
Sains Malaysiana 54(3)(2025): 839-868
http://doi.org/10.17576/jsm-2025-5403-18

Potentially Dysregulated Cholesterol, Cellular Interaction, Immune, and Collagen in 
NTCU-Induced Lung Squamous Cell Carcinoma in vivo and LUSC Patients

(Kolesterol Berpotensi Disregulasi, Interaksi Sel, Imun dan Kolagen dalam Karsinoma Sel Skuamosa Paru-paru 
Aruhan NTCU in vivo dan Pesakit LUSC)

MUHAMMAD ASYAARI ZAKARIA1,4, AMNANI AMINUDDIN2, NOR FADILAH RAJAB3, SITI FATHIAH MASRE1,* & ENG 
WEE CHUA2

1Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 
Kuala Lumpur, Malaysia 

2Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala 
Lumpur, Malaysia 

3Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala 
Lumpur, Malaysia 

4Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur-Royal College of Medicine Perak, 30450 Ipoh, 
Perak, Malaysia

Received: 10 October 2024/Accepted: 26 November 2024

ABSTRACT

Lung squamous cell carcinoma (LUSC) is a deadly cancer, characterized by its complex genetic profiles. Additionally, 
the molecular mechanisms and etiology underlying LUSC growth are less extensively characterized as compared to 
adenocarcinoma subtype of lung cancer. Therefore, it is essential to elucidate the molecular mechanisms of LUSC in 
vivo and by using the human database to understand the disease. A LUSC BALB/c mice model was established using 
N-nitroso-tris-chloroethylurea (NTCU). After termination of mice, the lung tissues were subjected to RNA sequencing, 
followed by gene set enrichment analysis (GSEA) to identify the enriched pathways. Subsequently, the pathogenic single 
nucleotide polymorphism (SNP) was determined and enriched using g:Profiler. The transcriptomic profile of human LUSC 
patients was obtained and analyzed from The International Cancer Genome Consortium (ICGC). The impact of pathogenic 
simple somatic mutation (SSM) in human LUSC was determined using the Combined Annotation Dependent Depletion 
(CADD) score, which was also enriched using g:Profiler. Additionally, the enriched pathway of ‘Treatment-responsive’ 
was compared with ‘Non-responsive’ LUSC patients’ post-treatment. All pathway analysis was referred to the Reactome 
database, and an adjusted p-value ≤ 0.05 was considered statistically significant. The top pathway enriched in both mice 
and human LUSC showed that cholesterol, cellular interaction, immune system, and collagen were significantly affected. 
Briefly, this study identified important biological pathways that may contribute to LUSC development and hold potential 
as targets for LUSC therapy in the future.
Keywords: Gene set enrichment analysis (GSEA); lung squamous cell carcinoma (LUSC); RNA sequencing; simple 
somatic mutation (SSM); single nucleotide polymorphism (SNP)

ABSTRAK

Karsinoma sel skuamus paru-paru (LUSC) adalah kanser yang boleh membawa maut, dicirikan oleh profil genetiknya 
yang kompleks. Tambahan pula, mekanisme molekul dan etiologi yang mendasari pertumbuhan LUSC adalah kurang 
dikaji secara mendalam berbanding subjenis adenokarsinoma kanser paru-paru. Oleh itu, adalah penting untuk mengetahui 
mekanisme molekul LUSC secara in vivo dan dengan menggunakan pangkalan data manusia untuk memahami penyakit 
ini. Model tikus BALB/c LUSC telah dibangunkan menggunakan N-nitroso-tris-kloroetilureum (NTCU). Selepas mencit 
dikorbankan, tisu paru-paru dianalisis dengan penjujukan RNA, diikuti dengan analisis pengayaan set gen (GSEA) untuk 
mengenal pasti laluan yang diperkaya. Seterusnya, polimorfisme nukleotida tunggal (SNP) yang patogen telah ditentukan 
dan diperkaya menggunakan g:Profiler. Profil transkriptomik pesakit LUSC manusia diperoleh dan dianalisis daripada 
Konsortium Genom Kanser Antarabangsa (ICGC). Kesan mutasi somatik ringkas (SSM) yang patogen dalam LUSC manusia 
ditentukan menggunakan skor Pengurangan Bergantung Anotasi Gabungan (CADD), yang juga diperkaya menggunakan 
g:Profiler. Tambahan lagi, laluan yang diperkaya bagi pesakit LUSC ‘Responsif-rawatan’ dibandingkan dengan pesakit 
‘Tidak responsif’ selepas rawatan. Semua analisis laluan dirujuk kepada pangkalan data Reactome dan nilai p terlaras ≤ 
0.05 dianggap signifikan secara statistik. Laluan teratas yang diperkaya dalam kedua-dua LUSC model mencit dan manusia 
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mendedahkan penjejasan signifikan kolesterol, interaksi sel, sistem imun dan kolagen. Ringkasnya, kajian ini mengenal 
pasti laluan biologi penting yang mungkin menyumbang kepada perkembangan LUSC dan berpotensi dijadikan sebagai 
sasaran terapi LUSC pada masa hadapan.
Kata kunci: Analisis pengayaan set gen (GSEA); karsinoma sel skuamus paru-paru (LUSC); mutasi somatik ringkas 
(SSM); penjujukan RNA; polimorfisme nukleotida tunggal (SNP) 

INTRODUCTION

Lung cancer is classified into small-cell lung cancer (SCLC) 
and non-small cell lung cancer (NSCLC) histologically and 
is the leading cause of cancer-related deaths (20%) in both 
genders in the United States. Each day, approximately 340 
people die from lung cancer, which is nearly 2.5 times 
more than the number of patients who die from colorectal 
cancer (Siegel, Giaquinto & Jemal 2024). The NSCLC is 
further divided into three main subtypes: adenocarcinoma, 
lung squamous cell carcinoma (LUSC), and large cell lung 
cancer, and accounts for the majority (~85%) of lung cancer 
cases. Over the past decades, LUSC has gained the attention 
of researchers globally due to its low five-year overall 
survival rates of 13% and 2% for stage III and IV patients, 
respectively (Wang et al. 2020). LUSC patients also tend to 
develop treatment resistance (Ashrafi et al. 2022; Yi et al. 
2024), which may be attributed to the considerably higher 
oncogenic mutations than other NSCLC subtypes (Gandara 
et al. 2015; Gu et al. 2023; Yi et al. 2024; Zhao et al. 
2016). In addition, LUSC patients are relatively refractory 
towards the latest therapeutic development for NSCLC, 
particularly tyrosine kinase inhibitors targeting epidermal 
growth factor receptors (EGFR) (Liang et al. 2018). This 
might be due to the low frequency of EGFR amplification 
(7%) observed in LUSC patients as reported in high-scale 
genomic analysis (Hammerman et al. 2012). Notably, other 
molecular aberration-targeted therapies (i.e., ALK, ROS1 
& BRAF) also do not benefit LUSC patients due to the 
difference in genetic profile with other NSCLC subtypes 
(Korpanty et al. 2014; Tan & Tan 2022). Therefore, a 
thorough understanding of the molecular profile in LUSC 
is crucial to understand the disease better and overcoming 
the plateau advancement of targeted therapies in LUSC.

