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ABSTRACT

In this paper, we introduce a modified norm-constraint mean-variance portfolio selection method. First, we use the 
Augmented Lagrangian method (ALM) to convert the objective function to an unconstrained objective function. Then, 
we apply the proximal spectral gradient method (PSG) onto the unconstrained objective function to find an optimal sparse 
portfolio. This novel sparse portfolio optimization procedure encourages sparsity in the entire portfolio using  – norm. 
The PSG utilizes a multiple damping gradient (MDG) method to solve the smooth terms of the function. The step size is 
computed using the Lipschitz constant. Also, PSG uses the iterative thresholding method (ITH) to solve  – norm and 
induce the sparsity of the portfolio. The performance of the PSG is illustrated by its application on the Malaysian stock 
market. It is found that PSG’s sparse portfolio outperforms the equal weightage portfolio when the initial portfolio size is 
around 100 stocks and is prefiltered using the Sharpe ratio or the coefficient of variation.
Keywords:  – norm; sparse portfolio optimization; proximal spectral gradient; Malaysia stock market

ABSTRAK

Dalam kertas ini, kami memperkenalkan kaedah pemilihan portfolio min-varians kekangan norma yang diubah suai. Pada 
awalnya, kami menggunakan Kaedah Augmented Lagrangian (ALM) untuk mengubah fungsi objektif kepada fungsi 
objektif tanpa sekatan. Seterusnya, kami memakai kaedah kecerunan proksimal spektrum (PSG) ke atas fungsi objektif 
tanpa sekatan tersebut untuk mendapat portfolio jarang optimum. Prosedur pengoptimuman portfolio jarang yang novel ini 
menggalakkan jarang bagi portfolio keseluruhan dengan menggunakan  – norma. PSG menggunakan kaedah kecerunan 
redaman berbilang (MDG) untuk menyelesaikan sebutan licin pada fungsi tersebut. Saiz langkah dihitung dengan 
menggunakan pemalar Lipschitz. Tambahan pula, PSG menggunakan kaedah ambang berbilang (ITH) untuk menyelesaikan 

 – norma dan menggalakkan jarang bagi portfolio. Prestasi PSG ini digambarkan dengan aplikasinya ke atas pasaran 
saham Malaysia. Didapati bahawa portfolio jarang yang dicadangkan mendahului prestasi portfolio berwajaran sama 
apabila saiz portfolio permulaan adalah kira-kira 100 saham dan telah ditapis dengan nisbah Sharpe atau pekali variasi.
Kata kunci:  – norma; pengoptimuman portfolio jarang; Kecerunan proksimal spektrum; pasaran saham Malaysia;

INTRODUCTION

Since the introduction of Markowitz’ Mean-variance 
(MV) model (Markowitz 1952), many models have been 
proposed, all of which are built upon the foundation laid 
by Markowitz’s MV model. Nevertheless, the sample mean 
and the sample covariance matrix are susceptible to error, 
especially when dealing with large portfolio size (Chopra 
& Ziemba 1993; DeMiguel, Garlappi & Uppal 2011; 
Jagannathan & Ma 2003), it cannot consistently dominate 

the naïve  diversification strategy (Hwang, Xu & In 
2018).

Markowitz’s MV model was modified in many 
ways to improve it (Chen, Dai & Zhang 2020; Gotoh 
& Takeda 2011; Kremer et al. 2020; Olivares-Nadal & 
DeMiguel 2018). Among the improvements on the MV 
model, sparse portfolio optimization has been a popular 
research topic since it reduces the difficulties in managing 
a handful of stocks and transaction costs. The sparse 
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portfolio optimization is divided into two categories: long-
term sparse portfolio optimization which restructures the 
portfolio with a time interval of a month or a year or even 
longer, and short-term sparse portfolio optimization which 
rebalances the portfolio daily (or even shorter) (Wang et al. 
2023). In our study, we specifically concentrate on long-
term sparse portfolio optimization, aiming to optimize 
portfolio composition over extended time intervals.

