ABSTRACT

In this paper, a new survival distribution is introduced. It is a mixture of the Gompertz distribution and three-parameter-
Lindley distribution. The statistical properties of the proposed distribution including the shape properties, cumulative 
distribution, quantile functions, moment generating function, failure rate function, mean residual function, and stochastic 
orders are studied. Moreover, a new regression model based on the proposed distribution is presented. Maximum  
likelihood estimators (MLEs) of unknown parameters are obtained via differential evolution algorithms, and simulation 
studies are conducted to evaluate the consistency of the MLEs. Finally, the proposed model and its regression model 
are applied to a real dataset and compared with other well-known models, demonstrating their superior performance, 
particularly for heavy-tailed data.
Keywords: Differential evolution algorithm; Gompertz-Lindley distribution; maximum likelihood estimation;  
regression model; structural property

ABSTRAK

Dalam kertas ini, suatu taburan survival baharu diperkenalkan. Ia adalah campuran taburan Gompertz dan taburan 
tiga parameter-Lindley. Sifat statistik bagi taburan yang dicadangkan termasuk sifat bentuk, taburan kumulatif, fungsi  
kuantil, fungsi penjanaan momen, fungsi kadar kegagalan, fungsi baki min dan susunan stokastik dikaji. Selain itu,  
model regresi baharu berdasarkan pengedaran yang dicadangkan dibentangkan. Anggaran kebolehjadian maksimum  
(MLE) bagi parameter yang tidak diketahui diperoleh melalui algoritma evolusi pembezaan, dan kajian simulasi  
dijalankan untuk menilai ketekalan MLE. Akhir sekali, model yang dicadangkan dan model regresinya digunakan pada  
set data sebenar dan dibandingkan dengan model terkenal lain, menunjukkan prestasi unggul mereka, terutamanya untuk 
data berat. 
Kata kunci: Algoritma evolusi berbeza; anggaran kebolehjadian maksimum; model regresi; sifat struktur; taburan 
Gompertz-Lindley

INTRODUCTION

The Gompertz distribution (Gavrilov & Gavrilova 2001) 
is commonly used in diverse areas such as actuarial  
science, survival analysis, and reliability engineering, 
allowing researchers and practitioners to understand 
and model complex phenomena related to mortality 
rates, time-to-event data, and system failures. In general, 
let  be a random variable following the Gompertz  
distribution with frailty parameter θ and scale parameter λ, 
with a conditional probability density function (pdf):

 (1)

The maximum likelihood methods of the parameters 
θ and λ based on random samples and progressively  

type-II censored samples were studied by Lenart (2014) and 
Ghitany, Alqallaf and Balakrishnan (2014), respectively. 
Moreover, Lenart and Missov (2016) studied the  
goodness-of-fit tests for the Gompertz distribution.

In real data analysis, the collected data are often 
heterogeneous, with various parts of the data following 
different distributions. In this case, the traditional 
single model may not meet practical needs. To obtain a 
more flexible distribution, well-established distribution 
expansion techniques such as the transmutation map 
method, distribution weighting method and mixture  
model method have been discussed. To date, numerous 
mixed Gompertz distribution models, such as the  
beta-Gompertz (Jafari, Tahmasebi & Alizadeh 2014), beta 
generalized Gompertz (Benkhelifa 2017), odd generalized 
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exponential Gompertz (El-Damcese et al. 2015), 
generalized Gompertz-generalized Gompertz (Boshi, 
Abid & Al-Noor 2019), Gompertz-Lindley (Ghitany et al. 
2019), odd log-logistic generalized Gompertz (Alizadeh 
et al. 2020), Marshall-Olkin Gompertz (Eghwerido, Ogbo 
& Omotoye 2021), generalized Gompertz (Jayakumar & 
Shabeer 2022), Gamma-Gompertz (Shama et al. 2022), 
and Gompertz-two-parameter-Lindley distributions  
(Ou, Lu & Kong 2022) have been introduced.

Since the Lindley distribution (LD) proposed by 
Lindley (1958) is a useful tool in statistical modeling 
for data with nonnegative values and decreasing hazard 
rates, in recent years, several new mixture models have 
been obtained by mixing the Gompertz distribution and 
Lindley-type distributions, which have better adaptability 
in capturing the heterogeneity of the data. Suppose that 
the frailty parameter θ in (1) follows an LD (Ghitany,  
Atieh & Nadarajah 2008) with shape parameter α, with  
pdf.