Advances in nucleic acid sequencing techniques, 
particularly RNA sequencing, have enabled researchers to 
profile various cancers and uncover resistance-inducing 
mutations. The RNA sequencing of lung cancer cells 
or tissues obtained from pre-clinical models led to the 
discovery of novel biomarkers and targets for lung cancer 
precision therapy (Sun et al. 2017; Suzuki et al. 2019; 
Zilionis et al. 2019). Nevertheless, there is a paucity of pre-
clinical lung cancer models for specific LUSC subtypes. 
Multiple studies have explored methods to induce LUSC 
in vivo reliably and elucidate the pathobiology of LUSC 
(Henry et al. 1981; Yoshimoto et al. 1980, 1977). One of 
the most successful techniques is repeated N-nitroso-tris-
chloroethylurea (NTCU) treatments in mice (Wang et al. 
2004), which have been widely applied by the following 

researchers and regarded as one of the best pre-clinical 
LUSC cancer models in vivo (Dwyer-Nield et al. 2021; 
Ghosh et al. 2015; Pan et al. 2018; Riolobos et al. 2019; 
Surien, Ghazali & Masre 2020; Yamano et al. 2016). The 
LUSC induction by NTCU is superior to other methods due 
to the reproducibility and efficacy, besides the similarity 
of resultant tumors with human LUSC (Surien, Ghazali 
& Masre 2020; Wang et al. 2009; Zakaria et al. 2021a). 
Interestingly, LUSC tumors induced by NTCU harbor 
high genetic profile similarities with the human LUSC, 
including gene mutations (80%) (Xiong et al. 2018). Hence, 
it is hypothesized that employing NTCU-induced LUSC in 
murine models offers a convenient and more accessible 
approach to unraveling the etiology of human LUSC.

The utilization of NTCU-induced LUSC in mice 
models has helped researchers gain better insight into the 
disease. For instance, in a previous study, two LUSC cell 
lines, UNSCC679 and UN-SCC680, were derived from 
NTCU-treated mice and analyzed via RNA sequencing. 
Interestingly, these cells harbor mutated genes relevant to 
human LUSC, such as G protein-coupled receptor family 
member apelin receptor (APLNR) and colony-stimulating 
factor 2 receptor subunit beta (CSF2RB). Moreover, they 
also found increased expression of genes related to human 
LUSC from both cell lines, such as p63, Gsto1, Aldh3a1, 
Bcl6, Atp5g3, Dld, Odc1, Gsta4, Ndufb5, Ephx1 or Cox5b 
(Valencia et al. 2022). However, this study only focuses 
on identifying altered genes without comprehensively 
acknowledging the affected biological pathways. In 
another study, Pan et al. (2018) performed RNA sequencing 
on NTCU-induced LUSC, thus, showed the significant 
enrichment of the PI3K/AKT/NFƙB pathways in the disease. 
This finding further substantiated the role of PI3K in lung 
cancer development (Cheng et al. 2014). Nevertheless, Pan 
et al. (2018) performed RNA sequencing on cell samples 
located along the airway of mice. Briefly, this method was 
preferred for its robustness, but transcriptomic analysis on 
excised lung tissues was suggested to be more accurate in 
depicting potentially overrepresented pathways in human 
LUSC, as novelly conducted in this study.

Despite the breakthroughs in understanding the 
molecular mechanisms underlying LUSC, patients still 
have limited targeted therapy options compared to the 
adenocarcinoma subtype. This situation may result 
from a complex and time-consuming drug development 
process subjected to the approval of the Food and Drug 
Administration (FDA). Furthermore, the new drug may 
be ineffective at a clinical trial despite promising results 
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at the pre-clinical stage. Therefore, researchers should 
continue investigating the etiology of LUSC, starting from 
the pre-clinical stage to identify potential drug targets. 
An animal model that accurately simulates human LUSC, 
such as NTCU-induced LUSC in mice, remains relevant 
to accelerate the translation of pre-clinical findings into 
novel anticancer therapy. This study aimed to provide new 
insights into the etiology of the NTCU-induced LUSC, 
focusing on the biological pathways and the impacts of 
pathogenic mutations by using this model. Furthermore, this 
study also analyzed the RNA sequencing datasets from the 
International Cancer Genome Consortium (ICGC) database 
to identify the impact of pathogenic somatic mutation in 
LUSC patients and ascertain whether the enriched pathways 
are associated with their treatment response. In summary, 
this molecular study provides fundamental knowledge on 
the underlying molecular events that potentially stimulate 
LUSC development, thus, helping develop an effective 
precision therapy for LUSC in the future. 

MATERIALS AND METHODS

LUNG SQUAMOUS CELL CARCINOMA (LUSC) 
DEVELOPMENT in vivo

The animal study ethics approval was obtained from 
Universiti Kebangsaan Malaysia Animal Ethics 
Committee (FSK/2017/FATHIAH/24-MAY/846-MAY-
2017-MAY-2020) and conducted in compliance with 
the ARRIVE guidelines. All methods were performed 
following the relevant guidelines and regulations. LUSC 
in female BALB/c mice model has been developed in 
our earlier study (Zakaria et al. 2021a). First, 48 female 
BALBL/c mice (five weeks old), with an average weight 
of 12-16 g, were purchased from the animal unit, Faculty 
of Veterinary Medicine, Universiti Putra Malaysia. The 
mice were divided into two groups: Pre-malignant and 
Malignant groups. Then, the mice in each group were 
further allotted into three groups (n=6) according to 
their respective treatments: 1) Control (receiving 0.9% 
normal saline), 2) Vehicle (receiving 70% acetone), and 3) 
Cancer (receiving 0.04 M N-nitroso-tris-chloroethylurea 
(NTCU)). Before treatment, all mice were acclimatized at 
room temperature for two weeks with ad libitum access 
to regular tap water and mice pellet. The 0.04 NTCU is a 
nitrosamine-derivative carcinogen for inducing LUSC in 
mice, which was dissolved in 70% acetone to obtain the 
respective concentration. 25 µL of 0.9% normal saline, 70% 
acetone, and 0.04M NTCU to each respective group was 
administered at the dorsal area, between the shoulder blade 
bones of mice shaved skin (2 cm2 area) via skin painting. 
The painting was performed by spreading the chemical 
using pipette tips and performed twice per week with an 
interval of 3.5 days for 30 weeks. At the end of 30 weeks 
after the initial treatment, the animals were terminated 
using an overdose of ketamine-xylazine cocktail (KTX) and 

cervical dislocation. The KTX dose used to euthanize the 
mouse in this study was 0.2 mL/20 mg of mice. KTX was 
administered via intraperitoneal injection. Verification of 
death was upon the absence of reflex following the pinching 
of the mouse paw. The histology analysis performed in our 
earlier study (Zakaria et al. 2021a), combining H&E and 
IHC staining, confirmed the successful induction of pre-
malignant and malignant LUSC in our research. For the 
RNA sequencing performed in this study, we analyzed 
the tissues from the malignant vehicle and cancer groups. 
We analyzed the vehicle group only since there was 
no significant difference in histological characteristics, 
histopathology scores, and epithelium thickness between 
the control and vehicle groups (Zakaria et al. 2021a). We 
also analyzed malignant groups only to gain insight into 
the overall dysregulated pathway responsible for LUSC 
carcinogenesis. 

RNA EXTRACTION AND QUALITY CHECKS

At the end of the animal study, approximately 20 mg of 
lung tissue was excised from each mouse, immersed in lysis 
buffer, and homogenized using ULTRA-TURRAX® T25 
Basic (IKA, Germany). Subsequently, the RNA extraction 
was performed using the innuPREP RNA Mini Kit 
(Analytik Jena, Germany) according to the manufacturer’s 
guidelines. As a precaution, contaminating genomic DNA 
in the samples was removed using the RapidOut DNA 
Removal Kit (Thermo Scientifc Inc., USA) as instructed 
by the manufacturer. Finally, the concentration and purity 
of the RNA samples were measured via the OPTIZENTM 
NanoQ Microvolume Spectrophotometer (Mecasys Co. 
Ltd, Korea), and the RNA integrity was evaluated using 
1% agarose gel electrophoresis (Supplementary Figure 
S1). All samples that passed the quality checks outlined by 
the company (absorbance ratios = 1.8 - 2.1 at 260 nm and 
280 nm wavelength, exhibited discrete 28S and 18S bands) 
were subjected to transcriptomic analysis. 