In sparse portfolio optimization, many researchers do 
not use norm to sparsify the portfolio but tend to use 

norm as a loose relaxation of norm (Chen, Dai 
& Zhang 2020; Kremer et al. 2020) because the norm 
is non-convex, non-differentiable and non-continuous, 
posing challenges for solving optimization problems. 
However, we have chosen to embrace norm to 
construct our sparse portfolio as we believe it is a more 
natural and suitable method for portfolio selection. Sim 
et al. (2023) proposed a proximal linearized approach for 
optimizing sparse equity portfolios. The study effectively 
employed a gradient method combined with the norm 
in the portfolio selection.

To tackle the optimization problem involving the 
norm, we apply a proximal gradient method called 

the Proximal Spectral Gradient (PSG) method. It is a 
gradient method that integrates two essential techniques: 
the Multiple Damping Gradient (MDG) method (Sim, 
Leong & Chen 2019) and the iterative thresholding method 
(ITH). The MDG solves the smooth terms of the objective 
function while the ITH handles the term and controls 
the number of non-zero stocks in selected portfolios.

In theory, the PSG method has the capability to 
address large-scale unconstrained optimization problems 
with minimal storage and less computational time (Woo 
et al. 2023). While PSG has been used in the field of 
machine learning, demonstrating robustness and stability 
in finding sparse solutions for linear systems, it has not 
yet been explored in the context of portfolio optimization. 
Therefore, in this study, we aim to extend its application 
to portfolio optimization and evaluate its efficiency in 
discovering optimal sparse portfolios. The contributions of 
this paper are summarized as follows:

1) The construction of a modified norm-constraint 
MV portfolio selection objective function and a portfolio 
optimization model that explicitly controls the sparsity 
of the portfolio. Additionally, the effectiveness of this 
approach in constructing sparse portfolios is demonstrated 
by using the Bursa Malaysia Stock Index (FBMKLCI and 
FBMT100)

2) The adoption of a two-step process, starting with 
stock filtering based on either the Sharpe ratio or the 
coefficient of variation, then, applying the PSG to obtain 
optimal sparse portfolios with varying numbers of active 
stocks. The performance of the proposed procedure is 
assessed in terms of average annual return, average Sortino 
ratio and average  ratio.

The paper is organized in the following order: 
Methodology section that provides a brief outlines of 
Markowitz’s MV model and our modifications. It discusses 
also the procedures applying the proximal gradient method 
which combines MDG and ITH to solve both smooth and 
non-smooth parts of the objective function. Additionally, 
the Augmented Lagrangian method (ALM) is introduced 
to address the constraints in this study. In the Results 
and Discussion section, the paper presents and discusses 
the outcomes obtained by applying the method to the 
Malaysian stock market. Finally, the Conclusion section 
offers a summary of the findings and key insights derived 
from the study, emphasizing the effectiveness and potential 
implications of the proposed approach in portfolio 
optimization.

METHODOLOGY

MEAN-VARIANCE MODEL

Markowitz’s MV model considers both the return and risk 
of the portfolio. One can think of maximizing the return 
and minimizing the risk to find the optimal portfolio.

Let  be the weight vector of the  assets, 
 be a positive semidefinite covariance matrix, 

and  be the mean return vector. A portfolio 
is defined as a vector of asset weights  for assets 

 that represents the proportion of capital 
to be invested in each asset. Consider the following 
constrained optimization problem:

(1)

Here,  represents the risk of the portfolio and 
 represents the portfolio mean return. In this study, we 

include a budget constraint and no short sell constraints. 
Now, by letting , , , and  be the positive coefficient 
parameters, we present our modified norm-constrained 
portfolio selection model as follows:

(2)

Among different regularization constraints in the 
function, norm encourages diversification and 
stability to the portfolio, while norm encourages 
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sparse solutions. As mentioned in (1), the investor’s capital 
must be fully invested and short selling is not permitted. 
However, solving constrained optimization problems can 
be challenging. To address this, we introduce the ALM 
into the MV function to convert the constrained objective 
function to an unconstrained function, thereby facilitating 
the optimization process.

The augmented Lagrangian function can be expressed 
as:

where  is the penalty parameter and  is the estimate of 
the Lagrange multiplier for the equality constraint , .

Let  be a given parameter, the augmented 
Lagrangian function of (2) is defined as follows:

(3)

GRADIENT METHOD OPTIMIZATION

In the field of optimization, gradient methods are widely 
used for solving optimization problems, primarily because 
they only require the gradient of the objective function. 
This property makes gradient methods computationally 
efficient and applicable to a wide range of optimization 
tasks. Given the unconstrained optimization problem as 
follows:

where  is a twice continuously differentiable function. 
The method generates a sequence  by the following rule:

where  is the search direction and  is the 
steplength.