         (2)

Then, the unconditional pdf of the Gompertz‒Lindley 
(GL) distribution proposed by Ghitany et al. (2019) is  
given by

       (3)

Moreover, Shanker and Sharma (2013) proposed a 
generalized Lindley distribution with shape parameters α 
and β as follows:

 
 (4)

By using the two-parameter LD (4) to replace the LD 
in (2), Ou, Lu and Kong (2022) derived a generalized  
three-parameter GL distribution as follows:

 (5)

To date, a new generalized three-parameter LD method 
proposed by Shanker et al. (2017) and its extensions 
(Shanker, Shukla & Mishra 2017) and applications  
(Al-Omari, Ciavolino & Al-Nasser 2020; Thamer & Zine 
2023) have attracted increased research interest. The pdf 
of the model with parameters are defined as 
follows:

                              

     

(6)

Note that the pdf of the three-parameter LD in Shanker et 
al. (2017) and Xi, Lu and Liang (2024) may not satisfy  
the regularization condition of probability. To solve this 
issue, we use the parameter space  of β to 
replace the parameter space  of β in 
(6).

To obtain a new more flexible and adaptable model,  
we use the new modified three-parameter LD in (6) to 
replace the LD in (2) when combining the Gompertz 
distribution with the LD. The corresponding unconditional 
pdf of  is given by

  (7)

We refer to the new random variable X as the  
Gompertz-Three-Parameter-Lindley distribution with 
shape parameters α, β and  and scale parameter λ, which 
are denoted by . Figure 1 displays the 
pdfs of the GTHPL distributions for various values of 

 and λ. For example, with fixed  
and , increasing α leads to a distribution that 
accommodates a larger right tail. Hence, the proposed 
model is well suited for datasets where there is a  
significant right tail. Moreover, the structural properties 
and associated inference of the proposed model are  
considered. 

 STRUCTURAL PROPERTIES OF THE MODEL

SHAPE PROPERTIES

Theorem 2.1 For all , the of 
 has the following shape properties:

 
(i) if  is decreasing; 
(ii) unimodal if ; 
(iii) if  and 

        is decreasing (unimodal). 
   
Proof The first derivative of  is given by 

Let , where   
. According to Descartes’ rule of signs,  

since  is a unimodal function in  the expression 
 is negative (changing  

sign from positive to negative) when . 
. Furthermore, consider the function 

 where 
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 is the solution of equation .  

Since  is a decreasing function in  is 
negative (sign change from positive to negative) when 

and . The proof is
 

complete.
Remark 2.1 Let ,  reduces 

to the Gompertz-two-parameter-Lindley distribution 
(Ou, Lu & Kong 2022). Moreover, for ,  and 

, the  distribution reduces to the extended 
exponential distribution (Marshall & Olkin 1997) and 
Gompertz‒Lindley distribution (Ghitany et al. 2019), 
respectively.

Remark 2.2 For  and  if  or  
 and , the mode of  is equal to 0.  

 
On the other hand, if  or  and ,  
then the mode of  is the solution of . Given   
 
that  is the  
solution of the quadratic equation  

  then the mode of  is
 

 
 

CUMULATIVE DISTRIBUTION AND QUANTILE  
FUNCTIONS

The cumulative distribution function (cdf) of 
is given as follows:

                  (8)

           

Figure 2 displays the cdfs of the GTHPL distributions  
for various values of  and λ.

The th quantile  is determined 
as the solution of , where . 
Consequently,  is equivalent to

2.2 Cumulative distribution and quantile functions 

The cumulative distribution function (cdf) of GTHPL ( , , , ) is given as follows: 

( ) = ( ) =
( )

= + 1 + + 1

= 1
( )

, > 0, , , > 0, 0.

           (8) 

Figure 2 displays the cdfs of the GTHPL distributions for various values of , ,  and . 

(Figure 2 is about here) 

The  th quantile  of GTHPL ( , , , )  is determined as the solution of =  , where 

0 < < 1. Consequently, = ( ) is equivalent to 

= ln
(   )( )

( )(   )
+ 1 .                 (9) 

Hence, the quantiles of GTHPL ( , , , ) are given as follows: 

= ln 
( )

( )
+ 1 ,                    (10) 

= ln 
( )

( )
+ 1 ,                   (11) 

= ln 
( )

( )
+ 1 .                    (12) 

2.3 Failure rate and mean residual functions  

The failure rate function (FRF)  ( ) of the GTHPL distribution is given by 

( ) = ( )
( )

=  ,                       (13) 

where > 0, , , > 0, 0. 

Theorem 2.2 For all , , > 0, 0, ( ) is 

(i) decreasing if 0 < , where 1 < < 1 +  such that 

+ (3 ) 2 + 2 ( 2 ) = 0. 

