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ABSTRACT

Foreign Exchange (FX) is the largest financial market in the world, with a daily trading volume that significantly 
exceeds that of stock and futures markets. The prediction of FX volatility is a critical financial concern that has  
garnered significant attention from researchers and practitioners due to its far-reaching implications in the financial 
markets. This paper presents a novel hybrid ensemble forecasting model integrating a decomposition strategy and 
three deep learning (DL) models: Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and Convolutional 
Neural Network (CNN). This combination addresses individual models’ limitations and further improves the accuracy 
and stability of FX volatility forecasting. The proposed approach utilizes the CEEMDAN technique to decompose 
volatility into multiple distinct intrinsic mode functions (IMFs) and merges these IMFs with GARCH and EGARCH 
volatilities to form the input dataset for the DL models. In addition, we employed an attention mechanism to improve 
the effectiveness of the DL techniques. Furthermore, the hyperparameters for the DL models are optimized using the  
Optuna algorithm. Finally, a hybrid ensemble model for forecasting exchange rate volatility is developed by combining  
the predictions of three distinct DL models. The proposed approach is evaluated against various benchmark models 
using evaluation measures such as MSE, MAE, HMSE, HMAE, RMSE, Q-LIKE, and the model confidence set (MCS) 
approach. The results demonstrate that our proposed approach provides accurate and reliable forecasts of FX volatility 
under different forecasting regimes, making it a valuable tool for financial practitioners and researchers.
Keywords: Currency exchange rate volatility; deep learning; ensemble; CEEMDAN; Optuna

ABSTRAK

Tukaran Asing (FX) merupakan pasaran kewangan terbesar di dunia dengan volum dagangan harian yang jauh melebihi 
pasaran saham dan pasaran hadapan. Ramalan turun naik FX merupakan kebimbangan kewangan yang kritikal 
serta telah mendapat perhatian daripada penyelidik dan pengamal kerana implikasinya yang meluas dalam pasaran 
kewangan. Kajian ini membentangkan model ramalan ensembel hibrid baharu yang menyepadukan strategi penguraian 
dan tiga model pembelajaran mendalam (DL): Memori Jangka Pendek Panjang (LSTM), LSTM Dwiarah (BiLSTM) dan 
Rangkaian Neural Konvolusi (CNN). Gabungan ini menangani had model individu dan meningkatkan lagi ketepatan dan 
kestabilan ramalan turun naik FX. Pendekatan yang dicadangkan menggunakan teknik CEEMDAN untuk menguraikan 
turun naik kepada pelbagai fungsi mod intrinsik (IMF) yang berbeza dan menggabungkan IMF ini dengan turun 
naik GARCH dan EGARCH untuk membentuk set data input bagi model DL. Di samping itu, kami menggunakan 
mekanisme perhatian untuk meningkatkan keberkesanan teknik DL. Tambahan pula, hiperparameter untuk model DL  
dioptimumkan menggunakan algoritma Optuna. Akhir sekali, model ensembel hibrid untuk meramalkan turun 
naik kadar pertukaran dibangunkan dengan menggabungkan ramalan tiga model DL yang berbeza. Pendekatan 
yang dicadangkan dinilai berdasarkan pelbagai model penanda aras menggunakan ukuran penilaian seperti MSE, 
MAE, HMSE, HMAE, RMSE, Q-like dan pendekatan set keyakinan model (MCS). Keputusan menunjukkan bahawa  
pendekatan yang dicadangkan dalam kajian ini menyediakan ramalan turun naik FX yang tepat dan boleh dipercayai 
di bawah rejim ramalan yang berbeza, menjadikannya alat yang berharga untuk pengamal dan penyelidik kewangan.
Kata kunci: CEEMDAN; ensembel; kemeruapan kadar pertukaran mata wang; Optuna; pembelajaran mendalam
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INTRODUCTION

Volatility signifies the measure of unanticipated 
fluctuations in asset returns during a specific time frame. 
It is typically quantified by the standard deviation of the 
associated asset returns. Increased volatility corresponds 
to higher levels of risk. Volatility in financial asset returns 
is a crucial component within contemporary financial 
sectors. The precise application of suitable methods for 
estimating and predicting volatility is very important 
for risk management, portfolio optimization, derivatives 
valuation, and more. Nonetheless, such data exhibit 
complex patterns and nonlinearity, as well as frequently 
pronounced temporal variations. Consequently,  
accurately estimating volatility has persistently presented 
a significant hurdle for financial analysts and researchers. 

