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ABSTRACT

Weighted distributions have always been a popular approach in developing flexible distributions for data modelling. In 
this paper, we introduce a flexible ratio-type weighted geometric distribution by adopting the geometric distribution as a 
basic standard distribution and opting for weights, represented as . The proposed distribution is 
overdispersed and is capable of accommodating data with small mode values such as 0, 1 and 2. The proposed distribution 
has the following properties – unimodal, log-concave and has increasing failure rates. The moment estimator is obtained, and 
the resulting estimated parameter is utilized as the initial point in finding the estimators based on the maximum likelihood 
technique and probability generating function. A probability comparison between the typical geometric distribution and 
the proposed distribution is discussed as well. A collection of insurance claim datasets is utilized for model fitting, and 
it was found out that generally, the proposed distribution can adequately fit the datasets as opposed to other contending 
distributions.
Keywords: Discrete distributions; estimation geometric; simulation; weights

ABSTRAK

Taburan berpemberat selalu menjadi pendekatan yang popular dalam mengembangkan taburan fleksibel untuk pemodelan 
data. Dalam kajian ini, kami memperkenalkan taburan geometrik berpemberat jenis nisbah yang fleksibel dengan mengambil 
kira taburan geometrik sebagai taburan piawai asas dan memilih berat, yang diwakili sebagai . 
Taburan yang dicadangkan adalah terlebih serak dan mampu mengendalikan data dengan nilai mod kecil seperti 0, 1 dan 
2. Taburan yang dicadangkan mempunyai sifat berikut – unimodal, log-cekung dan mempunyai kadar kegagalan yang 
meningkat. Penganggar momen diperoleh, dan parameter yang dianggarkan digunakan sebagai titik permulaan dalam 
mencari penganggar berdasarkan teknik kebolehjadian maksimum dan fungsi penjana kebarangkalian. Perbandingan 
kebarangkalian antara taburan geometrik biasa dan taburan yang dicadangkan turut dibincangkan. Koleksi set data tuntutan 
insurans digunakan untuk pemodelan dan didapati bahawa secara umum, taburan yang dicadangkan dapat memadankan set 
data dengan baik berbanding taburan lain yang dipertimbangkan.
Kata kunci: Geometrik; pemberat; penganggaran; simulasi; taburan diskret

INTRODUCTION

When dealing with positive count data modelling, it is 
advisable to explore a mixed distribution that involves 
truncation or alternatives with similar effects, such as 
weighted distributions, to address the variability in the 
data. Various weighted distributions, including one 
termed ‘probability proportional to the size’, where 
the weight is proportionate to the observation size, 
have been introduced. Biased data are prevalent across 

various scientific disciplines, prompting statisticians and 
researchers to diligently seek solutions for addressing 
these biases. To remove biases and achieve an appropriate 
distribution, researchers commonly employ the weighted 
concept of biased observation. This approach contributes 
to the formulation of a weighted distribution. This paper 
effectively aims to assimilate weighted approach for a 
well-known discrete distribution and thus, enriching the 
literatures in this field.
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Assuming a random variable  follows a probability 
function , which can be a probability mass in the 
case of discrete  or probability density for continuous 

, and the likelihood of recording the observation 
 is , then the  of the recorded 

observation, , denoted as , , can be expressed 
as follows:

( ) ( ) ( ) ,w w x f x
f x

ω
=

where the normalizing factor, denoted as  is acquired 
to ensure that the overall probability equals unity. 
Consequently,  can be termed as the visibility factor. It 
is important to observe that  equals  only when  
remains constant. When , the resulting  is 
the pmf for a size-biased distribution, a special case of 
weighted distribution.

The weighted distribution theory has emerged as a 
comprehensive approach to model biased data, with Fisher 
(1934) initially exploring it, followed by Rao (1965) and 
Patil (1991) who further examined it in a unified manner. 
These pioneers identified scenarios in which recorded 
observations cannot be regarded as a random sample from 
the original distribution, encompassing non-experimental, 
non-replicated, and non-random categories. Such 
deviations may arise from factors like the non-observability 
of occurrences, partial destruction of observations, and 
sampling with uneven probabilities of observations (Rao 
1965). 