(ii) unimodal if < < 1 + ; 

(iii) increasing if 1 + , with (0) = ( )
( )

 and ( ) = . 

Proof. The first derivative of ( ) is 

 
(9)

Hence, the quantiles of  are given as 
follows:

 
(10)

 
(11)

  
(12)

FAILURE RATE AND MEAN RESIDUAL FUNCTIONS
The failure rate function (FRF)  of the GTHPL 
distribution is given by

     
(13)

where 

Theorem 2.2 For all   is 
(i) decreasing if , where  such 

that  
(ii) unimodal if ;

 
(iii) increasing if , with  and

       .

Proof. The first derivative of  is

( ) = ( + 1) ( ( +   1) + ) ( ), 

where 

( ) = ( ( 1) ) + 2 ( 1)( ( 1) + ) + ( 1)( ( 1) + 2 )( ( 1) + ) 

and = > 1 . Note that ( ) > 0  if 1 +   and ( ) < 0  if 1 . For 1 < 1 +  , 

there is a unique maximum at point = ( )( ( ) )
( ( ) )

 . Since ( ) =   and (1) = +

(3 ) + 2 ( 2 ) 2  , it follows that ( ) < 0  if (1) < 0 . The equation +

(3 ) + 2 ( 2 ) 2 = 0 has a unique zero point. The proof is complete. 

Moreover, the mean residual life function (MRLF) of the GTHPL distribution is defined as follows: 

( ) = ( > )
=

( )
1 ( )

=
( )

( ) ln + , > 0.

         (14) 

2.4 Limit behavior  

Proposition 2.1 The asymptotic CDF, PDF, and FRF of the GTHPL distribution as 0 are given by 

1 ( ) ( ( ) )
( )

,                            (15) 

( ) ( ( ) )
( )

,                             (16) 

( ) ( ( ) )
( )( ( ) )

.                              (17) 

Proof. According to the MacLaurin series, when 0 , we have 1  and 1  . The 

proof is complete. 

Proposition 2.2 The asymptotic CDF, PDF, and FRF of the GTHPL distribution as  are given by 

1 ( ) ,                           (18) 

( ) ,                             (19) 

( ) .                              (20) 

Proof. According to the MacLaurin series, when  , we have +  , where   is a 

constant. The proof is complete. 

2.5 Moments and associated measures  

We derive the th raw moment (about the origin) of the GTHPL ( , , , ) distribution. We consider 

the following two cases:  

where 
                    

and . Note that  if  and 
 if . For , there is a unique 

maximum at point . Since  

and 
, it  

follows that  if . The equation 
 has 

a unique zero point. The proof is complete.
Moreover, the mean residual life function (MRLF) of 

the GTHPL distribution is defined as follows:

         
 

(14)
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FIGURE 1. The pdf of the GTHPL distribution for various values of  and 

FIGURE 2. The cdf of the GTHPL distribution for various values of  and 
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LIMIT BEHAVIOR

Proposition 2.1 The asymptotic CDF, PDF, and FRF of the 
GTHPL distribution as  are given by

              
(15)

                
(16)

                
(17)

Proof According to the MacLaurin series, when ,  
we have  and . The 
proof is complete.
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                              (20)

Proof According to the MacLaurin series, when , 
we have , where  is a constant. The proof 
is complete.

MOMENTS AND ASSOCIATED MEASURES

We derive the th raw moment (about the origin) of 
the  distribution. We consider the  
following two cases: 

(i) : For positive integer , we have

                (21)

        

where  and

             
(22)

is the polynomial function, where 

and  . 
 
Moreover, the polynomial function satisfies

        
(23)

 
(24)

(ii) , For all positive integers , 

(i) 1: For positive integer , we have 

= ( ) = = ( )
( )

( ) ( ) + ( ) ,  (21) 

where = 1  and 

( ) =
( )

d , > 0, < 1,                        (22) 

is the polynomial function, where  ( ) = ln (1 ) and  ( ) = ( ) = .  

Moreover, the polynomial function satisfies 

( ) ( ) =
( ) ( )

d ,                         (23) 

( ) 3 ( ) + 2 ( ) =
( ) ( ) d .                  (24) 

(ii) = 1 For all positive integers ,  

= ( ) = + = !( )
( ) ( )

.                (25) 

Hence, the first four raw moments are given as follows: 
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( )
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(( ) ( ) )
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=
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( )
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                    (29) 

Figure 3 displays the first four moments of the GTHPL distribution for various values of , ,  and . 