Until now, various methodologies have been 
introduced to tackle the challenges of modeling and 
forecasting volatility. These approaches can be broadly 
classified into three broad categories: traditional 
generalized autoregressive conditional heteroscedasticity 
(GARCH)-type models (Bollerslev 1986; Engle 1982), 
stochastic volatility models (Kastner, Frühwirth-Schnatter 
& Lopes 2017; Taylor 1994; Zahid & Iqbal 2020), and 
techniques based on machine learning (Gamboa 2017; 
Henrique, Sobreiro & Kimura 2019). Recently, deep 
learning has also found widespread applications in 
predicting financial time-series data. 

GARCH-type models utilize historical volatility 
data to forecast future volatility, assuming conditional 
heteroscedasticity. These models have found applications 
in diverse domains, including forecasting the FX rate 
volatility (Dhamija & Bhalla 2010), stock index returns 
(Hajizadeh et al. 2012) and cryptocurrency Value-at-Risk 
(Iqbal, Zahid & Koutmos 2023), among others. However, 
GARCH-class models do not exhibit a persistent capacity 
to predict long-term observations, consistently presenting 
challenges when predicting prolonged trends and  
patterns within financial markets.

Recent advancements in artificial neural network 
(ANN) models have led to an increased adoption of 
ANN techniques in the field of volatility prediction 
(Pradeepkumar & Ravi 2018). Recurrent neural network 
(RNN), a type of enhanced ANN model, can retain 
time-related information in the network. However,  
problems like gradient explosion and gradient vanishing 
are common during the training of RNNs.

Hochreiter and Schmidhuber (1997) proposed an 
LSTM network to enhance the RNN. LSTM can effectively 
solve the problem of RNN in the training process and 
perform better for longer time series data. BiLSTM 
combines forward LSTM and backward LSTM to fit 
data from both forward and reverse directions of the  
sequence, resulting in improved prediction accuracy. 
LSTM has found application in financial time series  

forecasting, as demonstrated by Kim and Won (2018)  
and Zahid, Iqbal and Koutmos (2022). Jung and Choi 
(2021) introduced an innovative autoencoder LSTM  
model in the context of FX volatility forecasting. 
Abedin et al. (2021) introduced a novel BiLSTM model  
combining bagging ridge regression and BiLSTM neural 
networks as base regressors that outperformed other 
exchange rate prediction models. CNN is well known for 
extracting and generating features using convolutional 
and pooling layers. More recently, it has displayed  
remarkable effectiveness when applied to time series 
prediction (Dauphin et al. 2017; Kalchbrenner et al.  
2016). 

In recent years, ensemble learning has attracted 
significant attention from researchers. This technique 
involves constructing multiple models that forecast  
target values through various algorithms or distinct 
subsets of training and testing datasets (Granata & 
Di Nunno 2021). These individual models’ outcomes 
are then merged within the ensemble to yield a final  
prediction for the target values. Researchers have 
particularly emphasized that the diversity among 
the components of an ensemble leads to significant 
improvements when compared to traditional models 
(Sobri, Koohi-Kamali & Rahim 2018). Despite their 
effectiveness in reducing the inherent variance within 
complex and volatile financial markets, ensemble  
methods have received comparatively little attention in 
the existing literature on forecasting FX markets.

Researchers developed an innovative ensemble 
forecasting method known as ‘Decomposition and 
Ensemble’ to tackle the challenge of forecasting irregular 
and nonstationary data (Kausar et al. 2023; Risse 2019). 
In recent research, empirical mode decomposition (EMD) 
has emerged as a prevalent approach within the field, 
as Santhosh, Venkaiah and Kumar (2019) observed. 
However, EMD encounters mode-mixing issues. In 
response, more advanced versions of EMD have been 
introduced, including ensemble EMD (EEMD) (Wu & 
Huang 2009) and complete ensemble EMD with adaptive 
noise (CEEMDAN) (Torres et al. 2011). Among these, 
CEEMDAN stands out for its capacity to avoid mode 
mixing and reduce noise in the modes, setting it apart 
from other versions (Colominas, Schlotthauer & Torres 
2014). Moreover, variational modal decomposition 
(VMD) exhibits superior noise robustness and accuracy 
in component decomposition when compared to EMD 
(Dragomiretskiy & Zosso 2014). Nevertheless, while the 
‘Decomposition and Ensemble’ approach can improve  
the accuracy of financial time series forecasting, it has 
some issues with hybrid methodology. In the prediction 
phase for each component, the aggregation of actual 
and predicted values may lead to an accumulation of 
estimation errors, potentially undermining the precision 
of the forecasting.
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In response to these issues, this study introduces 
a hybrid model that combines CEEMDAN with three 
DL neural network models. Instead of aggregating 
the predictive values of individual modes during the  
prediction stage, our proposed approach simultaneously 
inputs various modes into DL neural networks, directly 
providing the predicted value for the target variable. 
This design is intended to circumvent the accumulation 
of estimation errors. The RNNs can grasp the temporal 
relationships between successive data points, rendering 
them well-suited for addressing time-series forecasting 
tasks. This study recommends a hybrid model combining 
various financial time-series models with distinct neural 
networks instead of using a single econometric model 
and a single neural network, as in previous studies. The 
GARCH and Exponential GARCH (EGARCH) models 
provide volatility estimates as inputs to the three deep 
learning models in this approach. We believe this  
approach will enhance the accuracy of financial market 
volatility predictions. 