Cauchy (1847) introduced the steepest descent 
method and it is the simplest gradient method for solving 
large-scale unconstrained optimization problems. It has a 
low computational cost per iteration and only low storage, 

 is required. Despite these advantages, it has a slow 
convergence rate and ‘zig-zagging’ behaviour when almost 
reaching the optimum point.

To solve this issue, a modified gradient method 
called the Multiple Damping Gradient method (MDG) is 
proposed (Sim, Leong & Chen 2019). It aims to align the 
step length for each gradient component with a parameter 
corresponding to some values within the spectrum of the 
local Hessian matrix and eventually force the algorithm 

in the one-dimensional subspace to be spanned by eigen-
direction.

Later, the proximal spectral gradient method (PSG) is 
proposed for solving sparse optimization (Woo et al. 2023). 
In this paper, Woo et al. (2023) incorporated the MDG with 
a proximal method. The numerical results were promising 
and outperformed the Proximal Broyden–Fletcher–
Goldfarb–Shanno and Proximal Steepest Descent. 
Therefore, we will apply the PSG for sparse portfolio 
optimization in this study.

PROXIMAL GRADIENT METHOD

The modified MV objective function in (2) can be 
separated into two parts: the smooth function terms and the 
non-smooth norm. The smooth function terms will be 
solved using MDG whereas the norm will be solved 
using ITH.

MDG belongs to the spectral gradient method family 
and is a novel approach (Sim, Leong & Chen 2019). It 
requires only  storage by replacing the full rank 
Hessian matrix with a  diagonal matrix . The 
inverse of  which is denoted by

gives us the approximation of the inverse Hessian matrix.
Let  and . 

Given the Lagrange multiplier , the  diagonal matrix 
 is given as follows:

(4)

and the cumulative function is written as:

(5)

where  and , with 
 denotes the gradient of the function. We can obtain the 

Lagrange multiplier  through approximation by one 
iteration of Newton-Raphson, starting from . When 

,  yields a unique positive solution, 
thus the approximation of  is as follows:

(6)
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Therefore, by combining (4) and (6),  is updated as 
follow:

(7)

where  is the Oren-Luenberger scaling (Luenberger & 
Ye 2021).

To solve the non-smooth, nonconvex, and 
nondifferentiable  norm, the MDG is incorporated 
with the ITH. ITH is simple to apply, and it can induce 
sparsity of the portfolio. For every  and 

, we can express the proximal operator of 
norm in terms of element-wise thresholding:

Now we are ready to present the algorithm for the PSG. 
PSG Algorithm:

1. Set , initialize  and Lagrange multiplier 
. Set a sparsity control parameter , 

convergence tolerance ϵ and  as  identity matrix.

2. Compute , the derivative of (3) and .

3. For every , compute  
iteratively.

4. Update  by the proximal method.

5. Update .

6. If , stop, else compute , , and 
, where  is defined by (7).

7. Set , and go to step 3.

Note that we compute the step size α using the Lipschitz 
constant, . Given two points  and , a function is 

Lipschitz continuous if there exists a real positive constant 
 such that

Based on (3), the first-order partial derivative is as follows:

Therefore, by applying the triangular inequality:

Based on the inequality, we can approximate the Lipschitz 
constant  as

Here, as , we obtain our  with .

RESULTS AND DISCUSSION

In our study, we conducted all our analysis using Python 
3.11 software on Dell Vostro 14 5468 (2.7 GHz Intel Core 
i5 8GB). We first gather the daily adjusted closing prices, 

 of the stocks using the Yfinance package in Python 
and compute the daily excess returns,  using the formula:

where  is the daily risk-free rate that can be obtained 
by dividing the annual risk-free rate by 252 trading days. 
The adjusted closing price is taken into consideration as it 
reflects the stock’s value after accounting for any corporate 
actions, such as stock splits, dividends, and right offerings. 
In this study, we set the risk-free rate at 1.75% per annum 
following Malaysia’s central bank rate in March 2022.