(Figure 3 is about here) 

Therefore, the variance of the GTHPL distribution is 
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( )
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              (30) 

Moreover, the skewness and kurtosis of the GTHPL distribution can be given as follows: 
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(30)

Moreover, the skewness and kurtosis of the GTHPL 
distribution can be given as follows:

         
 (31)

      
(32)

The moment generation function of the GTHPL 
distribution via the exponential function of Maclaurin’s 
series expansion is

          (33)

For , we have

 (34)
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For , we have

           (35)

STOCHASTIC ORDERS

Numerous stochastic orders exist and have various 
applications (Shaked & Shanthikumar 2007). In this 
context, the likelihood ratio order , the usual stochastic 
order , the failure rate order , and the mean residual 
life order  are considered. A random variable  is 
considered to be less than a random variable :
 
(i) if   for all ;  
(ii) if  for all ;  
(iii) if   for all ;  
(iv) if   decreases in .

Theorem 2.3 Let  and 
. For all  and 

 (and hence  and 
).

FIGURE 3. The first four moments of the GTHPL distribution  
for various values of  and 

Proof For , we have

For , letting , we have

Since ,  and hence , 

it follows that  is decreasing in . Then .  

Note that  implies that  and  
that . The proof is complete.
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ESTIMATION THEORY

MAXIMUM LIKELIHOOD ESTIMATION

Consider  as a random sample from the 
GTHPL distribution with parameters . The 
loglikelihood function is given as follows:

 
(36)

Hence, the maximum likelihood estimators (MLEs) 
 of the parameters  are the 

simultaneous solutions of the following equations:

            

(37)

Since the maximum likelihood equations (37) are 
nonlinear in nature, the solutions  have 
no closed form. However, these equations can be solved 
numerically via numerical optimization algorithms. 
In this work, the unknown parameters  are 
estimated via maximization via the differential evolution 
function of Python software. Compared with the 
Newton–Raphson or quasi-Newton–Raphson methods, 
which rely on gradient information (e.g., first or second 
derivatives) from the log-likelihood function, parameter 
estimation via differential evolution algorithms does not 
require explicit solutions for derivatives, which renders 
differential evolution suitable for problems in which 
computational access to gradient information is difficult 
or nonexistent.

SIMULATION STUDY

In this section, we conduct a simulation study to generate 
random variables from the GTHPL model. The suitability 
of the maximum likelihood estimation (MLE) method for 
estimating unknown model parameters is investigated. 
To evaluate the accuracy and consistency of the  
estimates, we calculated the bias and mean squared error 
(MSE) of the MLE of the parameters. The calculations 
pertaining to the study were carried out via Python 
software, version 3.10, with the help of self-programmed 
codes. Moreover, the scipy.optimise package was used 
to obtain the maximum likelihood estimates of the 
parameters from GTHPL.

Using the inversion method, we can generate 
random numbers from the GTHPL distribution via the  
following equation

                                 (38)

 

where is a uniformly distributed random variable, 
. Given the sample size , for each ,  

 we can solve the above system of  
equations for   simultaneously. Hence, 
one can generate random numbers when  and

are known. Since  and . In the  
simulation study, we select  ,  and 

.0, 1.0 and 2.0 for sample sizes   
and , respectively.

In each simulation, for a given parameter  
combination , we first resample the 
observations from the GTHPL distribution N=10,000 
times to obtain the observed values .  
Using differential evolution algorithms, we separately 
calculate the average estimates (AEs), average bias  
(ABs), and average mean squared error (AMSE) as 
follows: 

(i) The average estimates (AEs) of the MLEs  
 are given by

(ii) The average biases (ABs) of the MLEs 
 are given by

 

(iii) The average mean square errors (AMSEs) of the 
MLEs  are given by

The simulation results are summarized in Table 1.

As shown in Table 1, when the sample size n  
increases, the estimated values of ( ) obtained 
through the MLE method converge to the true parameter 
values. Simultaneously, the biases and mean squared 
errors for each parameter decrease and gradually 
approach zero. Hence, the simulation results illustrate  
the consistency property of the MLEs .
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THE PROPOSED GTHPL REGRESSION MODEL

GTHPL REGRESSION AND MLES

In this section, a new regression model based on 
the GTHPL distribution is presented. According to  
Equation (26), we parameterize

            
(39)

to the pdf of the GTHPL distribution, then we have

                                               

equation (26), we parameterize 

=

( )
( ) , 1,

( )
,                   = 1,

                          (39) 

to the pdf of the GTHPL distribution, then we have 

( , , , ) =

( )
( )

( )
( )

( )
( )

( ) ( )

, 1,

( ) ( ) ( )

( )( ) ( )

,                             = 1,

     (40) 

where , > 0, + + > 0 and ( , , , ) = . The below log-link function is used to link 

the explanatory variable to the mean of the response variable. It can be expressed as 

log ( ( )) = , = 1, … , ,   (41) 

where = (1, , , … , ) is the vector of covariates and = ( , , , … , )  is the unknown 

vector of regression coefficients.  