RNA SEQUENCING

The integrity (RIN = RNA integrity number) of RNA 
samples was evaluated using Agilent 2100 Bioanalyzer 
(Agilent Technologies Inc., USA) by Apical Scientific 
Sdn. Bhd., Malaysia. As all the samples recorded good 
RNA integrity (RIN > 6.8) (Supplementary Figure S2), 
the samples were then proceeded to RNA sequencing 
on a HiSeq150 platform (Illumina, USA) by Novogene 
Corporation Inc., China.

BIOINFORMATIC ANALYSIS

Once the sequencing was completed, the raw reads 
were obtained and filtered to remove unwanted reads: 
adaptors, undeterminable bases (N > 10%), and reads 
with > 50% bases (quality scores ≤ 5). Subsequently, the 
clean reads were aligned to the Mus musculus genome  
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(GRCm38/mm10) using STAR version 2.5 (Dobin et al. 
2013). Gene-level read counts were then computed using 
HTSeq version 0.6.1 (Anders, Pyl & Huber 2015), followed 
by the normalization across all samples to eliminate the 
unwanted technical variation between samples using the 
DESEq2 version 2_1.6.3 (Love, Huber & Anders 2014). 
The principal component analysis (PCA) plot analysis 
showed that the Vehicle and Cancer groups have distant 
gene expression patterns (Supplementary Figure S3). 
After that, Gene Set Enrichment Analysis (GSEA) and the 
functional impact of the DNA mutations were analyzed. 
Raw and processed sequenced data were submitted to the 
GEO database (accession ID: GSE240837).

GENE SET ENRICHMENT ANALYSIS (GSEA) OF MOUSE 
LUSC

The normalized read counts were analyzed using GSEA 
version 4.2.3 (http://www.broadinstitute.org/gsea/
downloads.jsp) to pinpoint differentially expressed genes 
and pathways (Mootha et al. 2003; Subramanian et al. 
2005). Reactome ‘c2.cp.reactome.v2022.1.Hs.symbols.
gmt [Curated]’ with the ‘Mouse_ENSEMBL_Gene_
ID_Human_Orthologs_MSigDB.v2022.1.Hs.chip’ chip 
platform was the gene sets database utilized in this study 
(Liberzon et al. 2011). The statistical significant pathways 
were regarded if FDR < 25%, normalized enrichment 
score (NES) > 1, and nominal p < 0.05. At the end of 
the analysis, NES, which reflects the extent of a gene set 
overrepresentation, and the enriched pathways were ranked 
in descending order. Finally, the list of genes affected by 
the top ten pathways was identified using ‘leading edge 
analysis’ in GSEA to identify specific genes that strongly 
contribute to the detected pathways.

SINGLE NUCLEOTIDE POLYMORPHISM (SNP) 
MUTATIONAL ANALYSIS OF MOUSE LUSC

The impact of single nucleotide polymorphism (SNP) 
mutations was analyzed in this study, while the effect of 
insertion-deletion (Indels) mutations was excluded. Most 
variants (90%) showed in this study were SNP mutations, 
and the pathogenicity specificity was enhanced by using 
two prediction algorithms. The variant calling was 
performed using Genome Analysis Toolkit (GATK) version 
3.0 (McKenna et al. 2010), followed by the prediction of 
functional impacts of the resultant list of mutations using a 
combination of Sorting Intolerant From Tolerant (SIFT) and 
Protein Variation Effect Analyzer (PROVEAN) algorithms 
via a web-based server at http://provean.jcvi.org/index.
php (Choi et al. 2012). Pathogenic mutations are defined 
by SIFT scores of < 0.05 and PROVEAN scores of < - 2.5. 
Subsequently, the list of affected genes was extracted from 
the genomic coordinates of the DNA variants. BioVenn 
(https://www.biovenn.nl/) (Hulsen, de Vlieg & Alkema 
2008), was later utilized to produce a list of mutated genes 

unique to the cancer group, as shown in the Supplementary 
Table S1. The data were then analyzed using g:Profiler 
(https://biit.cs.ut.ee/gprofiler/gost) (Raudvere et al. 2019) 
to identify overrepresented pathways. 

ANALYSIS OF DATASETS FROM THE CANCER GENOME 
ATLAS PROGRAM (TCGA)

The TCGA datasets from the ICGC database for LUSC 
patients were analyzed to corroborate the RNA sequencing 
findings. The TCGA-LUSC cohort comprised 428 patients 
(project code, LUSC-US) with documented outcomes of 
their last follow-up assessments (complete remission, n = 
229; progression, n = 15; deceased, n = 137; or unknown, 
n = 47). The patients were then classified into two major 
groups to evaluate potential pathways associated with 
treatment responsiveness: ‘Treatment-responsive’ = LUSC 
patients with complete remission and ‘Non-responsive’ = 
patients who suffered disease progression or were deceased 
(Supplementary Table S2). Patients with unknown status 
were omitted. Once the classification was completed, the 
GSEA was used to identify enriched pathways in LUSC 
patients with good therapeutic responses. The Reactome 
pathway database, ‘c2.cp.reactome.v2022.1.Hs.symbols.
gmt [Curated]’ with the ‘Human_NCBI_Gene_ID_
MsigDB.v2022.1.Hs.chip’ chip platform in GSEA was 
utilized for this purpose (Liberzon et al. 2011). 

Simple somatic mutations (SSMs) were also evaluated 
in this study. In-house R scripts (Supplementary Data 
S1) were used to convert datasets (tab-separated values) 
downloaded from ICGC into VEP-compatible formats, 
remove duplicates, add functional annotations, and 
compute aggregate scores to reflect gene-level mutational 
burdens. First, the SSMs were filtered for principal 
transcripts documented in the Annotation of Principal and 
Alternative Splice Isoforms (APPRIS) database (http://
appris.bioinfo.cnio.es) (Rodriguez et al. 2013). Second, the 
SSMs with Combined Annotation Dependent Depletion 
(CADD) scores of > 20, a cut-off point commonly used to 
define pathogenic DNA variants, were selected (Kircher et 
al. 2014) and accumulated for all patients to obtain gene-
level scores. Finally, the top 25% of mutated genes were 
ranked in descending order of the aggregate CADD scores 
and analyzed using g:Profiler using the ‘Ordered query’ 
option. 

STATISTICAL ANALYSIS

Differential expression analysis between the Vehicle and 
Cancer groups was performed using the DESeq2 version 
2_1.6.3. The resulting p-values were adjusted using 
Benjamini and Hochberg’s approach for controlling the 
False Discovery Rate (FDR), and genes with an adjusted 
p-value or padj value ≤ 0.05 were assigned as differentially 
expressed. For the enrichment analysis using g:Profiler, 
the enriched terms in Gene Ontology (GO) or Reactome 
database were considered  significant if the padj ≤ 0.05. 
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RESULTS

THE GSEA OF LUSC VERSUS NORMAL LUNG TISSUES 
OBTAINED FROM MICE

Based on the enrichment analysis using annotations curated 
in the Reactome database, the top five pathways enriched 
in the mice LUSC using GSEA were identified: cholesterol 
biosynthesis, keratinization, activation of gene expression 
by Sterol regulatory element-binding transcription factor 
(SREBF), Sterol Regulatory Element-Binding Protein 
(SREBP), formation of the cornified envelope, and 
neutrophil degranulation. Cholesterol biosynthesis was 
the most critical (enriched) contributor to LUSC (NES = 
2.6327), followed by keratinization (NES = 2.5642) and 
activation of gene expression by SREBF (SREBP) (NES = 
2.5573) (Figure 1).