Furthermore, choosing the appropriate values of the 
hyperparameters is another consideration, particularly 
in deep learning. The tuning of these parameters often 
determines the effectiveness of a neural network model. 
Various optimization algorithms have been suggested for 
tuning the hyperparameters of DL techniques. Examples 
include Bayesian optimization, genetic algorithm and 
particle swarm optimization (PSO). The study investigates 
how Optuna (Akiba et al. 2019), a new optimization 
algorithm, can be used to effectively automate the  
iterative trial-and-error process of hyperparameter 
optimization, improving the effectiveness of an  
ensemble-based approach for predicting FX volatility. 

Improving predictions for exchange rate volatility 
is critical, emphasizing the importance of the current  
work. Our research makes a significant contribution 
to the realms of modeling exchange rate volatility and 
forecasting by introducing an innovative methodology 
known as CEEMDAN-GE-OPT-LBC. To elaborate, 
the improved forecasts generated by our model hold 
practical value for multinational corporations, financial 
institutions, and traders seeking effective currency risk 
hedging strategies.

The remaining sections of the study are organized as 
follows: Next section provides a detailed discussion of 
the methodological aspects of the research. Subsequent 
section describes the data and performance evaluation 
criteria. The section that follow captures the results and 
discussion, and last section provides the concluding 
remarks. 

CONTENT AND METHODS

In this section, we explain the models utilized in 
constructing our proposed model and outline the 

development of our innovative model CEEMDAN-GE-
OPT-LBC, which integrates an attention mechanism.

COMPLETE ENSEMBLE EMPIRICAL MODE  
DECOMPOSITION WITH ADAPTIVE NOISE 

The EEMD algorithm improves signals by introducing 
white noise based on EMD, ensuring even distribution  
and mitigating mode mixing effects. CEEMDAN refines 
EEMD by using adaptive white noise, overcoming its 
limitations. The algorithm’s steps include:

Step 1 Take the original signal S(t) and introduce 
white noise vi(t) with a standard normal distribution. The 
ith signal is given as Si(t) = S(t) + vi(t). The experimental 
signal Si(t) was decomposed by the EMD to get , so 

, and residual r1(t) = S(t) − IMF1.
Step 2 Add white noise signals vi(t) to the residual 

signal r1(t), performing i experiments (i = 1,2,⋯,I), and 
applying EMD to each experiment in order to decompose 
the signal   into its first-order 
component . , and residual  
r2(t) = S(t) − IMF2.

Step 3 Continue the decomposition procedure as 
previously explained to get the IMF component that  
satisfies the conditions and their respective residuals. 
The program ends if the residual has monotonous 
functions and cannot be decomposed  via EMD. 

 can be used to represent the 
original signal.

RECURRENT NEURAL NETWORK MODELS

The memory-equipped neural network LSTM is well 
suited for processing and forecasting important time-
series events. It addresses the issue of losing long-term 
historical information by introducing gate mechanisms 
into the RNN architecture. The BiLSTM merges forward 
and backward LSTMs, accommodating data from both 
directions and concatenating predictions. While LSTM 
handles data sequentially in one direction, BiLSTM 
incorporates reverse-directional LSTMs, enhancing its 
ability to capture patterns often overlooked by standard 
LSTMs. The CNN combines convolutional and pooling 
layers. Convolutional layers extract key features using 
kernels, while Max Pooling retains strong features, 
reducing complexity and overfitting. Parameter sharing in 
convolution reduces optimization parameters, enhancing 
training efficiency and scalability and making it  
beneficial for tasks like time-series prediction and image 
recognition (Gu et al. 2018).