The log-likelihood function of the GTHPL regression model is as follows: 

(1) For 1, we have 

( , , , ) = 3 ln 2 ln + ( )
( )

2 ln( + ) +

ln 
( )

( ) + 1 + 2 + ln ( ) ln +

3
(( )  )

( ) + 1 .                         (42) 

(2) For = 1, we have 

( , , , ) = 2 ln + ln  ( ) + 1 + 2 + ln ( )
( )

+

( ) 3 ln  ( ) + 1 ln 2

ln 
( )

.                               (43) 

The MLEs of ( , , , ) are obtained via direct maximization of the log-likelihood function. In this 

paper, the minimize function of Python software is applied to calculate the MLEs ( , , , ). 

     (40)
                                                           

where  and .  
The below log-link function is used to link the  
explanatory variable to the mean of the response  
variable. It can be expressed as

             (41)

where  is the vector of covariates 
and  is the unknown vector of 
regression coefficients. 

The log-likelihood function of the GTHPL regression 
model is as follows:

(1) For , we have

                         

            

                       (42)

(2) For , we have

                               

           

          _
                               

(43)

The MLEs of  are obtained via direct 
maximization of the log-likelihood function. In this  
paper, the minimize function of Python software is 
applied to calculate the MLEs .

SIMULATION STUDY

Similar to simulation study in Estimation Theory 
section, we conducted a simulation study to evaluate the 
performance of the MLEs of unknown parameters in the 
GTHPL regression model. 

Suppose that the log-link function in Equation (41) 
can be expressed as

 (44)

where  and  are generated from U (0,1). Here, the 
sample sizes are  and . Moreover, 
owing the constraint , . Using the  
log-likelihood functions (42) and (43) of the GTHPL  
regression model, the following parameter settings are 
used.

, , , , , ;

, , ,  
, , ;

, , , , , ;

, , , ,  
, ;

In each simulation, for a given parameter combination 
, we first resample the 

observations from the GTHPL linear model N=10,000 
times to obtain the observed values  and 

. Using differential evolution algorithms, 
we separately calculate the AEs, ABs, and AMSEs 
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TABLE 1. Maximum likelihood estimates of the GTHPL distribution

Sample size Parameters

n=20 AE 1.5413 -0.2084 3.6234 3.2977
AB 0.5413 -0. 2084 -0.3766 1.2977

AMSE 0.8775 0.0440 0.1563 1.8275
n=50 AE 1.3488 -0.1832 3.6172 3.0734

AB 0.3488 -0.1832 -0.3828 1.7035
AMSE 0.3465 0.0369 0.1548 1.5602

n=100 AE 1.1670 -0.1381 3.7503 2.8494
AB 0.1670 -0.1381 -0.2497 0.7494

AMSE 0.2958 0.0325 0.1477 1.0365
n=300 AE 1.0670 -0.0611 3.9155 2.2716

AB 0.0860 -0.0611 -0.0845 0.2716
AMSE 0.1834 0.0268 0.0930 0.6589

Sample size Parameters

n=20 AE 1.3689 1.4296 4.6691 2.3019
AB 0.3689 0.4296 0.6191 0.3019

AMSE 0.7835 1.0779 1.6503 1.3331
n=50 AE 1.2026 1.3742 4.4891 2.2438

AB 0.2026 0.3742 0.4191 0.2438
AMSE 0.4277 1.1973 1.3503 0.9278

n=100 AE 1.1116 1.1806 3.7903 2.2184
AB 0.1116 0.1806 -0.2097 0.2184

AMSE 0.2157 1.2044 0.3326 0.6400
n=300 AE 1.0354 1.0306 3.9948 2.0399

AB 0.0354 0.0706 -0.0052 0.0399
AMSE 0.0840 0.0944 0.0418 0.2577

Sample size Parameters

n=20 AE 0.9592 1.2990 4.1708 1.9931 
AB -0.0408 -0.7010 0.1708 -0.0069 

AMSE 0.1188 2.1957 0.1222 0.2388 
n=50 AE 0.9101 1.7313 3.9934 1.7153 

AB -0.0899 -0.2687 -0.0066 -0.2847 
AMSE 0.1646 1.6312 0.0841 0.4557 

n=100 AE 1.1642 0.9495 4.1781 2.0684 
AB 0.1642 -1.0505 0.1781 0.0684 

AMSE 0.2107 2.0583 0.1108 0.3898 
n=300 AE 1.0968 1.9878 4.0070 2.1864 

AB 0.0968 -0.0122 0.0070 0.1864 
AMSE 0.0350 0.1949 0.0723 0.1021 
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of the MLEs . The simulation  
results are summarized in Table 2.