Typically, when the events are unobserved, it leads 
to data truncation. Additionally, certain data, particularly 
those originating from natural sources, might face 
destruction. Moreover, focusing on a specific event and 
retracing its actual occurrences in the population may not 
afford an equitable chance for the event to manifest within 
the population. These factors introduce distortions in the 
collected sample data. Consequently, opting for size-biased 
distributions becomes a logical choice for modelling 
this type of data. Examples of size-biased distributions 
encompass the size-biased Poisson, size-biased binomial, 
and size-biased negative binomial distributions, along with 
the size-biased hypergeometric distribution (Patil & Rao 
1978).

Recently, the use of weighted distributions has 
consistently been a favoured method in the development 
of adaptable probability distributions with different 
number of parameters. Some of the examples include the 
works by Bhati and Joshi (2018) as well as Gupta and 
Kundu (2009). Bhati and Joshi (2018) derived geometric 
distribution through a  power-type weight function, 

 which can also be viewed as a 
discrete analogue of the weighted exponential distribution 
introduced by Gupta and Kundu (2009), resulting in a two-
parameter weighted geometric distribution. This paper 

does consider geometric distribution as the underlying base 
distribution but with a relatively simpler weight function, 
which results in a one-parameter weighted geometric 
distribution.

Additionally, several researchers have incorporated 
variations of this weighted distribution in discrete data. 
Recently, Almuhayfith et al. (2023) have considered a 
ratio weight and Poisson distribution in developing a novel 
discrete distribution, named as Semi-Poisson distribution. 
Bakouch (2018) introduced a flexible discrete distribution, 
which involves the negative binomial and size-biased 
negative binomial distributions as sub-models among 
others, and it is a weighted version of the two-parameter 
discrete Lindley distribution. The credibility of the 
proposed distribution by Bakouch (2018), is recommended 
for several types of over- and under-dispersed count data. 
These findings align with the results of the earlier study 
conducted by Del Castillo and Pérez-Casany (1998) where 
they introduced new exponential families derived from 
the concept of weighted distribution, encompassing, and 
extending the Poisson distribution. This feature renders 
them suitable for accommodating discrete data in situations 
of overdispersion or underdispersion.

In contrast, Ridout and Besbeas (2004) proposed the 
weighted Poisson distribution as a model for counting data 
exhibiting underdispersion. The credibility of the proposed 
distribution is recommended for modelling strong 
underdispersion. Tajuddin & Ismail (2023) have modelled 
underdispersed count data by proposing a one parameter 
size-biased Poisson distribution. However, the flexibility of 
the distribution is limited as it relies exclusively on a single 
parameter Tajuddin & Ismail (2023). Recently, Puig, Valero 
and Fernández‐Fontelo (2024) studied the mechanisms 
leading to underdispersion in count data by using weighted 
Poisson and other well-known distributions.

The paper is structured as follows. We introduce a 
ratio-type weighted geometric (RWG) distribution and 
provide some of its distributional properties in the next 
section. After that, we addresses the issue of estimating 
the proposed model using three estimation methods – 
moment, maximum likelihood and probability generating 
function-based estimators, supported by an accompanying 
simulation analysis. Subsequently, we employ the proposed 
distribution to undertake fitting of selected automobile 
claim data. In an effort to exhibit the practicality of the 
proposed model, we compare its performance with two 
other single-parameter models. The conclusions are 
presented in the final section of the paper.

DEFINITION AND DISTRIBUTIONAL PROPERTIES

Let  be a geometric random variable 
defined by  where  

 for  Assume that the probability 
of ascertaining the event  has a weighting factor 
It is important to note that  because 



315

. This will ensure that the weighting factor 
to decrease slowly at a gradient, . The 
weighted distribution corresponds to the selected weight 

 has probability mass function (pmf) as
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We obtain a ratio-type weighted geometric (RWG) 
distribution given by

( ) 21
Pr ,

2
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X x C p

x
++

= =
+

 
 
 

(1)

where . The RWG distribution can 
also be obtained if  and 
, such that  and , then 

. The  refers to the 
probability mass function for the two-parameter discrete 
Lindley distribution with  (8). A similar weight 
function was employed by considering Poisson distribution 
as the baseline distribution to develop a Semi-Poisson 
distribution (Almuhayfith et al. 2023). To examine the 
shapes of the proposed RWG distribution, the probabilities 
are computed for different values of parameter  and 
presented in Figure 1.