With these daily returns, we normalize the daily 
returns using a modified Manly Box-Cox transformation 
(Hawkins & Weisberg 2017; Manly 1976). The modified 
Manly Box-Cox transformation is based on a two-step 
procedure: Step 1: Transform  to , 
and Step 2: Apply the Manly Box-Cox transformations:

where  is a constant and the parameter  is estimated using 
the Yeo-Johnson method that provided by Scipy.stats 
package in Python. In this study, we set . After 
that, we continue to find the annualized mean excess return 
and the standard deviation of the stocks, thus, computing 
the necessary mean return vector and covariance matrix 
to apply in sparse portfolio optimization. However, when 
analysing the performance of the resulting sparse portfolio, 
we use the original daily returns to compute the annual 
returns and other indicators.
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In this paper, we set the convergence tolerance as 
. We stop the algorithm when . Since 

our focus in this study was not to find the best parameter, 
we fix our coefficient of the terms as , , 

, , . The  is set large enough to ensure 
the resulting weights are non-negative.

FBMKLCI AND FBMT100

In this section, we evaluate the application of PSG on 
two Bursa Malaysia indexes: FTSE Bursa Malaysia KLCI 
(FBMKLCI) and FTSE Bursa Malaysia Top 100 Cap Index 
(FBMT100). The FBMKLCI comprises the 30 largest 
companies listed on the Bursa Malaysia Main Board by full 
market capitalization from the 13 sectors and most of them 
are blue chips companies, while FBMT100 comprises the 
top 100 companies for Corporate Governance disclosure 
by rank and performance with market capitals ranging 
from RM30 million to RM10+ billion (0.0017% to 0.58% 
of total Malaysia’s market capital).

In this section, we select a study period from 2018 to 
2021, to assess the performance of the PSG method both 
before and during the COVID-19 pandemic period. We 
apply the PSG to the two indexes in 2018, 2019, and 2020 
and fix the number of active stocks in the sparse portfolio 
each year to be 10. After obtaining the weights of the 10 
active stocks for each year, we retain the sparse portfolios 
for one year and analyse their performance in terms of 
annual return, the Sharpe ratio and the Sortino ratio.

Sharpe ratio measures the stock’s performance by 
comparing it to a risk-free investment while considering 
the risk.

where  is the standard deviation of the stock. 

On the other hand, the Sortino ratio measures the 
stock’s performance relative to its downside risk or 
negative volatility.

where  is the downside deviation. 
Tables 1 and 2 show the performance of the optimal 

sparse portfolio generated by PSG, with an equal-
weightage (EW) portfolio as a benchmark. We also include 
the performance of the index itself during the year as a 
comparison.

From Table 1, PSG’s sparse portfolio outperforms 
the FBMKLCI but could not outperform the EW portfolio 
in 2019. Its annual return, Sharpe ratio and Sortino ratio 
are 2.3550%, 0.1522 and 0.2610, which are half the result 
of the EW portfolio. In 2020, when the unprecedented 
COVID-19 pandemic occurred, Malaysia’s economy faced 
a structural break which impacted all the stocks. The blue 
chip companies were no exception. Nevertheless, PSG’s 
sparse portfolio performs better than the EW portfolio and 
FBMKLCI as it manages to capture the companies in 2019 
that were resistant to the COVID-19 pandemic’s impact. 
However, we can see it fails to predict the price trend of the 
stocks in 2021. In 2021, some of the companies in PSG’s 
sparse portfolio obtained in 2020 were impacted negatively, 
causing it to have the worst annual return (-5.2327%), but 
it still managed to perform better than FBMKLCI in Sharpe 
ratio (-0.0556) and Sortino ratio (-0.0439). Practically, 
since the desired number of stocks to be held in a portfolio 
is within 10 to 30 stocks and FBMKLCI comprises good-
performing blue-chips stocks, it is not desirable to apply 
the PSG for further portfolio optimization. In this case, the 
EW method is enough to give the investors a good return 
and risk diversification.