The data presented in Table 2 indicates that with  
increasing sample size (n), the maximum likelihood 
estimates of  converge asymptotically 
to the true parameter values. In conjunction with this 
convergence, the observed biases and mean squared 
errors for the respective parameters progressively 
diminish, ultimately approaching zero. These findings 
from the simulation study provide empirical evidence 
for the consistency of the maximum likelihood  
estimators .

REAL DATA ANALYSIS

APPLICATION OF THE GTHPL MODEL

In this section, a real dataset is analyzed to demonstrate 
the adaptability of the GTHPL model. This dataset  
(Shen et al. 2018) consists of survival times for 217 
female patients diagnosed with hepatocellular carcinoma, 
measured in years. Table 3 summarizes the descriptive 
statistical data of the dataset, and its histogram and 
boxplot are shown in Figure 4. From Table 3, the  
skewness value (1.3610) of the survival dataset indicates 
that this dataset is skewed to the left. For model  
comparison, this dataset was also applied to evaluate  
several well-known models, such as the log-normal, 
Gompertz, Weibull, Gompertz‒Lindley (GL) and 
Gompertz‒two‒parameter‒Lindley (GTPL) distributions. 

Table 4 reports the MLEs, 95% confidence intervals 
and p-values of . Given a significance level  
of 0.05, the p-values of the tests for all the parameters 

 in the GTHPL model are less than 0.05, 
and are therefore statistically significant. Moreover, 
Table 5 summarizes the Akaike information criterion 
(AIC), Bayesian information criterion (BIC), consistent 
Akaike information criterion (CAIC) and Hannan‒Quinn 
information criterion (HQIC) of the six models. The  
GTHPL model has lower AIC, CAIC, BIC, and HQIC 

values than the log-normal, Weibull, Gompertz, GL 
and GTPL models, which indicates that the GTHPL  
distribution performs better than the other five models. 
Hence, the proposed distribution provides a better fit to  
this real survival dataset. 

APPLICATION OF THE GTHPL REGRESSION MODEL

As an extension of the GTHPL model, we built a GTHPL 
regression model for the dataset (Shen et al. 2018)  
mentioned earlier to assess whether the proposed  
regression model would provide a better fit than the 
GL and GTPL regression models for this dataset. After 
data preprocessing, such as outliers, missing values and 
normalization, the remainder of this dataset consists of 
survival times for 185 female patients diagnosed with 
hepatocellular carcinoma  (i=1, 2, ..., 185) with the 
following two covariates:  represents the aspartate 
transaminase level (U/L).  represents the total bilirubin 
concentration (μmol/L). The simulation results of the 
GL, GTPL and GTHPL regression models are shown in  
Table 6. 

Table 6 shows that when the values of aspartate 
aminotransferase (U/L) and total bilirubin (μmol/L) 
increase, the survival time of female patients also  
increases. These findings indicate that these two covariates 
have a positive effect on the survival time of female 
patients. Given a significance level of 0.05, the p-values  
of the tests for all the parameters in the GL, GTPL, and 
GTHPL regression models are less than 0.05 and are 
therefore statistically significant. Moreover, for better 
comparison, Table 7 summarizes the AIC, BIC, CAIC 
and HQIC of the three regression models. Obviously, the 
GTHPL regression model has lower AIC, CAIC, BIC, 
and HQIC values than the GL regression model and the 
GTPL regression model does, which implies that the new 
model has a better ability to fit the data. Finally, compared 
with the six models (log-normal, Gompertz, Weibull, GL,  
GTPL and GTHPL) without covariates in Table 5, the 
GTHPL regression model has the best data fitting effect. 
Therefore, as an alternative, we recommend the use of 
GTHPL regression model to fit this dataset.