ATTENTION MECHANISM

Human visual observation employs the attention 
mechanism to filter valuable data and disregard irrelevant 
information. This study employs the attention mechanism 
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following LSTM, BiLSTM, and CNN layers. These 
layers initially process the input sequence, after which 
the attention mechanism assigns weights to hidden states 
based on their significance. 

HYPERPARAMETER OPTIMIZATION

Optuna is an open-source Python library that streamlines 
hyperparameter optimization, thereby improving machine 
learning model performance (Akiba et al. 2019). Optuna 
excels at parallel trial execution, efficiently exploring 
the hyperparameter space, and supports early stopping 
to save time, resources and prevent overfitting. Optuna’s 
flexibility, efficiency, and user-friendly nature drove its 
selection for automating optimal hyperparameter search.

THE ARCHITECTURE AND WORKFLOW  
OF THE PROPOSED APPROACH

We employ the novel CEEMDAN-GE-OPT-LBC method 
to forecast FX realized volatility. The comprehensive 
forecasting procedure is outlined as follows:

Step 1. The realized volatility is decomposed into multiple 
modes or IMFs using the CEEMDAN technique. 
Step 2 The GARCH and EGARCH models will be  
estimated using logarithmic returns. Subsequently, to  
create the three hybrid models, namely LSTM, BiLSTM, 
and CNN neural networks, each will be separately fed 
with the provided GARCH/EGARCH volatility estimates 
and IMFs. 
Step 3 Efficient Optuna optimization will be  
employed to fine-tune the hyperparameters of these  

models through a series of experiments. The 
hyperparameter ranges are set as [16, 128] for the number 
of neurons, [32, 128] for batch size, and [0.1, 0.3] for 
dropout probability. 
Step 4 The final prediction results are derived by  
averaging the predictions generated by the three hybrid 
models. 
Step 5 Finally, we examine the efficacy of the  
suggested model on the test dataset by comparing the 
forecasted volatility with the realized volatility values. 
Evaluate the forecasting performance across different 
time horizons, 1-day, 5-day, and 10-day, for both the 
proposed model and benchmark models.

The effectiveness of our approach represented 
as CEEMDAN-GE-Optuna-ALSTM-ABiLSTM-ACNN 
(CEEMDAN-GE-OPT-LBC) is validated through 
comprehensive comparisons with a variety of models 
including single DL models (LSTM, BiLSTM, CNN),  
hybrid DL models (GE-ALSTM, GE-ABiLSTM,  
GE-ACNN), hybrid ensemble DL models  
(GE-ALSTM-ABiLSTM-ACNN (GE-LBC), CEEMDAN-GE-
ALSTM-ABiLSTM-ACNN (CEEMDAN-GE-LBC)), and  
decomposed hybrid ensemble optimized DL models 
( C E E M D A N - G E - P S O - A L S T M - A Bi LST M - A C N N 
(CEEMDAN-GE-PSO-LBC)).

The experiments are implemented on a personal 
computer with an Intel® CoreTM i3-8130U CPU, 8 GB 
RAM and Windows 11 64-bit operating system. Python 
3.9.12 is used as the programming language throughout 
the analysis. The Python libraries utilized in these 
experiments include Pandas, NumPy, Keras, TensorFlow, 
and Optuna (Figure 1).

FIGURE 1. CEEMDAN-GE-OPT-LBC ensemble framework
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DATA DESCRIPTION AND PERFORMANCE  
EVALUATION CRITERIA

We used Pakistan rupee to US dollar (PKR/USD) price  
data from (https://www.investing.com/), covering the 
period from  January 4, 2000 to June 30, 2023. In a daily 
currency exchange rate series, let Pt represent the price 
then the log return rt is defined as the first difference in  
the logarithm of the exchange rate.

rt = log Pt − log Pt −1 (1) 

Realized volatility is a measure that quantifies the 
fluctuations in returns over a specific trading period. It 
provides a more accurate assessment of the variability 
in an asset’s returns. To evaluate the performance of 
our forecasts against an expected target, we will use the 
realized volatility as the target feature for comparing the 
predicted output.
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(2) 

Here rt denotes the daily logarithmic returns of 
the asset, while n represents the number of days for  
calculating volatility (set at 7 past days in this study). 

  denotes the mean return of the asset over n days and 
vt refers to the realized volatility of the asset. To reduce 
the influence of noise and enhance the optimization 
process, we normalize the data within the range of [0,1]  
as illustrated in Equation (3):
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(3) 

where  denotes the normalized value at time t.  
Xmax and Xmin are the maximum and the minimum true 
value of the time series, respectively.

