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ABSTRACT

Ankylosing spondylitis (AS) is an autoimmune and inflammatory arthritis associated with various comorbidities, such 
as axial spondyloarthritis (axSpA), cardiovascular disease (CD), Guillain-Barre syndrome (GBS), rheumatic fever (RF), 
and vasculitis (Vs). The co-occurrence of these comorbidities underlies the molecular mechanisms of complex biological 
interactions shared by dysfunctional pathways. We used network biology and computational methods to establish 
association between biological processes and molecular mechanisms in AS and its comorbidities. The findings showed 
significant association between twelve shared pathways in AS and its comorbidities. These shared pathways are associated 
with pathobiological processes, such as immune responses, inflammatory responses and cellular signaling responses, in 
AS and its comorbidities. Nine of these pathways are involved in signaling, two are involved in the metabolic processes, 
and one is involved in the regulatory processes in AS and its comorbidities. In conclusion, this work highlights specific 
and common shared pathways in AS and its comorbidities. These findings provide information on key shared pathways 
that can be used to explain the pathobiological processes of AS and its comorbidities and can help in therapeutic discovery 
towards accurate diagnosis and effective treatment.
Keywords: Ankylosing spondylitis; comorbidities; network biology; protein-protein interaction; shared pathways

ABSTRAK

Ankylosing spondilitis (AS) adalah penyakit artritis auto-imun dan keradangan yang berkait dengan pelbagai komorbiditi 
seperti spondiloartritis paksi (axSpA), penyakit kardiovaskular (CD), sindrom Guillain-Barre (GBS), demam reumatik 
(RF) dan vaskulitis (Vs). Kewujudan bersama komorbiditi ini mendasari mekanisme molekul bagi interaksi biologi 
kompleks yang dikongsi oleh tapak jalan tidak berfungsi. Pendekatan jaringan biologi dan pengkomputeran telah digunakan 
untuk menunjukkan hubungan antara proses biologi dan mekanisme molekul dalam AS dan komorbiditinya. Hasil kajian 
ini menunjukkan hubungan yang signifikan antara dua belas tapak jalan sepunya dalam AS dan komorbiditinya. Tapak 
jalan sepunya ini dikaitkan dengan proses patobiologi seperti tindak balas imun, tindak balas keradangan dan tindak 
balas pengisyaratan sel dalam AS dan komorbiditinya. Sebanyak sembilan daripada tapak jalan ini terlibat dalam 
pengisyaratan, dua terlibat dalam proses metabolik dan satu tapak jalan terlibat dalam proses pengawalaturan dalam AS 
dan komorbiditinya. Kesimpulannya, kajian ini menyerlahkan tapak jalan sepunya khusus dan umum dalam AS dan 
komorbiditinya. Penemuan ini memberikan maklumat mengenai tapak jalan sepunya yang boleh digunakan untuk 
menerangkan proses patobiologi AS dan komorbiditinya serta boleh membantu dalam penemuan terapeutik ke arah 
diagnosis yang tepat dan rawatan yang berkesan.
Kata kunci: Ankylosing spondylitis; interaksi protein-protein; jaringan biologi; komorbiditi; tapak jalan sepunya
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INTRODUCTION

Ankylosing spondylitis is an inflammatory condition that 
leads to vertebral fusion in the spine. This fusion reduces 
the flexibility of the spine and may cause a hunched stance 
(Tan et al. 2021). The mechanisms underlying the root 
cause of AS remain limited due to the complex and 
multifaceted interactions between molecular pathways 
(signaling, regulatory, and metabolic pathways) that trigger 
autoimmune and inflammatory processes. AS complexity 
is believed to be contributed by the molecular association 
between shared pathways (Kasher et al. 2022). Molecular 
associations at the pathobiological level resulted from 
shared biological pathways that underlie AS complexity 
(Kasher et al. 2022). When different protein that functions 
in the same biological process trigger different signal 
responses in the same pathway (Zhang, Liu & Zhang 2021), 
it may cause changes to cell function in a different way. A 
biological pathway is a chain of interactions between 
molecules in a cell that results in a specific change in the 
cell. This interaction turns genes on and off, causes a cell 
to move, or starts the production of new molecules like 
proteins. These processes provide information sharing 
among molecular components and pathways within the 
cells. Communication between molecules via a specific 
pathway can be shared over short or long distances, where 
cells transmit signals to adjacent cells to repair localised 
damages  (Yates 2021). In protein-protein interaction (PPI) 
network, a disease pathway is a collection of interdependent 
proteins whose abnormal interactions result in a disease 
phenotype that is influenced by shared molecular signals 
at the specific degree  (Alanis-Lobato & Schaefer 2020). 
Finding out which pathways are shared between AS and 
its comorbidities might help us understand the association 
between them and how they trigger molecular functions 
that encourage innate autoimmune responses.

From the clinical research, AS patients are found to 
have one or more comorbidities (Cella et al. 2022; Kim et 
al. 2022; Yang et al. 2022). Medical Subject Headings 
(MeSH) define comorbidities as ‘the presence of co-
existing or additional diseases with reference to early 
diagnosis or with reference to the index condition’. 
Comorbidity is a medical condition that manifests 
simultaneously as a result of ongoing inflammation or its 
treatment (López-Medina & Molto 2020). Axial 
spondyloarthritis is reported to affect 10-15% of individuals 
with AS (Singh & Magrey 2020). Furthermore, rheumatic 
fever (11.4%), cardiovascular disease (22.8%), and 
vasculitis (12.8%) are the most prevalent comorbidities in 
AS patients  (Coulson et al. 2021). Similarly, other studies 
also found that Guillain-Barre syndrome (22%), 
cardiovascular disease (21%), rheumatoid arthritis 
(15.7%), osteoporosis (10.7%), and ischemic heart disease 
(10%) were the most prevalent comorbidities in AS 
(England et al. 2023; Kaur, Mittal & Singhdev 2021; 
Rebordosa et al. 2022). 