FIGURE 4. Histogram and box plot for the survival data
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TABLE 2. Maximum likelihood estimates of the GTHPL regression model

Sample 
size

Parameters

n=20 AE 0.1776 1.3270 3.5163 0.9268 0.4642 0.4966 
AB -0.8224 -0.6730 -0.4837 -0.0732 -0.0358 -0.0034 

AMSE 0.6763 0.4529 0.2339 0.0054 0.0024 0.0077 
n=50 AE 0.5333 1.4454 3.6268 0.9878 0.4753 0.5018 

AB -0.4667 -0.5546 -0.3732 -0.0122 -0.0247 0.0018 
AMSE 0.2178 0.3075 0.1393 0.0011 0.0008 0.0001 

n=100 AE 0.8766 1.5911 3.7526 0.9916 0.4974 0.4949 
AB -0.1234 -0.4089 -0.2474 -0.0084 -0.0026 -0.0051 

AMSE 0.0152 0.1672 0.0612 0.0002 0.0000 0.0003 
n=300 AE 1.0763 1.9739 4.0204 0.9952 0.4975 0.4980 

AB 0.0763 -0.0261 0.0204 -0.0048 -0.0025 -0.0020 
AMSE 0.0058 0.0007 0.0004 0.0000 0.0000 0.0000 

Sample 
size

Parameters

n=20 AE 0.8916 2.2499 6.0982 0.5210 -1.6753 0.3267 
AB -0.1084 0.2499 0.0982 -0.4790 0.3247 -0.1733 

AMSE 0.0117 0.0624 0.0097 2.2682 1.0513 0.2940 
n=50 AE 0.9675 2.0846 6.0339 0.9924 -1.9994 0.4945 

AB -0.0325 0.0846 0.0339 -0.0076 0.0006 -0.0055 
AMSE 0.0011 0.0072 0.0011 0.0001 0.0000 0.0000 

n=100 AE 0.9753 2.0441 6.0168 0.8860 -1.6365 0.5141 
AB -0.0247 0.0441 0.0168 -0.1140 0.3635 0.0141 

AMSE 0.0006 0.0019 0.0003 0.0744 1.9252 0.2931 
n=300 AE 0.9964 2.0175 6.0067 1.0361 -1.9196 0.5044 

AB -0.0036 0.0175 0.0067 0.0361 0.0804 0.0044 
AMSE 0.0000 0.0003 0.0000 0.6488 0.0831 0.0040 

Sample 
size

Parameters

n=20 AE 0.9029 1.5146 3.8280 0.1816 0.1653 0.1608 
AB -0.5971 -0.4854 -0.1720 -0.8184 -0.3347 -0.3392 

AMSE 0.3566 0.2356 0.0296 0.6752 0.1263 0.1205 
n=50 AE 0.9403 2.1901 3.6587 0.6245 0.3420 0.3426 

AB -0.5597 0.1901 -0.3413 -0.3755 -0.1580 -0.1574 
AMSE 0.3133 0.0361 0.1165 0.1410 0.0250 0.0248 

n=100 AE 1.2672 2.0408 3.9365 0.8048 0.4201 0.4203 
AB -0.2328 0.0408 -0.0635 -0.1952 -0.0799 -0.0797 

continue to next page
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AMSE 0.0542 0.0017 0.0040 0.0381 0.0064 0.0064 
n=300 AE 1.4055 2.0074 3.9887 0.9812 0.4447 0.4732 

AB -0.0945 0.0074 -0.0113 -0.0188 -0.0553 -0.0268 
AMSE 0.0089 0.0001 0.0001 0.0173 0.0218 0.0019 

Sample 
size

Parameters

n=20 AE 0.8324 2.2891 5.8876 0.8511 -1.7643 0.3723 
AB -0.6676 0.2891 -0.1124 -0.1489 0.2357 -0.1277 

AMSE 0.4457 0.0836 0.0126 0.0239 0.0565 0.0169 
n=50 AE 1.4099 2.0399 5.9864 0.9291 -1.9242 0.4519 

AB -0.0901 0.0399 -0.0136 -0.0709 0.0758 -0.0481 
AMSE 0.0081 0.0016 0.0002 0.0063 0.0068 0.0026 

n=100 AE 1.4042 2.0285 5.9904 0.9566 -1.9594 0.4641 
AB -0.0958 0.0285 -0.0096 -0.0434 0.0406 -0.0359 

AMSE 0.0092 0.0008 0.0001 0.0034 0.0027 0.0014 
n=300 AE 1.4858 2.0033 5.9986 1.0009 -1.9707 0.4946 

AB -0.0142 0.0033 -0.0014 0.0009 0.0293 -0.0054 
AMSE 0.0002 0.0000 0.0000 0.0009 0.0014 0.0001 

TABLE 3. Descriptive statistics for the survival data

Statistics Mean Variance Minimum Maximum First quartile Third quartile
Values 2.0130 4.1661 0.01 8.35 1.1542 1.473