In Table 2, we can see that PSG’s sparse portfolio 
consistently performs better than EW portfolio and 

TABLE 1. Performance of the PSG portfolio using FBMKLCI

Method Year Annual Return (%) Sharpe Ratio Sortino Ratio
FBMKLCI -3.5899 -0.7107 -0.6503
EW 2019 13.6893 0.2454 0.4323
PSG 2.3550 0.1522 0.2610
FBMKLCI 2.0498 0.1142 0.2859
EW 2020 15.0784 0.1953 0.3221
PSG 16.5156 0.2298 0.3515
FBMKLCI -2.5380 -0.3582 -0.2783
EW 2021 -2.3252 0.0074 0.0348
PSG -5.2327 -0.0556 -0.0439
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the FBMT100 in all three years despite the COVID-19 
pandemic, except the Sharpe ratio and the Sortino ratio 
in 2019 (0.1552 and 0.5582), which are lower than EW 
portfolio’s (0.3450 and 0.6857). In short, PSG works in 
portfolio optimization when the portfolio size is large as it 
can scan through more stocks that have better performance 
and retain them in the portfolio.

G-COV AND G-SR

With the previous findings, it is crucial to note that PSG 
works efficiently only when the portfolio size is large. 
Also, when we analyse the stocks individually in the whole 
Malaysia market, there are more stocks that are not in the 
FBMT100 but are performing better than some stocks in 
FBMT100. Therefore, we take a step further by creating a 
new portfolio using 100 stocks with the smallest positive 
coefficient of variation; with the best risk-return trade-
off in each year. We name this portfolio as G-COV. To 
determine the stocks’ coefficient of variation, we use the 
one-year preceding daily adjusted closing price.

We apply the PSG to generate five sparse portfolios, 
each with 10, 15, 20, 25 and 30 active stocks, respectively 
(PSG-10, PSG-15, PSG-20, PSG-25, PSG-30). We carry 
out our analysis each year from 2012 to 2021, eventually 
summarizing the results into 3 years (2019-2021), 5 years 
(2017-2021), and 10 years (2012-2021) and averaging the 
results based on the duration of the timeframes. We compare 
these sparse portfolios in terms of average annual returns, 
average Sortino ratio and average  ratio. We also add 
the EW portfolio as a benchmark.  ratio evaluates the 
performance of the portfolio relative to another portfolio as 
a benchmark; in this study, the benchmark is the FBMT100 
index. It is calculated with the formula herewith:

where  is Sharpe ratio of the portfolio;  is the Sharpe 
ratio of the market index; and  is the standard deviation 
of the market index. In Table 3, all the sparse portfolios 

perform better than the EW portfolio in 3 years, 5 years, 
and 10 years timeframe in all the indicators. In the average 
annual return section, the PSG-20 portfolio obtains the 
highest 3 years average annual return (19.3713%), 5 years 
average annual return (12.0532%) and 10 years average 
annual return (15.1996%). On the other hand, the PSG-
10 portfolio has the highest average Sortino ratio except 
in 3 years timeframe (0.7596) which is slightly lower than 
PSG-15 (0.7622). It also has the highest average  ratio 
among the sparse portfolios. Therefore, this shows that it 
can perform well even during a market downfall. Although 
PSG-10 may not have the highest average annual return, it 
is the best-performing sparse portfolio among other sparse 
portfolios when we investigate other indicators.

Other than G-COV, we have constructed another 
portfolio with 100 stocks with the best Sharpe ratio using 
one-year preceding data and named this portfolio G-SR. 
The difference between the Sharpe ratio and the coefficient 
of variation is that the Sharpe ratio uses the mean excess 
return after deducting the risk-free rate. In contrast, the 
coefficient of variation uses the realized mean return. 
We conduct the same procedure by applying the PSG 
onto G-SR. The results of the performance of the sparse 
portfolios are shown in Table 4.

In Table 4, the PSG’s sparse portfolios’ performance 
surpasses the EW portfolio when we use G-SR. In the 
average annual return section, the PSG-15 has the lowest 
average annual return among all the sparse portfolios with 
11.4280% in the 3 years timeframe, 7.5255% in the 5 years 
timeframe, and 10.6492% in the 10 years timeframe. It 
is also the only sparse portfolio that has a lower average 
annual return than the EW portfolio in the 3 years and 5 
years timeframe. Nevertheless, when we look at its average 
Sortino ratio and average  ratio, PSG-15 has a better 
average Sortino ratio and average  ratio than the EW 
portfolio, showing that it is still performing better than the 
EW portfolio. What we need to consider, too, is that PSG-
15 only has 15 active stocks in the portfolio whereas the 
EW portfolio has 100 active stocks. This difference in the 
number of stocks impacts transaction costs. With a smaller 