LEADING EDGE ANALYSIS OF THE ENRICHED PATHWAYS 
IN THE LUSC MOUSE MODEL

The top 20 genes affected from the top 10 most enriched 
pathways were identified from GSEA via the leading-edge 
analysis: KRT1, PKP1, HMGCS1, CYP51A1, KRT4, CFP, 
FASN, PGAM1, PTAFR, KRT18, KRT6C, PKP2, TCHH, 
FURIN, IGHV3-23, LGALS3, ANPEP, SLC11A1, SCAMP1, 
and SLPI (Figure 2).

PATHWAYS AFFECTED BY SINGLE-NUCLEOTIDE 
POLYMORPHISMS (SNP) IN MOUSE LUSC

The pathways affected by pathogenic SNP in mouse 
LUSC were assessed using g:Profiler (Figure 3). Notably, 
no pathways from the Reactome database were enriched. 
However, gene ontology analysis yielded several 
significantly enriched terms. Three biological processes, 
three molecular functions, and four cellular components 
were significantly enriched due to pathogenic SNP in 
LUSC (Figure 3). From these gene ontology results, two 
specific terms were identified, namely homophilic cell 
adhesion via plasma membrane adhesion molecules and 
pyrroline-5-carboxylate reductase activity.

THE GSEA OF TREATMENT-RESPONSIVE VERSUS NON-
RESPONSIVE LUSC PATIENTS

In comparing the output from LUSC patients who 
responded well to treatments against those who did not, the 
top five pathways associated with treatment responsiveness 
were identified: nuclear signaling by ERBB4, signaling 
by ERBB4, inactivation of CSF3 (G-CSF) signaling, TNF 
receptor-associated factor 6 (TRAF6)-mediated induction 
of TGFβ-activated kinase 1 (TAK1) complex within Toll-
like receptor 4 (TLR4) complex, and interleukin 10 (IL-
10) signaling. Nuclear signaling by ERBB4 was the most 
enriched pathway in patients with treatment-responsive 
LUSC (NES = 1.8345), followed by signaling by ERBB4 

(NES = 1.7905), and inactivation of CSF3 (G-CSF) 
signaling (NES = 1.658) (Figure 4).

LEADING EDGE ANALYSIS OF ENRICHED PATHWAYS IN 
RESPONSIVE HUMAN LUSC TOWARD TREATMENTS

Similar to the leading-edge analysis performed from 
enriched pathways in mice LUSC, genes affected from the 
top 10 most enriched pathways in responsive human LUSC 
toward treatments were also identified. The top 20 genes 
are STAT5A, UBC, SOCS3, TAB2, SPARC, CSN2, PGR, 
PSEN2, APOE, CXCL12. HCK, HBEGF, WWOX, CD86, 
CSF1, TNF, MAP3K7, TICAM2, CISH, and DEFB115 
(Figure 5).

FUNCTIONAL IMPACT OF SIMPLE SOMATIC MUTATIONS 
(SSM) IN HUMAN LUSC

The pathogenic SSM analysis on the human LUSC yielded 
41 overrepresented pathways. The top five pathways 
affected are collagen chain trimerization, MET activates 
PTK2 signaling, ECM proteoglycans, L1-ankyrins 
interaction, and assembly of collagen fibrils and other 
multimeric structures (Figure 6).

The overrepresented pathways and mutational 
analysis results obtained from mice and human data 
can be categorized into four major themes: cholesterol, 
cellular interaction, immune system, and collagen 
dysregulation in LUSC. Cholesterol dysregulation may 
be attributed to cholesterol biosynthesis and activation of 
gene expression by SREBF (SREBP). Meanwhile, cellular 
interaction may be dysregulated through homophilic cell 
adhesion via plasma membrane adhesion molecule, MET 
activates PTK2 signaling, and interaction between L1 and 
ankyrin. Immune dysregulation may involve neutrophil 
degranulation, CSF3 (G-CSF) signaling, TRAF6-mediated 
induction of TAK1 complex within TLR4 complex, and 
IL-10 signaling pathways. Finally, ECM dysregulation may 
involve pyrroline-5-carboxylate reductase (PYCR) activity, 
collagen chain trimerization, and assembly of collagen 
fibrils and other multimeric structures. 

DISCUSSION

LUSC is the second most common subtype of lung cancer 
after adenocarcinoma (Alipour et al. 2024), associated 
with a poor therapeutic response due to the distinct genetic 
profile from other lung cancer subtypes (Anusewicz, 
Orzechowska & Bednarek 2020; Zhang et al. 2019). 
Thus, it is crucial to elucidate the underlying molecular 
aberrations and overrepresented pathways that potentially 
contribute to LUSC development. The present study 
investigated lung tumors’ transcriptomic and mutational 
profiles excised from NTCU-treated mice to understand 
LUSC pathobiology better. In addition, the current findings 
were cross-validated with RNA sequencing datasets of 
LUSC patients from the ICGC database.
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FIGURE 1. The enrichment plots illustrate the top five pathways enriched in the mice 
LUSC. The pathways were analyzed using GSEA in descending order: cholesterol 
biosynthesis, keratinization, activation of gene expression by SREBF (SREBP), formation 

of the cornified envelope, and neutrophil degranulation

FIGURE 2. The top 20 genes affected in the top 10 most enriched pathways from the mice 
LUSC. The genes were identified using leading-edge analysis in GSEA
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FIGURE 3. The significantly enriched gene ontology terms impacted by the pathogenic 
SNP mutation in the mice LUSC. MF = molecular functions, BP = biological processes, 
and CC = cellular components. The pathways were labeled accordingly with their 

respective padj value, while the shaded text boxes indicated the two specific terms

FIGURE 4. The enrichment plots illustrate the top five pathways enriched in treatment-
responsive LUSC patients, analyzed in GSEA. The top five pathways in descending order 
are nuclear signaling by ERBB4, signaling by ERBB4, inactivation of CSF3 (G-CSF) 
signaling, TRAF6-mediated induction of TAK1 complex within TLR4 complex, and IL-

10 signaling
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Based on the transcriptomic analysis of mice LUSC, 
cholesterol was identified as one of the main dysregulated 
terms. Our finding aligns with previous studies on increased 
cholesterol biosynthesis in the lung adenocarcinoma 
subtype (Hartmann et al. 2023; Hoppstädter et al. 2021). 
Cholesterol plays a vital role in maintaining healthy 
cellular membrane composition, synthesis of hormones, 
and upregulation of transducing signaling pathways, 
which has been reported in cancer (Mok & Lee 2020). 