Critical patterns within the data have been observed in 
Figure 1. With a small  value, an overly represented peak 

FIGURE 1. Graphs of probability mass functions for  
and 0.9 respectively, for the proposed RWG distribution
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at zero is evident, which suggests an excess of zeros in the 
data. However, an inverse relationship exists as the value of 

 increases; the prominence of the zero-mode diminishes, 
and the magnitude of other data points escalates. At 
, the mode transitions from zero, taking a position at one. 
This trend continues to the point where the mode approaches 
two, the largest value observed. This implies that with 
an increase in the value of , the mode consistently shifts 
further from zero, making it plausible for the mode to reach 
as high as two. 

SOME DISTRIBUTIONAL PROPERTIES

Without loss of generality,  is referred as  from hereon 
for simplicity. The  moment of RWG distribution is 
defined as

( ) 2

0

1
2

n n x
p

x

xE X C x p
x

∞
+

=

+ =  + 
∑ (2)

Thus, the first four moments of the RWG distribution are: 
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Using Equations (3) and (4), the variance of the RWG 
distribution is obtained as:
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(7)

Hence, the index of dispersion is given as:
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It is unclear whether the RWG distribution is overdispersed 
or underdispersed or both from Equation (8). This warrants 
further inspection visually. Equations (3-6) can be used 

determine the coefficient of variation, the skewness and 
the kurtosis using the well-known standard definitions. The 
mode for the distribution can be obtained by differentiating 
the log of probability mass function given by Equation (1) 
to get:

( ) ( ) ( ) ( )ln Pr ln 1 2 ln ln 2 .X x x x p x= ∝ + + + − +

Differentiating and setting the equation above to 0, yields a 
quadratic equation, which has the solution:

( )( )3ln ln ln 4
.

2 lnmod

p p p
x

p
− − −

= (9)

The integer part of the ,  will be taken as the 
mode of the RWG distribution. To provide a clearer visual 
representation of the moment-based measures, Figure 2 
displays the plots for the variance, the index of dispersion, 
the coefficient of variation, the skewness, the kurtosis, 
and the mode for the RWG distribution as  varies. From 
the figure, the RWG distribution is always overdispersed 
according to the index of dispersion . Besides 
that, as  increases, the RWG distribution will be 
concentrated around the mean. The RWG is also positively 
skewed so the right-tail of the data is long, which is 
supported by plots in Figure 1 as well. The kurtosis values 
are greater than 3, which means the excess kurtosis is 
always positive, hence the RWG distribution is described 
as leptokurtic. In other words, the RWG distribution will 
have fatter tail as supported by plots in Figure 1 as well. 
The RWG distribution can adequately explain data with 
modes 0, 1 and 2 as can be seen from mode plots of Figure 
2.

Describing a distribution using recurrence relation 
may be useful in identifying the modality and the shape 
of the distribution. The recurrence relation for the RWG 
distribution can be represented as:

( ) ( )
( )

( )
( )( ) ( )( )

2Pr 1 2 11 1,
Pr 1 3 1 3

X x p x
r x p p

X x x x x x
 = + +
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( ) ( )
( ) ( )

2 1
Pr 0 .

2 1 ln 1
p p

X
p p p

−
= =

+ − −  

The inequality for  shows that the RWG 
distribution is always decreasing. The difference in 
recurrence relation can be written as:
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FIGURE 2. Variance, IOD, coefficient of variation, skewness, kurtosis, 
and mode for RWG distribution
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The negative  shows that the RWG is unimodal. 
The ratio of recurrence relation is given as:
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for , which implies that

( ) ( ) ( )2
Pr Pr 1 Pr 1 1,X x X x X x= > = + = − >          

which subsequently implies log-concavity. Since the RWG 
is log-concave, it also has increasing failure rates.

SOME GENERATING FUNCTIONS

The probability generating function (pgf) of a discrete 
random variable following RWG distribution can be 
expressed as
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for and , which is famously known 
as the Lerch transcendent function. The pgf in Equation 
(10) will be utilized to develop a pgf-based estimator for .

Consequently, the moment generating function for a 
discrete random variable following RWG distribution can 
be expressed as:
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( ) ( )( ) ( )
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The cumulant generating function for a discrete random 
variable following RWG distribution can be expressed as:
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SURVIVAL AND HAZARD RATE FUNCTIONS

The survival function for RWG distribution can be obtained 
as:
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where  is the Lerch Transcendent function. 
Using the survival function, the hazard rate function (hrf) 
can be obtained and given as:
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The limiting value of  as  is:
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because  and , which 
means the hrf is bounded above by . The limiting value 
of  is also presented in Figure 3. From Figure 3, when 

 is small , the hrf is almost uniform whereas 

for larger values of , , the hrf is increasing in 
a logistic fashion or also known as ‘increasing-constant’.