LOSS FUNCTIONS

Prediction model performance will be evaluated using 
various error measures, including mean squared error 
(MSE), root mean squared error (RMSE), mean absolute 
error (MAE), and quasi-likelihood (Q-LIKE), along with 
the MCS method. The Q-LIKE loss function, robust to 
microstructure, incorporates an asymmetric property that 
penalizes under-prediction more than over-prediction, 
enhancing risk management considerations. Besides, 
nonlinear assessment necessitates nonlinear loss metrics 
aligned with the volatility series characteristics. To this 
end, due to suitability, heteroscedasticity-adjusted mean 
absolute error (HMAE) and heteroscedasticity-adjusted 
mean squared error (HMSE) are chosen. 

 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

where  is the predicted realized volatility at 
time t, vt is the actual realized volatility at time t, and N  
denotes the total count of observations in the forecasts.   

Recent research has focused on evaluating models 
to determine their relative performance, following the 
framework introduced by Diebold and Mariano (1995). 
In contrast, the MCS test proposed by Hansen, Lunde 
and Nason (2011) for comparing volatility models 
does not require a predefined benchmark. The MCS 
test systematically evaluates models until the chosen 
confidence level cannot reject the null hypothesis of 
equal performance. Each examined model receives  
p-values from the MCS procedure.

RESULTS AND DISCUSSION

Table 1 displays the descriptive statistics, which  
encompass measures such as the mean, standard  
deviation, skewness, and kurtosis. Additionally, it  
provides the results of the stationary test of augmented 
Dickey-Fuller (ADF) and the normality test of  
Jarque-Bera (JB) for the data. The JB test shows that the 
daily log returns and volatility of the FX rates in this 
study display tails that are heavier than those of a normal 
distribution, suggesting a non-normal distribution of 
model errors. Furthermore, both time series exhibit 
stationarity at the 1% significance level when tested  
using the ADF test.

Figure 2 shows the graph of time-series data for daily 
prices, returns, squared returns and realized volatility of 
PKR/USD data. Figure 2(a) depicts the daily PKR/USD 
prices, highlighting an upward trend in the exchange 
rate. Figure 2(b) displays the log-returns of PKR/USD,  
showing high returns clustering near increasing 
returns and low returns gathering near low returns - a  
phenomenon known as ‘volatility clustering’ in financial 
time series. Figure 2(c) presents squared log returns of  
PKR/USD, showing significant spikes in volatility 
through large peaks. Lastly, Figure 2(d) depicts the 
realized volatility of PKR/USD returns, computed using  
Equation (2). Notably, the pronounced spike in variance 
starting in 2008 corresponds to the financial crisis, 
aligning with the increased clustering of returns during 
that period. In essence, the behavior of logarithmic 
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returns, squared log returns, and realized volatility all 
exhibit similar patterns.

Figure 3 demonstrates the decomposition of the 
realized volatility of PKR/USD into ten intrinsic modes 
functions (IMFs), ranging from high to low frequency. 
These ten intrinsic modes are denoted as IMF1 to IMF10, 
with IMF1 representing the mode with the highest 
frequency and IMF10 representing the mode possessing 
the lowest frequency. It can be observed that the  
decomposed intrinsic modes all exhibit different 
periodicity.

The experimental procedure consists of two parts, 
outlined as follows: In the first part, we evaluate the 
effectiveness of CEEMDAN and GARCH/EGARCH 
estimates in enhancing the forecasting performance 
of neural networks. We compare the predictability of  
realized volatility between individual models and a  
hybrid model for n-day-ahead predictions. In the second 
part, we assess the efficacy of the hyperparameter tuning 
method Optuna in improving the forecasting results 
for realized volatility by comparing the prediction 
performances of CEEMDAN-GE-LBC, CEEMDAN-GE-
OPT-LBC, and CEEMDAN-GE-PSO-LBC.

Table 2 provides an overview of the forecast errors 
observed in out-of-sample testing for both individual 
deep learning models and hybrid deep learning models. 
The experimental results consistently demonstrate that 
our proposed ensemble hybrid model, CEEMDAN-GE-
OPT-LBC, outperforms all benchmark models across all 
assessed scenarios. Table 2 shows that incorporating 
GARCH and EGARCH volatility forecasts as inputs 
in DL models has noticeably improved the predictive 
performance of individual DL models. Additionally, 
the attention mechanism can automatically learn the 
importance of variables in the training process and make 
the most critical input variables play a leading role by 
weighing each input variable. Besides, ensemble results 
indicate enhanced forecasting performance compared to 
standalone models. For example, when comparing the 
RMSE values of GE-LSTM and GE-BiLSTM (0.02728 and 
0.02631) with those of GE-LBC (0.02529), it is evident 
that GE-LBC improves the results. However, GE-CNN 
provides the lowest RMSE values compared to GE-LBC.