In particular, increased cholesterol biosynthesis is also 
necessary to meet the high demand for constructing new 
cell membranes in actively dividing cancer cells (Coradini, 
Ambrogi & Infante 2023). Notably, cholesterol may 
help cancer growth by assisting cancer cells in apoptosis 
evasion, migration, and metastasis (Gu et al. 2019; Jiang 
et al. 2019; Kuzu et al. 2017). Cholesterol also triggers 
the activation of oncogenic signaling pathways, such as 
Hedgehog and mTORC1 (Castellano et al. 2017; Huang 

FIGURE 5. The top 20 genes affected in the top 10 most enriched 
pathways from treatment-responsive LUSC patients. The genes were 

identified using leading-edge analysis in GSEA

FIGURE 6. The significantly enriched pathways impacted by the pathogenic 
SSM mutation in human LUSC, curated from the Reactome database. The 
top 10 pathways were labeled accordingly with their respective padj value, 

while the shaded text boxes indicated the top five pathways
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et al. 2016). Interestingly, the enriched activation of gene 
expression by SREBF (SREBP) is remarkably associated 
with cholesterol biosynthesis. SREBP acts as a master 
transcription factor that can induce lipogenic enzyme 
activity, required in mediating cholesterol biosynthesis 
(Foretz et al. 1999; Shimano et al. 1999). SREBP has been 
shown to promote human glioblastoma multiforme (GBM) 
cancer cell viability through cholesterol accumulation, and 
its inhibition has been proven to impair cancer cell survival 
under hypoxia conditions (Lewis et al. 2015). Thus, our 
finding suggests that LUSC may follow the common 
motive of other types of cancer to survive by upregulating 
cholesterol biosynthesis and SREBP.

The dynamics of cellular interaction have long been 
recognized to play a pivotal role in driving metastasis in 
cancer (Janiszewska, Primi & Izard 2020). In our current 
study, cellular interaction was possibly dysregulated in 
LUSC. Notably, the homophilic cell adhesion via plasma 
membrane adhesion molecules was significantly affected. 
This biological process involves the attachment of a 
plasma membrane adhesion molecule in one cell to an 
identical molecule in an adjacent cell. In particular, the 
enrichment dataset highlighted cadherin and nephrin as 
the affected proteins required for cell-cell communication 
and sustaining tissue integrity (Khoshnoodi et al. 2003; 
Kourtidis et al. 2017). Mounting evidence corroborates 
the impact of the gain or loss of cadherin binding on 
cancer growth. For instance, E-cadherin downregulation 
and N-cadherin upregulation can induce epithelial-
mesenchymal transition (EMT) (Yu et al. 2015), hence 
enabling cancer cells to migrate and metastasize (Tsai 
& Yang 2013). Furthermore, the MET activates PTK2 
signaling, which could also be associated with regulating 
cellular interaction. The MET is a tyrosine kinase receptor 
vital for cell proliferation, differentiation, and migration 
(Taghehchian et al. 2021). Meanwhile, protein tyrosine 
kinase 2 (PTK2) is one of the downstream targets for 
MET. Its activation was linked to cell adhesion regulation 
and cytoskeleton rearrangement, impacting cancer cell 
behavior (Zakaria et al. 2021b). Similarly, the interaction 
between L1 and ankyrin could also be involved in the cell 
adhesion regulatory process. Neural cell adhesion molecule 
L1 (L1) is a transmembrane glycoprotein expressed on the 
cell surface. This glycoprotein can bind with a cytoskeleton 
family protein known as ankyrin, which links the plasma 
membrane with the internal cytoskeleton (Cau et al. 2022). 
The dysregulation of L1-ankyrin interaction can enhance 
cell attachment and detachment from the neighboring cells 
or ECM substrate, consequently facilitating cell migration, 
an initial step for metastasis (Dou et al. 2018). In summary, 
our study shows potential cellular interaction dysregulation, 
exemplified by homophilic cell adhesion, MET-PTK2, and 
L1-ankyrin interactions.

The immune system is an essential component of 
the human body that ironically plays a diverse role in 
cancer development (Gonzalez, Hagerling & Werb 2018). 

Besides cancer cells and other stromal cells, the tumor 
microenvironment is also home to infiltrating immune 
cells such as neutrophils, macrophages, monocytes, mast 
cells, natural killer (NK) T-cells, B cells, a cluster of 
differentiation (CD) 4 T-cells, and CD 8 T-cells (Bhargav 
et al. 2023). Neutrophils, for instance, can be recruited by 
cancer cells to promote multiple hallmarks of cancer, such 
as immunosuppression and normal tissue remodeling into 
tumors (Mollinedo 2019). Moreover, neutrophils can induce 
angiogenesis by releasing matrix metalloproteinase-9 
(MMP-9). Neutrophils  can promote the dissemination 
of cancer cells to the surrounding tissues by releasing 
heparanase and neutrophil elastase via degranulation (Ardi, 
Deryugina & Quigley 2020; Mayfosh, Baschuk & Hulett 
2019). This process occurs when neutrophil cytoplasmic 
granules fuse with the cell membrane, thus resulting in 
soluble granule protein exocytosis. Therefore, the process 
of neutrophil degranulation enriched in the present LUSC 
model may be required for cancer progression, as proven 
by earlier studies in different types of cancer (Emmons et 
al. 2021; Strell et al. 2010). 

Increasing evidence has underscored the role of 
collagen in promoting lung cancer carcinogenesis. Based on 
the mutational analysis in LUSC tissues in vivo, this study 
showed that pyrroline-5-carboxylate reductase (PYCR), 
an enzyme that converts Δ1-pyrroline-5-carboxylate 
(P5C) into proline necessary for collagen biosynthesis 
(Christensen et al. 2017), was impacted in the present 
study. This enzyme is highly expressed in different cancer 
types and can influence cancer cells’ behavior, such as 
proliferation, migration, and therapeutic response (Wang & 
Liu 2019; Wang et al. 2019; Weijin et al. 2019; Zeng et al. 
2017). Earlier studies demonstrated that PYCR knockdown 
inhibited NSCLC cell proliferation and cell cycle in lung 
cancer (Cai et al. 2018), besides hampering cellular EMT 
(Sang, Zhang & Shan 2019). Likewise, the sensitivity 
of lung adenocarcinoma cells to cisplatin was enhanced 
upon PYCR knockdown (She et al. 2019), suggesting 
the critical role of this enzyme in nurturing resistance to 
treatment and promoting cancer growth. As an impact of 
PYCR dysregulation, collagen was also found to be highly 
expressed in LUSC from this study. Collagen is a central 
component of the ECM in normal tissue, responsible for 
sustaining the interstitial structure that affects physical 
tissue characteristics (tissue rigidity) (Bordeleau et al. 2017; 
Xu et al. 2019; Zakaria et al. 2022). Collagen support in 
carcinogenesis is executed in multiple ways. For instance, 
this protein promotes immunosurveillance by preventing 
the entry of CD8+ cytotoxic T-cells (primary lymphocytes 
tasked to eliminate cancer cells) into cancer tissue  
(Voiles et al. 2014). Moreover, collagen promotes cancer 
cell proliferation, invasion, and metastasis by interacting 
with other ECM molecules (Liu et al. 2018; Natarajan et 
al. 2019; Xu et al. 2019). Consistent with our identification 
of enriched collagen-associated terms, earlier studies have 
also reported elevated collagen levels in blood samples of 
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NSCLC patients and 3D-cell cultures containing NSCLC 
cell lines (Fang et al. 2019; Tamiya et al. 2013; Voiles et al. 
2014). Briefly, the crucial role of collagen in LUSC might 
be reinforced by enriched PYCR and collagen in our study. 
However, this study only screened the mutational impacts 
mentioned, and further experimental validation is required 
to confirm the effects of PYCR and collagen dysregulation 
in LUSC progression. 

The data analysis of treatment-responsive LUSC 
patients yielded several enriched signaling pathways, such 
as ERBB4, CSF3 (G-CSF), TRAF6-mediated induction of 
the TAK1 complex within the TLR4 complex, and IL-10 
signaling. These pathways were consistent with the major 
themes enriched in mice and human LUSC of our study, 
thus, potentially associated with LUSC carcinogenesis. 
Although some pathways may serve as good LUSC 
prognoses (CSF-3 inactivation and IL-10 signaling), the 
underlying mechanism of the top five pathways is linked 
with four major themes of pathways enriched in LUSC, 
which offers exciting areas for future research. 