SOME COMPARISON OF PROBABILITY VALUES BETWEEN 
THE RATIO-TYPE WEIGHTED GEOMETRIC AND THE 

GEOMETRIC DISTRIBUTIONS

Since the RWG distribution is built on the geometric 
distribution, it is only reasonable to compare the probability 
values for the two distributions. Let  and 

 for  and . So,
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It is easy to show that the lower and upper bound of the 
limits when  and  which is given as

( ) ( )2 .xw x w xτ< <

Generally, the ratio of probability values,  is bounded 
between  and twice of . When , 

 for . This distribution can only 
adequately explain data with number of zeroes less than 
from those estimated using geometric distribution. 

STATISTICAL INFERENCES

In this section, we explore three methods of estimation of 
parameter  and a simulation study is carried out to study 
the properties of these estimators.

MOMENT ESTIMATION

The moment-based estimator  can be obtained by 
equating the population moment to the corresponding 
sample moment. The equation is given as

( ) ( ) ( )
( ) ( ) ( )

23 2 2 1 ln 1
.

1 1 ln 1
p p p p

x
p p p p
− − − −

=
− + − −  

   

   
(16)

Although Equation (16) cannot be expressed as an explicit 
formula, it can be resolved quickly, even by using the 
‘FindRoot’ feature in the Wolfram Mathematica program. 
The estimated  will only serve as the initial value for 
maximum likelihood estimator (MLE) and pgf-based 
estimation methods, which are discussed in the following 
subsections.
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FIGURE 3. Hazard rate function for RWG distribution with different 
values of parameter 

MAXIMUM LIKELIHOOD ESTIMATION

The MLE is a widely favoured and efficient method for 
estimating unknown parameters. The log-likelihood 
function for the proposed distribution is

{ } ( )
1

ln ln Pr ,
i i

N

i iX x
i

L I X x=
=

= =∑

where  is a random sample. The first 
derivative of the log likelihood function is given by:
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d L xI p x p p p p
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=

 +  = − + + + − + − −    +  
∑ (17)

The maximum likelihood estimate of , denoted as , will 
be obtained by equating  As this equation 
lacks a closed-form solution, numerical optimization with 
the scipy.optimize Python library is employed to compute 
the MLE.

PROBABILITY GENERATING FUNCTION-BASED 
ESTIMATION

The pgf-based estimator method is recommended 
due to its demonstrated consistency in estimating 
parameters for discrete distributions and its robustness 
in handling outliers, as demonstrated in prior research  
(Sim & Ong 2010). The pgf-based statistic considered here 
is

( ) ( )
1

2

0

,NT F t F t dt= −  ∫

where  and  are, 
respectively, the empirical pgf and the theoretical pgf of 
the distribution.
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SIMULATION STUDY

This section reports the Monte Carlo simulation study on 
the performance of the proposed statistics for MLE and 
pgf-based estimation with respect to the mean square 
error (MSE) and bias. The estimated  from the moment 
estimation technique will act as the initial value for finding 
the MLE and the pgf-based estimator. Sample sizes of  
=50, 100, 500, 1000, and 2000 were examined, spanning 
small to large sample sizes, while different values of the 
parameter  were considered. Samples were generated 
using the inverse transform method.

It was found that after conducting 1000 simulation 
runs, results of sufficient accuracy were obtained. The bias 
and mean square error (MSE) of the simulated estimates 
are given as  and , respectively, 
where  is the ML or pgf-based estimator and  is the 
actual parameter.

Table 1 presents the average bias and MSE across 
various parameter values, comparing two different 
estimation approaches. The results demonstrate that 
the proposed estimation methods exhibit small average 

bias and MSE, especially when applied to sample sizes 
ranging from  =100 to  =2000. Furthermore, the 
pgf-based estimator consistently exhibits outperform in 
terms of average bias when compared to the MLE across 
different sample sizes and parameter values. On the other 
hand, regardless of sample size or parameter p, the MLE 
consistently yields lower average MSE values than the pgf-
based estimating approach.