To further analyze the impact of decomposed IMFs 
on the model’s prediction performance, we conducted a 
performance comparison by introducing decomposed 
intrinsic modes into DL models. As displayed in 
Table 2, including IMFs as input in the model led to a 
substantial improvement in prediction performance  
across all evaluation criteria, enhancing the model’s 
fitting performance.

Our final experiment enhanced the best model’s 
performance by utilizing the Optuna framework to  
fine-tune hyperparameters for LSTM, BiLSTM, and 

CNN networks. Optuna produced the most favorable 
evaluation metrics, as demonstrated in Table 2. Our 
Optuna-driven approach surpassed the utilization of PSO 
for hyperparameter tuning within the hybrid ensemble  
model, as exemplified by a reduced RMSE value of 
0.01528 compared to the RMSE value of 0.01741 of  
PSO. This difference highlights the superior performance 
of Optuna over PSO. When we compared the time taken 
by each optimization method, we observed that PSO 
consumed more time than Optuna, with a time difference 
of 947.23 seconds noted between the two optimization 
approaches. As a result, Optuna delivers promising  
results and exhibits efficiency in terms of time 
consumption, making it a preferable choice for 
hyperparameter tuning. 

Our proposed model achieved the lowest values 
for all evaluation metrics, including MAE, MSE, RMSE,  
HMAE, HMSE, and Q-LIKE. As a result, our innovative 
approach significantly enhances the accuracy of  
predicting FX volatility. The graph in Figure 4 displays 
the volatility forecasted by the hybrid ensemble models 
compared to the realized volatility, which serves as 
our research’s target value. The graphs provide visual 
confirmation of the proposed model’s superior predictive 
performance compared to other benchmark models. 
It is evident that the proposed model brings substantial 
enhancements to volatility peaks, successfully projecting 
more consistent patterns of growth and decline during 
both pre and post-peak periods. 

Additionally, we conducted predictive experiments 
for different time horizons (1, 5, and 10 days ahead) to 
assess the variation in forecasting accuracy at different 
prediction intervals. The outcomes of these experiments 
are briefly presented in Table 3. Remarkably, our 
proposed CEEMDAN-GE-OPT-LBC models consistently 
exhibit the lowest errors, demonstrating their robustness 
across varying prediction horizons (1, 5, and 10 days 
ahead). Table 3 illustrates the consistent superiority of 
our suggested method over other benchmark forecasting 
models, as evidenced by metrics such as MSE, MAE, 
and Q-LIKE. The analysis shows that a standalone CNN 
model outperforms LSTM and BiLSTM models when  
forecasting one-day-ahead volatility. However, when 
predicting volatility five days and ten days in advance, 
the CNN model did not perform best compared to 
the LSTM and BiLSTM models. This observation 
suggests that CNNs excel at capturing short-term, 
localized patterns within volatility data, rendering them  
particularly effective for one-day-ahead forecasts. In 
contrast, their performance may decrease when faced  
with longer-term dependencies. Furthermore, the results 
show a general trend of increasing errors in all existing 
models as the forecasting horizon extends.
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TABLE 1. Descriptive statistics for input variables

Count Mean SD Skewness Kurtosis ADF JB

Log returns 5857 0.020065 0.268964 0.376989 5.640385 -10.53958*** 7902.66***
Realized 
volatility

5857 0.194972 0.156235 1.394222 1.789718 -6.07102*** 384.43***

                   ∗∗∗denote a rejection of the null hypothesis at the 1% significance level

 
FIGURE 2. The graph of time-series data for daily prices (a), log returns (b), squared log returns (c),  

and realized volatility (d) of PKR/USD data from 2000 to 2023

FIGURE 3. Realized volatility decomposition using CEEMDAN
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We further investigate how well the competing 
models perform in forecasting out-of-sample data 
using the MCS test over alternative multi-step forecast  
horizons of 1, 5, and 10 days. A larger ‘MCS p-value’ 
means higher prediction accuracy for a given model. 
Table 4 reports the empirical findings from the MCS test, 
confirming the robustness of our conclusions. Across 
all loss function criteria, it is evident that our proposed 
model successfully passes the MCS test. When compared 
to alternative models, our proposed model has the 
highest p-value of 1, indicating that it is superior to all 
other models. Based on the MAE criterion, the proposed 
model seems to be the best, followed by the CEEMDAN-
GE-LBC, GE-LBC, and CNN models. The MCS p-value for 
CEEMDAN-GE-OPT-LBC consistently remains at 1 across 
all forecasting horizons. This result validates that the 
multi-scale hybrid model, which combines CEEMDAN-