The ERBB4 protein, a member of the EGFR family, 
is crucial in cell proliferation and survival (Gong et al. 
2020; Williams et al. 2015). Mechanistically, this receptor 
protein can dimerize upon ligand stimulation, activating 
various signaling pathways, such as Ras/Raf/MAPK and 
PI3K/AKT, that promote cell proliferation (Guenzi et al. 
2021). Notably, overexpression of ERBB4 mRNA in 
lung adenocarcinoma patients has been linked to distant 
metastases, advanced TNM stages, and poor overall 
survival, indicating its prognostic significance (Masroor et 
al. 2016). The gene that codes this protein was positioned 
among the top 30 most frequently altered genes in lung 
cancer: (26th place in adenocarcinoma), (22nd place in 
LUSC), and (6th place in small cell lung cancer) (Fang et al. 
2015). According to Ding et al. (2008), The ERBB4, along 
with other tyrosine kinase genes, was suggested as a proto-
oncogene in lung cancer, but can also function as a tumor 
suppressor in its homodimer form (Lucas et al. 2022). An 
earlier study also reported a better prognosis of advanced 
NSCLC patients with ERBB4 mutation when treated with 
immune checkpoint inhibitors than those with ERBB4 
wild type (Hu et al. 2021). This may occur due to increased 
sensitivity to chemotherapeutic agents such as Lapatinib 
in cancer that harbor mutant ERBB4, as discussed by Lau 
et al. (2014). Collectively, these findings underscore the 
importance of understanding ERBB4 expression levels in 
lung cancer patients for prognostic evaluation and potential 
therapeutic interventions.

The inactivation of Colony-stimulating factor-3 
(CSF-3) was also enriched in treatment-responsive LUSC 
patients. CSF-3 could promote tumorigenicity through 
angiogenesis, chemotherapeutic resistance, and apoptosis 
inhibition (Kawano et al. 2015; Okazaki et al. 2006). This 
glycoprotein was highly expressed in tumors compared to 
normal tissues of the same organ (Liu et al. 2020; Morris 
et al. 2014). Therefore, CSF-3 inactivation observed in 

treatment-responsive patients is rational as it may improve 
the prognosis of LUSC patients, which aligned with a 
previous study that reported an increased T-cell infiltration 
and decreased tumor growth of colorectal cancer following 
CSF-3 inhibition (Morris et al. 2015). The involvement 
of CSF-3 in regulating immune reaction also agrees with 
our findings that suggest immune dysregulation as one 
of the significant themes enriched in LUSC. The CSF-
3 was reported to be among the critical CSFs required 
for neutrophil production (Hamilton & Achuthan 
2013). Moreover, CSF-3 plays a vital role in the tumor 
microenvironment by attracting immune cells, especially 
neutrophils to the tumor site. These cells then undergo 
reprogramming and contribute to angiogenesis (Missiaen, 
Mazzone & Bergers 2018), which can aid in cancer cell 
dissemination and metastasis (Kowanetz et al. 2010).

The TRAF6-mediated induction of the TAK1 complex 
within the TLR4 complex and IL-10 was also associated 
with immune modulation in cancer. The TRAF6 can 
stimulate the TAK1 activation (Li et al. 2020), leading to 
the activation of multiple pathways, including the TLR4 
signaling pathway (Kim et al. 2022). The TLR4 is crucial 
for innate immunity by regulating the NF-κB transcription 
factor (Li et al. 2020), which mediates inflammatory 
reactions by neutrophil recruitment in innate immune 
response (Verstrepen et al. 2008). Interestingly, TLR4/
NF-κB inhibition has been shown to reduce inflammation-
induced oxidative stress in acute lung injury (Zhang et al. 
2019), suggesting the importance of the TRAF-6/TAK1/
TLR pathway in lung pathogenesis. IL-10 is another 
pathway enriched in treatment-responsive LUSC, which 
warrants attention due to its significant role in shaping the 
tumor microenvironment. IL-10 is an anti-inflammatory 
cytokine that can promote cancer growth by enabling 
immunosurveillance (Dennis et al. 2013). Notably, IL-10 
can be secreted by neutrophils, which were enriched in our 
study. IL-10 is also among the earliest cytokines produced 
by the myeloid cell in acute lung disease (González et 
al. 2021), suggesting its essential role in lung pathology, 
including LUSC. In brief, the TRAF-6 mediated activation 
of TAK1 within the TLR4 complex and IL-10 were 
suggested to be essential for immune modulation in LUSC.

Several limitations have been identified in this study. 
First, low-frequency transcripts were likely undetectable at 
a sequencing depth of ~20 million reads per sample. CADD 
annotations were unavailable to assess the functional 
relevance of SNPs in mouse LUSC, which can lead to the 
potential missing of several critical effects from Indels. 
Moreover, the complete TCGA dataset could not be 
evaluated, possibly leading to incomprehensive findings 
on the functional biological themes. For future studies, it 
is suggested that in vitro and in vivo assays be performed 
to confirm the involvement of these four themes in LUSC 
carcinogenesis. Using transgenic mice with modifications 
to several genes identified in this study would help clarify 
their impact on LUSC. It is also recommended that a lung 
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adenocarcinoma group be included in future studies to 
elucidate further the differences in the four major themes 
identified between LUSC and lung adenocarcinoma. 
Collectively, our suggestion for future studies may help the 
researcher better understand potential biomarkers, target 
genes, and signaling pathways associated with LUSC. 
Moreover, researchers can identify the unique themes or 
independent factors that may be possessed by specific 
subtypes of lung cancer, eventually leading to a big leap 
toward personalized medicine. 

CONCLUSION

The study findings provide insights into the mechanisms 
underlying LUSC and potential therapeutic targets and 
predictive biomarkers in response to treatment from LUSC 
patients. Resultantly, cholesterol-, cellular interaction-, 
immune system-, and collagen-associated terms were 
enriched in mouse and human LUSC. Herein, this study 
suggested the potential contribution of cholesterol, SREBP, 
homophilic cell adhesion, PYCR, and ECM proteins, such 
as collagen, in mediating LUSC. Furthermore, the pathways 
enriched in the treatment-responsive LUSC patients could 
be associated with the pathobiology of LUSC. The potential 
target genes and pathways discussed are worth exploring as 
promising avenues for therapeutic intervention of LUSC. 
Lastly, this study proposed NTCU-induced LUSC as a 
feasible model to understand LUSC carcinogenesis at a 
molecular level due to the similarities in several pathways 
or themes with human LUSC.
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SUPPLEMENTARY TABLE S1. The list of mutated genes unique in NTCU-induced LUSC in mice

ENSMUSG00000026247 ENSMUSG00000090588 ENSMUSG00000057072
ENSMUSG00000026385 ENSMUSG00000054951 ENSMUSG00000037318
ENSMUSG00000073530 ENSMUSG00000006678 ENSMUSG00000037892
ENSMUSG00000026941 ENSMUSG00000096768 ENSMUSG00000033233
ENSMUSG00000026754 ENSMUSG00000041263 ENSMUSG00000028602
ENSMUSG00000075307 ENSMUSG00000063779 ENSMUSG00000032661
ENSMUSG00000027004 ENSMUSG00000033308 ENSMUSG00000076548
ENSMUSG00000027224 ENSMUSG00000043633 ENSMUSG00000030325
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ENSMUSG00000027748 ENSMUSG00000096351 ENSMUSG00000052273
ENSMUSG00000040896 ENSMUSG00000034462 ENSMUSG00000038457
ENSMUSG00000028134 ENSMUSG00000029672 ENSMUSG00000034218
ENSMUSG00000028782 ENSMUSG00000068335 ENSMUSG00000032419
ENSMUSG00000005907 ENSMUSG00000034783 ENSMUSG00000032500
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SUPPLEMENTARY TABLE S2. The list of ICGC donor ID with their respective treatment responsiveness class