APPLICATION

The analysis conducted by Gossiaux and Lemaire (1981) 
on six sets of over-dispersed automobile data is taken 
into account. These data sets display the frequency 
of automobile insurance claims per policy within a 
predetermined time frame. Joining the analysis, Poisson 
and the discrete Lindley (DLindley) distribution (Gómez-
Déniz & Calderín-Ojeda 2011) are also fit to these six data 
sets, providing a point of comparison. Tables 2 exhibits 
the chi-square goodness of fit values for the MLE, and the 
pgf-based estimation methods. The chi-square is calculated 
using the following formula:

TABLE 1. Average bias and average MSE of the simulated estimates for MLE and pgf-based (in bracket)

Bias Parameter 
0.2 0.4 0.6 0.8

 =50 -0.00394 -0.00606 -0.00612 -0.00435
(-0.00051) (-0.00335) (-0.00302) (-0.00341)

 =100 -0.00218 -0.00301 -0.00324 -0.00242
(0.00025) (-0.00084) (-0.00075) (-0.00126)

 =500 -0.00107 -0.00105 -0.00249 -0.00101
(0.00039) (0.000004) (0.00014) (-0.00027)

 =1000 -0.00133 -0.00128 -0.00150 -0.00110
(0.00006) (-0.00031) (0.00004) (-0.00021)

 =2000 -0.00110 -0.00109 -0.00129 -0.00122
(0.00023) (-0.00006) (0.00023) (0.00002)

MSE

 =50 0.00183 0.00228 0.00164 0.00059
(0.00211) (0.00294) (0.00266) (0.00120)

 =100 0.00097 0.00119 0.00086 0.00031
(0.00110) (0.00151) (0.00134) (0.00060)

 =500 0.00020 0.00023 0.00017 0.00006
(0.00023) (0.00031) (0.00025) (0.00011)

 =1000 0.00010 0.00012 0.00008 0.00003
(0.00011) (0.00015) (0.00012) (0.00005)

 =2000 0.00005 0.00006 0.00004 0.00002
(0.00006) (0.00008) (0.00007) (0.00003)
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TABLE 2. Fitting RWG to six automobile data set by Gossiaux and Lemaire (14) using MLE and pgf-based estimation

No of claims 0 1 2 3 4 5 6 7

Data1 96978 9240 704 43 9
Poisson 
(ML)

96689.53 9773.44 493.95 16.64 0.43 332.18 0.101

Poisson (pgf) 96906.00 9578.62 473.40 15.60 0.39 360.91 0.099
DLindley 
(ML)

96981.05 9229.71 710.16 49.58 3.49 9.610 0.054

DLindley 
(pgf)

96979.76 9230.80 710.34 49.60 3.50 9.605 0.054

RWG (ML) 97015.98 9167.45 730.92 55.25 4.40 9.108 0.071
RWG (pgf) 96988.61 9190.44 734.79 55.70 4.45 9.112 0.071
ID = 1.06
Data2 20592 2651 297 41 7 0 1
Poisson 
(ML)

20420.94 2945.10 212.37 10.21 0.37 0.01 0.0003 4112.76 0.144

Poisson (pgf) 20551.34 2833.09 195.28 8.97 0.31 0.01 0.0002 5326.24 0.138
DLindley 
(ML)

20544.79 2720.36 292.41 28.55 2.64 0.24 0.02 57.67 0.077

DLindley 
(pgf)

20581.92 2691.18 285.61 27.53 2.51 0.22 0.02 62.27 0.074

RWG (ML) 20559.15 2696.55 298.42 31.31 3.21 0.32 0.04 34.28 0.0984
RWG (pgf) 20585.35 2676.13 293.54 30.53 3.10 0.31 0.03 36.23 0.0975
ID = 1.14
Data 3 103704 14075 1766 255 45 6 2
Poisson 
(ML)

102629.56 15921.95 1235.07 63.87 2.48 0.08 0.002 4176.31 0.16

Poisson 
(PGF)

103446.02 15228.91 1120.97 55.01 2.02 0.06 0.001 5364.18 0.15

DLindley 
(ML)

103347.35 14628.38 1682.27 175.79 17.38 1.66 0.17 137.05 0.08

DLindley 
(pgf)