FIGURE 4. A comparison of realized volatility forecast results: Proposed model VS benchmark models

TABLE 2. Results of the performance evaluation for different forecasting models utilizing varied error functions

Models MAE MSE RMSE HMAE HMSE Q-LIKE

LSTM 0.02383 0.00094 0.03065 0.28448 0.13934 -1.57231
BiLSTM 0.03308 0.00150 0.03875 0.34676 0.17344 -1.53284

CNN 0.01520 0.00057 0.02386 0.21658 0.10812 -1.61761
GE-LSTM 0.01927 0.00074 0.02728 0.24467 0.12672 -1.59669

GE-BiLSTM 0.01664 0.00069 0.02631 0.21745 0.13076 -1.60940
GE-CNN 0.01607 0.00059 0.02421 0.21626 0.11647 -1.60836
GE-LBC 0.01675 0.00064 0.02529 0.22233 0.12134 -1.60601

CEEMDAN-GE-LBC 0.01341 0.00037 0.01914 0.17592 0.05932 -1.62740
CEEMDAN-GE-OPT-LBC 0.01067 0.00023 0.01528 0.14392 0.03968 -1.63882
CEEMDAN-GE-PSO-LBC 0.01239 0.00030 0.01741 0.16492 0.04890 1.63183

              Bold values highlight the results of the best-performing model

GE with ensemble DL models optimized using Optuna, 
demonstrates greater robustness compared to the other 
models.

In summary, our study represents an initial  
exploration into the integration of Optuna with an  
ensemble model and the CEEMDAN decomposition 
method. The approach we propose demonstrates superior 
performance over all benchmark models across 
various forecasting horizons (1, 5, and 10-day ahead).  
Additionally, our findings suggest that Optuna is a more 
effective algorithm for hyperparameter tuning when 
compared to PSO. These outcomes further validate the 
efficacy of our approach in predicting future realized 
PKR/USD volatility.

Tripathi, Kumar and Inani (2020) introduced an 
ensemble method for predicting daily exchange rates 
using a combination of linear and nonlinear time-series 
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TABLE 3. Comparison of out-of-sample forecast errors for PKR/USD exchange rate volatility across different forecast horizons

1-day ahead prediction 5-day ahead prediction 10-day ahead prediction
Models MAE MSE QLIKE MAE MSE QLIKE MAE MSE QLIKE

LSTM 0.0238 0.0009 -1.5723 0.0557 0.0047 -1.4297 0.1352 0.0312 -0.2060
BiLSTM 0.0330 0.0015 -1.5328 0.0541 0.0045 -1.4370 0.1350 0.0314 -0.2038

CNN 0.0152 0.0005 -1.6176 0.0558 0.0048 -1.4333 0.1346 0.0313 -0.2037
GE-LSTM 0.0192 0.0007 -1.5966 0.0521 0.0044 -1.4435 0.1334 0.0299 -0.2254

GE-BiLSTM 0.0166 0.0006 -1.6094 0.0495 0.0043 -1.4510 0.1334 0.0303 -0.2155
GE-CNN 0.0160 0.0005 -1.6083 0.0534 0.0044 -1.4401 0.1330 0.0298 -0.2198
GE-LBC 0.0167 0.0006 -1.6060 0.0514 0.0043 -1.4458 0.1330 0.0298 -0.2221

CEEMDAN-GE-LBC 0.0134 0.0003 -1.6274 0.0421 0.0030 -1.4949 0.1306 0.0285 -0.2382
CEEMDAN-GE-OPT-LBC 0.0106 0.0002 -1.6388 0.0345 0.0026 -1.5291 0.1294 0.0274 -0.2550
CEEMDAN-GE-PSO-LBC 0.0124 0.0003 -1.6318 0.0373 0.0026 -1.5192 0.1295 0.0284 -0.2417