TABLE 2. Performance of the PSG portfolio using FBMT100

Method Year Annual Return (%) Sharpe Ratio Sortino Ratio
FBMT100 -1.7039 -0.4344 -0.2785
EW 2019 14.2729 0.3450 0.6857
PSG 14.9992 0.1552 0.5582
FBMT100 2.6953 0.1476 0.3228
EW 2020 10.5592 0.2049 0.3714
PSG 20.3025 0.4728 0.7322
FBMT100 -2.9004 -0.4420 -0.3662
EW 2021 0.0734 0.0301 0.1085
PSG 6.3221 0.3527 0.5693
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TABLE 3. Performance of the sparse portfolios on G-COV with one year preceding daily adjusted closing price

Methods
years EW PSG-10 PSG-15 PSG-20 PSG-25 PSG-30

Average 3 12.7100 16.2034 13.6743 19.3713 15.1606 13.3077
Annual 5 7.8495 12.0123 9.5980 12.0532 9.9170 9.0678
Return (%) 10 11.3101 15.1373 14.5936 15.1996 14.8931 13.9596
Average 3 0.4836 0.7596 0.7622 0.7332 0.6049 0.5856
Sortino 5 0.3208 0.6928 0.6270 0.5589 0.4749 0.4673
Ratio 10 0.5972 0.9727 0.8913 0.8201 0.8064 0.7907
Average 3 4.1667 7.4355 7.0221 6.0739 5.3248 5.1546

5 4.5412 10.7199 8.3798 6.8748 6.3837 6.4576

Ratio 10 3.6595 7.5641 6.1798 5.3290 5.2389 5.2163

TABLE 4. Performance of the sparse portfolios on G-SR with one year preceding daily adjusted closing price

Methods
years EW PSG-10 PSG-15 PSG-20 PSG-25 PSG-30

Average 3 12.7100 15.9535 11.4280 19.7821 15.9586 13.9763
Annual 5 7.7816 9.6218 7.5255 12.4460 10.2190 9.0486
Return (%) 10 10.5000 12.1045 10.6492 14.6134 12.9524 11.6113
Average 3 0.4836 0.7607 0.6680 0.7204 0.5993 0.5589
Sortino 5 0.3149 0.4614 0.4510 0.4982 0.4482 0.4149
Ratio 10 0.6031 0.6917 0.6498 0.7274 0.6893 0.6441
Average 3 4.1667 6.8833 6.3380 6.4077 5.4865 5.2215

5 4.4983 5.4479 5.7221 5.6546 5.9037 5.9215

Ratio 10 3.6828 4.1608 4.2066 4.5110 4.6082 4.4722

number of active stocks, PSG-15 potentially incurs lower 
transaction costs compared to the EW portfolio. Therefore, 
when taking transaction costs into account, PSG-15 
appears to be a more promising option due to its potential 
for reduced transaction costs.

On the other hand, among the sparse portfolios, PSG-
20 has the highest 3 years (19.7821%), 5 years (12.4460%) 
and 10 years’ (14.6134%) average annual return, and the 
highest 5 years and 10 years’ average Sortino ratio (0.4982 
and 0.7274). However, its  ratio is not the highest of 
all the sparse portfolios, showing that PSG-20 is riskier 
than some sparse portfolios, but if an investor is willing to 
accept higher risk in pursuit of higher returns, they have the 
option to consider PSG-20. We have shown that PSG works 
efficiently on G-COV and G-SR with one-year preceding 
daily adjusted closing price. We are curious too if we can 
obtain better results with a longer timeframe of preceding 
data. Thus, we conduct the same analysis again using 
G-COV and G-SR, but we use the two-year preceding daily 

adjusted closing price to compute the mean return, standard 
deviation, Sharpe ratio and the coefficient of variation of 
the stocks. The results are shown in Tables 5 and 6.