103621.69 14416.80 1629.28 167.30 16.25 1.52 0.15 151.94 0.08

RWG (ML) 103430.35 14493.39 1713.59 192.10 21.03 2.27 0.27 79.36 0.11
RWG (pgf) 103641.08 14332.25 1672.29 185.00 19.99 2.13 0.25 86.81 0.10
ID = 1.16
Data 4 370412 46545 3935 317 28 3
Poisson 
(ML)

369246.88 48643.58 3204.09 140.70 4.63 0.12 665.91 0.13

continue to next page
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No of claims 0 1 2 3 4 5 6 7

Poisson (pgf) 370121.65 47883.01 3097.34 133.57 4.32 0.11 718.77 0.13
DLindley 
(ML)

371135.88 45202.24 4464.45 400.44 33.97 3.02 122.52 0.07

DLindley 
(pgf)

370610.00 45623.29 4555.07 413.03 35.43 3.19 127.03 0.07

RWG (ML) 371341.26 44842.45 4568.98 441.39 41.64 4.27 194.84 0.09
RWG (pgf) 370665.33 45379.47 4687.60 459.11 43.91 4.58 201.24 0.09
ID = 1.24
Data 5 7840 1317 239 42 14 4 4 1
Poisson 
(ML)

7635.62 1636.72 175.42 12.53 0.67 0.03 0.0010 0.00003 47412.31 0.21

Poisson (pgf) 7794.60 1510.18 146.30 9.45 0.46 0.02 0.0006 0.00002 90992.85 0.19
DLindley 
(ML)

7735.57 1463.22 225.71 31.67 4.21 0.54 0.07 0.01 399.08 0.11

DLindley 
(pgf)

7817.54 1405.97 206.07 27.47 3.47 0.42 0.05 0.01 542.24 0.10

RWG (ML) 7747.18 1446.21 227.79 34.02 4.96 0.71 0.10 0.02 252.56 0.14
RWG (pgf) 7819.93 1395.93 210.25 30.03 4.19 0.58 0.08 0.01 330.30 0.13
ID = 1.35
Data 6 3719 232 38 7 3 1
Poisson 
(MLE)

3668.54 317.33 13.72 0.40 0.01 0.0002 7878.05 0.09

Poisson 
(PGF)

3708.02 281.05 10.65 0.27 0.01 0.0001 14777.26 0.08

DLindley 
(ML)

3676.17 302.46 20.08 1.21 0.07 0.004 433.90 0.05

DLindley 
(pgf)

3709.62 273.24 16.22 0.87 0.04 0.002 710.42 0.04

RWG (ML) 3677.66 300.22 20.68 1.35 0.09 0.01 323.56 0.06
RWG (pgf) 3709.84 272.26 16.86 0.99 0.06 0.003 513.43 0.06
ID = 1.42

ML is MLE, pgf is pgf-based estimator and  is the chi-square goodness of fit values

( )2
2

0

ˆ
,

ˆ
x x

x x

n n
n

χ
∞

=

−
=∑

where  is the observed data;  is the fitted data for 
. To highlight the difference between the 

fitting achieved by MLE and pgf-based estimator, certain 
values are shown with increased decimal places.

continue from previous page

The chi-square values presented in Table 2 indicate 
that the RWG distribution significantly outperforms the 
Poisson and Discrete Lindley distributions (either MLE 
method or the pgf-based estimation), except in the case 
of data set 4, where the RWG distribution exhibits a chi-
square value comparable with that of the Discrete Lindley 
distribution. In general, the pgf-based estimator aligns well 
with the MLE, with the exception of data sets 2 and 5. This 
discrepancy can be attributed to the influence of small 
values within the final cell size.
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CONCLUSION

This paper explores a versatile discrete RWG 
distribution. This unique approach has potential as an 
alternative to the Poisson distribution for modelling 
claim count data. Exhibiting several specific 
characteristics such as unimodality, overdispersion, 
log-concavity, increasing failure rates and a high peak 
at zero. The discrete ratio-type weighted geometric 
distribution provides intriguing opportunities for 
more nuanced analysis and understanding. Further 
improvements on the proposed RWG distribution 
can be done by taking a generalized weighting factor, 

( )   for  ,x aw x a b
x b
+

= <
+

where  and  are parameters that can be further estimated. 
The inequality  will ensure the weight,  
decreases as  increases, in line with the proposed RWG 
distribution, where for the RWG distribution,  and 

. Besides that, an appropriate linear model with 
suitable link function may be developed. The resulting 
distribution using the generalized weight as well as the 
generalized linear model may have boundless usage.
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