ICGC donor ID Treatment responsiveness class
DO26987 Treatment-responsive
DO26993 Treatment-responsive
DO26999 Treatment-responsive
DO26963 Treatment-responsive
DO26971 Non-responsive
DO26976 Treatment-responsive
DO26941 Treatment-responsive
DO26945 Non-responsive
DO26953 Non-responsive
DO26957 Treatment-responsive
DO26959 Treatment-responsive
DO26922 Non-responsive
DO26926 Non-responsive
DO26930 Non-responsive
DO26934 Treatment-responsive
DO26938 Treatment-responsive
DO26906 Treatment-responsive
DO26902 Treatment-responsive
DO26918 Non-responsive
DO26910 Non-responsive
DO26914 Treatment-responsive
DO26882 Treatment-responsive
DO26890 Treatment-responsive
DO26894 Non-responsive
DO26898 Non-responsive
DO26862 Treatment-responsive
DO26866 Non-responsive
DO26874 Treatment-responsive
DO26878 Non-responsive
DO26842 Treatment-responsive
DO26846 Non-responsive
DO26850 Non-responsive
DO26854 Non-responsive
DO26858 Non-responsive
DO26822 Treatment-responsive
DO26826 Treatment-responsive
DO26830 Treatment-responsive
DO26834 Non-responsive
DO26838 Non-responsive

continue to next page
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DO26806 Treatment-responsive
DO26818 Non-responsive
DO26810 Treatment-responsive
DO26520 Treatment-responsive

DO26522 Non-responsive
DO26524 Treatment-responsive
DO26526 Treatment-responsive
DO26528 Treatment-responsive
DO26530 Treatment-responsive
DO26532 Treatment-responsive
DO26534 Treatment-responsive
DO26536 Non-responsive
DO26538 Treatment-responsive
DO26502 Treatment-responsive
DO26504 Non-responsive
DO26508 Non-responsive
DO26510 Non-responsive
DO26512 Treatment-responsive
DO26514 Treatment-responsive
DO26516 Treatment-responsive
DO26518 Treatment-responsive
DO26590 Treatment-responsive
DO26584 Treatment-responsive
DO26587 Treatment-responsive
DO26593 Non-responsive
DO26596 Treatment-responsive
DO26599 Treatment-responsive
DO26560 Treatment-responsive
DO26563 Treatment-responsive
DO26566 Treatment-responsive
DO26569 Non-responsive
DO26581 Non-responsive
DO26572 Non-responsive
DO26575 Non-responsive
DO26578 Non-responsive
DO26540 Treatment-responsive
DO26542 Treatment-responsive
DO26544 Non-responsive
DO26546 Treatment-responsive
DO26548 Treatment-responsive
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DO26550 Non-responsive
DO26552 Non-responsive
DO26553 Non-responsive
DO26555 Non-responsive
DO26557 Non-responsive
DO27739 Non-responsive
DO27747 Treatment-responsive
DO27715 Non-responsive
DO27723 Treatment-responsive
DO27707 Non-responsive

DO26490 Treatment-responsive
DO26484 Treatment-responsive
DO26486 Non-responsive
DO26488 Treatment-responsive
DO26494 Treatment-responsive
DO26496 Non-responsive
DO50101 Non-responsive
DO50102 Treatment-responsive
DO50103 Treatment-responsive
DO50104 Treatment-responsive
DO26470 Treatment-responsive
DO26461 Non-responsive
DO26462 Treatment-responsive
DO26463 Treatment-responsive
DO26464 Non-responsive
DO26465 Treatment-responsive
DO26466 Non-responsive
DO26467 Non-responsive
DO26468 Non-responsive
DO26469 Non-responsive
DO26480 Non-responsive
DO26481 Non-responsive
DO26482 Treatment-responsive
DO26472 Treatment-responsive
DO26473 Non-responsive
DO26477 Non-responsive
DO26478 Non-responsive
DO26479 Treatment-responsive
DO26440 Treatment-responsive
DO26441 Non-responsive
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DO26442 Non-responsive
DO26443 Non-responsive
DO26444 Treatment-responsive
DO26445 Treatment-responsive
DO26446 Non-responsive
DO26447 Treatment-responsive
DO26448 Treatment-responsive
DO26449 Non-responsive
DO26460 Treatment-responsive
DO26453 Treatment-responsive
DO26454 Non-responsive
DO26455 Non-responsive
DO26456 Non-responsive
DO26457 Non-responsive
DO26459 Treatment-responsive
DO26420 Non-responsive

DO26421 Non-responsive
DO26422 Treatment-responsive
DO27755 Treatment-responsive
DO26423 Non-responsive
DO26424 Treatment-responsive
DO26425 Treatment-responsive
DO26426 Non-responsive
DO26427 Treatment-responsive
DO26428 Treatment-responsive
DO26429 Non-responsive
DO26431 Treatment-responsive
DO26432 Treatment-responsive
DO26434 Treatment-responsive
DO26435 Non-responsive
DO26436 Treatment-responsive
DO26437 Non-responsive
DO26438 Non-responsive
DO49084 Treatment-responsive
DO49085 Treatment-responsive
DO49083 Treatment-responsive
DO50097 Non-responsive
DO50098 Non-responsive
DO50094 Treatment-responsive
DO50095 Non-responsive
DO26761 Treatment-responsive
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DO26764 Treatment-responsive
DO26766 Non-responsive
DO26769 Non-responsive
DO26772 Treatment-responsive
DO26775 Non-responsive
DO26778 Non-responsive
DO26740 Treatment-responsive
DO26743 Treatment-responsive
DO26746 Non-responsive
DO26752 Non-responsive
DO26755 Treatment-responsive
DO26758 Treatment-responsive
DO26722 Treatment-responsive
DO26725 Non-responsive
DO26728 Non-responsive
DO26734 Treatment-responsive
DO26737 Treatment-responsive
DO26701 Treatment-responsive
DO26704 Treatment-responsive
DO26707 Non-responsive
DO26719 Treatment-responsive

DO26710 Treatment-responsive
DO26713 Treatment-responsive
DO26716 Non-responsive
DO26790 Non-responsive
DO26782 Treatment-responsive
DO26786 Non-responsive
DO26794 Non-responsive
DO26798 Treatment-responsive
DO26641 Non-responsive
DO26644 Treatment-responsive
DO26650 Treatment-responsive
DO26653 Non-responsive
DO26656 Treatment-responsive
DO26659 Non-responsive
DO26620 Non-responsive
DO26623 Non-responsive
DO26626 Treatment-responsive
DO26629 Non-responsive
DO26632 Non-responsive
DO26635 Non-responsive
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DO26638 Non-responsive
DO26602 Treatment-responsive
DO26605 Non-responsive
DO26608 Treatment-responsive
DO26611 Non-responsive
DO26614 Non-responsive
DO26617 Non-responsive
DO26686 Treatment-responsive
DO26689 Treatment-responsive
DO26692 Treatment-responsive
DO26695 Non-responsive
DO26698 Non-responsive
DO26662 Treatment-responsive
DO26665 Treatment-responsive
DO26668 Treatment-responsive
DO26680 Non-responsive
DO26671 Treatment-responsive
DO26674 Treatment-responsive
DO26677 Non-responsive
DO45499 Non-responsive
DO45495 Treatment-responsive
DO45496 Non-responsive
DO45498 Treatment-responsive
DO45491 Treatment-responsive
DO45492 Treatment-responsive
DO45494 Treatment-responsive