Table 5 shows an intriguing pattern observed in the 
sparse portfolios. It appears that as the number of active 
stocks increases, the overall performance of the portfolios 
diminishes. In other words, PSG-10 is the best-performing 
sparse portfolio in all three indicators, followed by PSG-15, 
PSG-20, PSG-25 and PSG-30. It is noteworthy that all the 
sparse portfolios exhibit better performance compared to 
the EW portfolio, except for PSG-25 and PSG-30, which 
show a slightly lower average annual return over the three-
year period than the EW portfolio. Upon comparing the 
findings presented in Table 5 with the results obtained 
from G-COV with the one-year preceding daily adjusted 
closing price (Table 3), the two-year preceding daily 
adjusted closing price only brings slight improvement to 
some sparse portfolios in different indicators, but overall, 
it exhibits poorer performance. This indicates that when 
employing G-COV in portfolio optimization, it is more 
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advantageous to utilize the one-year preceding daily 
adjusted closing price.

Table 6 shows the same pattern as Table 5 where 
PSG-10 has the best performance while PSG-30 has the 
worst performance. There is only one time when PSG-
15 performs better than PSG-10 in the 5 years average 
Sortino ratio. Also, all the sparse portfolios are performing 
better than the EW portfolio. When we compare this result 
with the result using G-SR with one-year preceding daily 
adjusted closing price (Table 4), we can see a remarkable 
improvement in most of the indicators except for PSG-20 
and PSG-30 in average Sortino ratio and average  ratio. 
Thus, PSG works more favourably on G-SR when we use 
the two-year preceding daily adjusted closing price.

CONCLUSIONS

In conclusion, our study demonstrates the effectiveness 
of the PSG method in constructing sparse portfolios. We 

TABLE 5. Performance of the sparse portfolios on G-COV with two years preceding daily adjusted closing price

Methods
years EW PSG-10 PSG-15 PSG-20 PSG-25 PSG-30

Average 3 11.4107 17.4323 15.0601 12.5226 11.3404 11.3353
Annual 5 7.4568 12.3364 12.0332 9.0441 8.9115 8.2327
Return (%) 10 9.8526 14.9784 14.8616 12.1272 11.5505 10.8087
Average 3 0.4246 0.7578 0.6621 0.5525 0.5253 0.4454
Sortino 5 0.3418 0.6907 0.5876 0.4518 0.4665 0.3862
Ratio 10 0.6217 0.9514 0.8517 0.7423 0.7227 0.6628
Average 3 3.5648 5.7441 5.1603 4.7250 4.4102 3.7301

5 5.2078 10.2512 8.4039 6.4754 7.3641 6.1794

Ratio 10 4.0398 7.4063 6.2020 5.0102 5.3438 4.6043

TABLE 6. Performance of the sparse portfolios on G-SR with two years preceding daily adjusted closing price

Methods
years EW PSG-10 PSG-15 PSG-20 PSG-25 PSG-30

Average 3 11.4480 39.7300 31.6336 24.8149 19.8004 16.9809
Annual 5 6.9503 20.5944 13.8313 14.1015 12.0650 11.0655
Return (%) 10 9.6809 18.3246 17.8339 14.3584 13.2885 12.0484
Average 3 0.4286 1.0017 0.9532 0.7711 0.6671 0.5021
Sortino 5 0.3135 0.5735 0.6091 0.4554 0.4759 0.3806
Ratio 10 0.6054 0.8423 0.8022 0.6857 0.6915 0.6070
Average 3 3.5897 7.6529 7.0470 6.1856 5.5271 4.2747

5 4.9861 6.9286 6.7955 5.7040 6.5879 6.1710

Ratio 10 3.8974 5.5532 5.2102 4.4089 4.8194 4.4130

begin by formulating a modified norm-constraint mean-
variance portfolio selection objective function using  
norm,  norm and ALM. Next, we apply PSG comprising 
of MDG and ITH onto two of Malaysia’s market indexes: 
FBMKLCI and FBMT100. The result shows that PSG can 
create a sparse portfolio that outperforms the EW portfolio 
when the portfolio size is large and the market conditions 
are favourable. We investigate two sets of portfolios 
with 100 stocks: G-COV and G-SR. We apply the PSG to 
construct the sparse portfolios with varying numbers of 
active stocks. We find that the sparse portfolios outperform 
the EW portfolio in G-COV and G-SR using either one-year 
or two-year preceding daily adjusted closing price. Also, 
the sparse portfolio with 10 to 20 active stocks yields the 
best performance compared to other sparse portfolios. 
These findings highlight the potential of PSG for enhanced 
portfolio optimization and diversification strategies.
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