Bold values highlight the results of the best-performing model

TABLE 4. MCS test results with 1-day, 5-day and 10-day ahead forecast horizons

1-day 5-days 10-days
Models MAE MAE MAE

LSTM 0.954 0.557 0.981
BiLSTM 0.950 0.510 0.981

CNN 0.967 0.557 0.985
GE-LSTM 0.961 0.712 0.985

GE-BiLSTM 0.967 0.764 0.985
GE-CNN 0.967 0710 0.989
GE-LBC 0.967 0.712 0.989

CEEMDAN-GE-LBC 0.987 0.900 0.989
CEEMDAN-GE-OPT-LBC 1.000 1.000 1.000
CEEMDAN-GE-PSO-LBC 0.987 0.903 1.000

                                              The numbers are the MCS p-values

forecasting methods, including mean forecast, ARIMA 
and neural networks. Their results suggest that this  
approach outperformed individual component models. 
Additionally, ensemble methods, which combine  
multiple base LSTM models, have demonstrated reduced 
variance and enhanced performance in related stock 
market prediction work by Borovkova and Tsiamas 
(2019). Our research findings align with these studies, 
as we constructed an ensemble model by combining  
LSTM, BiLSTM, and CNN models with various input 
variables.

Baffour, Feng and Taylor (2019) examined five  
major currency pairs employing a hybrid model that 
integrated a neural network model with an econometric 
model. Their results indicated that the hybrid model 
exhibited superior performance compared to standard 
GARCH and other GARCH-type models, significantly 

enhancing accuracy in forecasting exchange rate  
volatility. Existing literature also supports the idea that 
integrating neural network models with econometric 
models yields favorable outcomes. As a result, we 
developed our model by merging econometric and deep 
learning models to improve FX volatility prediction. 

Li et al. (2021) introduced the VMD-BiLSTM model 
for crude oil forecasting, using VMD to break down 
historical data and BiLSTM for prediction. Their results 
show that this approach outperforms other models. Our 
research found that applying CEEMDAN to decompose 
PKR/USD volatility substantially improves our model’s 
forecasting accuracy. Pradeepkumar and Ravi (2017) 
introduced the PSOQRNN model, a Quantile Regression 
Neural Network trained using PSO, for forecasting 
volatility in financial time series. They conducted a 
comparative analysis of PSOQRNN against various  
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models and found that, for the majority of the eight 
financial time series examined, PSOQRNN outperformed 
the other models. This underscores the role of  
optimization methods in enhancing prediction model 
performance. 

There is a noticeable absence of research on FX 
time series volatility forecasting models using the 
Optuna optimization method in the existing literature. 
In comparison to the PSO approach, our results 
clearly indicate that Optuna outperforms the PSO 
method, highlighting its remarkable efficacy. Flexible  
optimization settings, smooth result integration, 
early low-performing trial pruning for computational 
efficiency, and efficient hyperparameter space  
exploration are all advantages of Optuna. Our research 
marks the first attempt to forecast PKR/USD volatility, 
achieved through an ensemble of models that consider a 
diverse set of input variables and the novel optimization 
method known as Optuna.

CONCLUSION

This study explores the use of an innovative hybrid 
neural network model to forecast volatility in the 
PKR/USD currency exchange rates. Our proposed  
methodology will utilize the CEEMDAN-GE-OPT-LBC 
ensemble deep learning method. This method combines 
three distinct deep learning models, LSTM, BiLSTM, 
and CNN, with an attention mechanism, as well as the 
CEEMDAN decomposition method and Optuna for 
hyperparameter tuning. The attention mechanism has 
demonstrated the ability to dynamically select  the most 
useful features and accelerate model convergence. The 
CEEMDAN approach divides FX volatility into distinct 
subsequences defined by different IMFs. We integrated 
the GARCH and EGARCH models to enhance FX  
volatility predictions with three deep learning models. 
Our results show that a hybrid model incorporating  
IMFs and GARCH/EGARCH estimates beats the 
performance of a single DL model. We employed the 
Optuna algorithm to identify the hyperparameters 
for optimizing the DL models. Utilizing Optuna for 
hyperparameter tuning led to improved prediction 
accuracy compared to the benchmark models.

Additionally, our findings indicate that the Optuna 
approach surpasses the PSO method in improved  
accuracy and reduced time consumption. We then 
introduce an ensemble of three deep learning models as 
the predictive tool, amalgamating diverse quantitative  
model inputs such as GARCH/EGARCH estimates and 
IMFs. The results affirm that the ensemble model  
surpasses individual models when exposed to varied 
data inputs. Overall, the innovative combination model 
presented in this paper demonstrates superiority and 
robustness in FX volatility prediction. Furthermore, 

the proposed model consistently yields the lowest loss 
function values across various prediction time horizons 
(1, 5, and 10 days). The proposed model can enhance 
monetary policy decision-making, improve exchange 
rate stability, and provide valuable support for risk 
management in international trade and investments.
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