DO45488 Treatment-responsive
DO45489 Treatment-responsive
DO45485 Treatment-responsive
DO45482 Treatment-responsive
DO45490 Treatment-responsive
DO45479 Treatment-responsive
DO45473 Non-responsive
DO45476 Treatment-responsive
DO45471 Non-responsive
DO45467 Treatment-responsive
DO45469 Treatment-responsive
DO45462 Treatment-responsive
DO45463 Treatment-responsive
DO45465 Treatment-responsive
DO45460 Treatment-responsive
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DO45461 Treatment-responsive
DO45459 Treatment-responsive
DO45456 Treatment-responsive
DO45457 Treatment-responsive
DO45458 Treatment-responsive
DO45451 Treatment-responsive
DO45453 Treatment-responsive
DO45454 Treatment-responsive
DO45450 Treatment-responsive
DO45448 Treatment-responsive
DO45449 Treatment-responsive
DO45444 Treatment-responsive
DO45445 Non-responsive
DO45446 Treatment-responsive
DO45447 Treatment-responsive
DO45440 Treatment-responsive
DO45442 Treatment-responsive
DO45443 Treatment-responsive
DO45437 Treatment-responsive
DO45438 Treatment-responsive
DO45439 Non-responsive
DO45433 Treatment-responsive
DO45434 Treatment-responsive
DO45435 Treatment-responsive
DO45436 Non-responsive
DO45430 Treatment-responsive
DO45431 Treatment-responsive
DO45432 Non-responsive
DO45426 Treatment-responsive
DO45427 Treatment-responsive
DO45428 Non-responsive

DO45429 Treatment-responsive
DO45425 Treatment-responsive
DO45552 Treatment-responsive
DO45547 Treatment-responsive
DO45549 Treatment-responsive
DO45543 Treatment-responsive
DO45546 Treatment-responsive
DO45540 Treatment-responsive
DO45537 Non-responsive
DO45532 Treatment-responsive
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DO45535 Treatment-responsive
DO45530 Non-responsive
DO45527 Treatment-responsive
DO45523 Treatment-responsive
DO45520 Treatment-responsive
DO45517 Treatment-responsive
DO45510 Treatment-responsive
DO45513 Treatment-responsive
DO45503 Treatment-responsive
DO45506 Treatment-responsive
DO45500 Treatment-responsive
DO45509 Treatment-responsive
DO27461 Treatment-responsive
DO27453 Treatment-responsive
DO27468 Treatment-responsive
DO27437 Non-responsive
DO27445 Non-responsive
DO27413 Non-responsive
DO27421 Non-responsive
DO27429 Treatment-responsive
DO27405 Non-responsive
DO27397 Non-responsive
DO27381 Treatment-responsive
DO27389 Treatment-responsive
DO27357 Treatment-responsive
DO27373 Non-responsive
DO27365 Treatment-responsive
DO27334 Non-responsive
DO27341 Treatment-responsive
DO27349 Treatment-responsive
DO27310 Treatment-responsive
DO27318 Non-responsive
DO27302 Non-responsive
DO27279 Non-responsive
DO27295 Treatment-responsive
DO27255 Non-responsive

DO27271 Treatment-responsive
DO27240 Treatment-responsive
DO27232 Non-responsive
DO27247 Non-responsive
DO27612 Treatment-responsive
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DO27620 Treatment-responsive
DO27628 Treatment-responsive
DO27604 Non-responsive
DO27675 Treatment-responsive
DO27691 Treatment-responsive
DO27683 Non-responsive
DO27652 Treatment-responsive
DO27660 Non-responsive
DO27667 Treatment-responsive
DO27644 Treatment-responsive
DO27596 Treatment-responsive
DO27508 Treatment-responsive
DO27580 Non-responsive
DO27572 Treatment-responsive
DO27588 Non-responsive
DO27532 Treatment-responsive
DO27540 Non-responsive
DO27516 Treatment-responsive
DO27524 Non-responsive
DO27476 Non-responsive
DO27492 Treatment-responsive
DO27484 Non-responsive
DO27216 Treatment-responsive
DO27224 Treatment-responsive
DO27208 Non-responsive
DO27184 Treatment-responsive
DO27176 Non-responsive
DO27192 Treatment-responsive
DO27160 Non-responsive
DO27168 Treatment-responsive
DO27136 Treatment-responsive
DO27152 Treatment-responsive
DO27144 Non-responsive
DO27120 Non-responsive
DO27128 Treatment-responsive
DO27104 Treatment-responsive
DO52019 Treatment-responsive
DO27060 Non-responsive
DO52018 Treatment-responsive
DO27074 Treatment-responsive
DO27067 Non-responsive
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DO27039 Non-responsive
DO27053 Treatment-responsive
DO27046 Treatment-responsive
DO27011 Non-responsive
DO27018 Non-responsive
DO27032 Non-responsive
DO27025 Treatment-responsive
DO27005 Treatment-responsive
DO27081 Non-responsive
DO27096 Treatment-responsive
DO27088 Treatment-responsive
DO52023 Non-responsive
DO52025 Treatment-responsive
DO52026 Non-responsive
DO52020 Non-responsive
DO52021 Treatment-responsive
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SUPPLEMENTARY FIGURE S1. (a) shows discrete 28s and 18s bands of 
RNA extracted from the vehicle groups and (b) shows discrete 28s and 

18s bands of RNA extracted from the cancer groups.
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SUPPLEMENTARY FIGURE S2. The RIN value of all mice lung tissue 
samples analyzed from the Vehicle (MC4, MC5 and MC7) and Cancer 

groups (MN1, MN2 and MN3).

SUPPLEMENTARY FIGURE S3. The PCA plot of all mice lung tissue 
samples analyzed from the Vehicle and Cancer groups.
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1) The coding used in Anaconda prompt for in silico study (Phyton format) to convert the SSM data 
file in (.tsv) to text (.txt) format ready for VEP analysis.

#To get the file ready for VEP analysis.

import csv

import pandas as pd

with open('simple_somatic_mutation.open.tsv', 'r') as fin, open('VEP_input.txt', 'w') as fout:

reader = csv.reader(fin, delimiter ='\t')

writer = csv.writer(fout, delimiter ='\t')

writer.writerow(['Chromosome', 'Chromosome_Start', 'Chromosome_End', 'Mutation'])

next(reader, None) #To skip the headers.

for row in reader:

writer.writerow([row[8], row[9], row[10]] + ['/'.join([row[15], row[16]])])

df = pd.read_csv('VEP_input.txt', sep = '\t')

df.sort_values(by = ['Chromosome', 'Chromosome_Start'], inplace = True)

df.drop_duplicates(subset = ['Chromosome', 'Chromosome_Start', 'Chromosome_End', 'Mutation'], 
inplace = True)

df.to_csv('VEP_input.txt', sep = '\t', index = False, header = False)

2) The coding used in Anaconda prompt for in silico study (Phyton format) to filter out non-major 
gene transcript and add VEP annotation (CADD scores) to the mutation file.

import csv

from itertools import islice

#To filter out non-major gene transcripts.

dominant = []

with open('appris_data.principal.txt','r') as fin:

for row in csv.reader(fin, delimiter = '\t'):

dominant.append(row[2])
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