TABLE 4. Fitted distributions and parameter estimations for the survival data

Model Parameter MLE Sd Lower limit Upper limit p-value

Log-normal 0.0650 0.0082 -0.0843 0.2142 0.4742

1.3407 0.0041 1.2351 1.4463 0.1823

Weibull 0.9470 0.0033 -0.6979 1.5918 0.3437

1.9640 0.0031 0.3192 2.6089 0.0495

Gompertz 0.1580 0.0091 0.1564 0.1597 0.0000

1.9993 0.0028 1.9289 2.0886 0.7951

GL 0.6633 0.0034 0.5920 0.8075 0.0006

1.9997 0.0031 1.8612 2.1733 0.0000

continue from previous page

continue to next page
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GTPL 0.4459 0.0036 0.3475 0.5442 0.0160

0.8078 0.0020 0.2558 1.3598 0.0946

0.0242 0.1290 -0.5667 0.6152 0.0000

GTHPL 0.4145 0.0035 0.3284 0.50068 0.0000

0.8337 0.0003 0.8003 0.8809 0.0000

3.2823 0.0068 2.5388 4.0258 0.0375

0.3870 0.0056 0.2487 0.4898 0.0122

TABLE 5. Fitted distributions and tests for the survival data

Model AIC BIC CAIC HQIC

Log-normal 761.7162 754.9656 752.9656 758.9889
Weibull 729.1806 722.4301 720.4301 726.4534
Gompertz 753.5534 746.8029 744.8029 750.8262
GL 924.1786 917.4280 915.4280 921.4513
GTPL 726.6152 716.4893 713.4893 722.5243
GTHPL 724.5317 711.0306 707.0306 719.0772

TABLE 6. Fitted regression models and parameter estimations for the survival data

Model Parameter MLE Sd Lower limit Upper limit P value

GL 
regression 

0.6977 0.2801 0.237 1.1584 0.0127

1.4782 0.1408 1.2467 1.7097 0.0000

0.5309 0.0701 0.4156 0.6461 0.0000

1.4721 0.1392 1.2432 1.701 0.0000

GTPL 
regression 

0.5754 0.1228 0.3734 0.7775 0.0000

0.8949 0.2468 0.4888 1.3009 0.0003

1.4916 0.17 1.212 1.7713 0.0000

0.4272 0.1073 0.2507 0.6036 0.0001

1.3936 0.1965 1.0704 1.7168 0.0000

continue from previous page

continue to next page
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GTHPL 
regression 

0.5082 0.1792 0.2135 0.803 0.0046

1.0659 0.5348 0.137 1.9949 0.0462

0.6081 0.2921 0.1277 1.0885 0.0373

1.4985 0.2098 1.1535 1.8435 0.0000

0.4948 0.0763 0.3692 0.6204 0.0000

1.4996 0.1072 1.3233 1.676 0.0000

TABLE 7. Fitted regression models and tests for the survival data

Model AIC BIC CAIC HQIC
GL regression 714.4258 707.1761 708.8961 712.1846

GTPL regression 713.4114 704.3493 706.4993 710.6098
GTHPL regression 713.3666 702.4921 705.0721 710.0047

CONCLUSIONS

The Gompertz‒three‒parameter‒Lindley distribution, 
abbreviated as GTHPL, which includes the Gompertz‒
Lindley distribution and Gompertz‒two‒parameter‒
Lindley distribution as special cases, was introduced. 
This new model is constructed by mixing the Gompertz 
distribution and the three‒parameter Lindley distribution. 
Several statistical properties have been studied, such as 
the failure rate function, mean residual life function, -th 
moment, skewness and kurtosis. Moreover, the GTHPL 
regression model based on the proposed distribution has 
also been developed, offering a useful tool for analyzing 
survival data with covariates. The maximum likelihood 
method was used to estimate the parameters of the 
GTHPL distribution and the GTHPL regression model, 
and simulation studies were carried out to demonstrate 
the consistency of the MLEs. Finally, real data analysis  
further validated the better performance of the GTHPL 
model compared with established models such as the 
log‒normal, Weibull, Gompertz, Gompertz‒Lindley, 
and Gompertz‒two‒parameter‒Lindley distributions. 
Additionally, the GTHPL regression model has a better 
fit than its counterparts do, highlighting its potential as a 
valuable tool for survival analysis with covariates.
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