The pathobiology of AS and its comorbidities is still 
unclear. Based on earlier studies carried out by the authors 
of this study, multiple biological pathways were found to 
be associated with AS and its comorbidities through AS-
related proteins. However, the biological mechanism and 
the degree to which these pathways are connected or shared 
between AS and its comorbidities are still not clear. Two 
or more comorbidities can interact via a specific or shared 
pathway to create diseasome in patients. A diseasome is a 
collection of all diseases and health conditions that affect 
an organism, with specific reference to its biological aspect 
(Wysocki & Ritter 2011). The pathway shared by AS and 
its comorbidities and the association between the shared 
pathways are still unidentified. Thus, this study was 
conducted to determine the association between AS and 
its comorbidities based on their shared pathways.

MATERIALS AND METHODS 
 
 

CONSTRUCTION OF INTERACTIONS IN AS-COMORBIDITY 
NETWORK

The two comorbidities are said to be associated if they 
share similar biological or inflammatory related pathways. 
This pathway sharing is defined between AS and any of 
its identified comorbidities. A total of 22,219 interaction 
data associated with AS and its comorbidities are obtained 
from the PathCards database (v5.18.1073.0). In addition, 
a total of 1,434 protein-disease associations and 1,290 
disease-disease associations were obtained from the 
DisGeNET database (v5.0). The comorbidities associated 
with AS and these pathways are axial spondyloarthritis, 
rheumatic fever, cardiovascular disease, vasculitis, and 
Guillain-Barre syndrome. The information on these 
comorbidities was obtained from Human Protein Reference 
Database (HPRD; v9.0) and was used to construct the 
human protein-protein interaction network (HPPIN). The 
methods for the comorbidity network analysis used were 
according to Choudhary et al. (2023). The degree of the 
connection between two comorbidities in the diseasome 
was measured using the molecular comorbidity index 
(MCI) based on Sundarrajan and Arumugam (2016), which 
is expressed as: 

 		  (1)

ASrp represents AS related proteins. and 
are the proteins associated with comorbidity1 and 

comorbidity2, respectively. are ASrp associated 
with comorbidity1 that show interactions with ASrp 
connected with comorbidi ty2 (vice versa for 

).  symbol is the intersection function, 
indicating the number of common ASrp between the 
comorbidities, while  function imply the total number of 
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ASrp involving in both comorbidities. The equations within 
the vertical bars represent their cardinality. 

NETWORK AND TOPOLOGICAL ANALYSIS

The larger connected component was extracted from AS 
PPI network and utilised for all other network analyses. 
Kitsak et al. (2022) method was used to compute the 
shortest path and clustering coefficient, and Cytoscape 
v3.9.1 was used to visualise the network. Network of 
comorbidities was created with each disease represented 
by a node, and an edge between two comorbidities showed 
that they share at least one pathway. The default DisGeNET 
(D) scores were computed to determine the strength of the 
edges (relationship) between two comorbidities  and 

 using Li and Agarwal (2009) method below:

					                (2)

i ξ pathways associated with two comorbidities  and 
,

where , , represent p-value for the association 
between  and pathway i, , and pathway i, respectively. 
For an edge to be included in the final network, the D score 
had a default cut-off of  (0.01). The topological 
distribution of AS comorbidities was determined by within 
comorbidity distance (WCD). The WCD for each 
comorbidity was computed as the mean of the length of 
the shortest path between pairs of comorbidities. The WCD 
for a comorbidity  is computed as:

			                               (3)

where n represents the number of comorbidities and n(n-
1)/2 is the total number of unique comorbidity pairs for 

,  indicates the shortest path distance between 
comorbidity i and j. The comorbidity nodes and pathways 
were randomly done, and WCDs were re-computed in 
order to evaluate the statistical significance of WCD 
(p<0.01).

The degree of connectivity and Edge Percolated 
Component (EPC) for comorbidity networks were 
computed using cytoHubba (Chin et al. 2014).

i.	 Degree (Deg)

                 Deg( )=|N( )|	             	  (4)

ii.	 Edge Percolated Component (EPC)

Each edge in an interaction network X’ is assigned a 
removing probability p. X’ is an attainment of this 
probability. A node connected in X’ has dmn = 1, whereas 
a node not connected in X’ has dmn = 0. In EPC connectivity, 
m and n are connected by dmn over attainments, where Kmn 
is their average. The size of EPC including node m, Tm, is 
defined as the sum of Kmn over nodes n. The score of node 
m is represented by 

                    EPC(m)=1|n|∑ Kmn	 (5)

The comorbidity networks were extracted from giant PPI 
of interacting ASrp and pathways by randomly and 
individually allocating values between 0 and 1 to cluster 
of edges, and edges that connected random numbers were 
eliminated i.e., 0 ≤ limit≤ 1. 

FUNCTIONAL ENRICHMENT ANALYSIS

Functional analysis of the comorbidity associations was 
performed to determine the significance biological 
functions associated with each comorbidity and its 
pathways involved. A functional enrichment analysis was 
performed utilising Reactome pathway database (v86) and 
Panther classification system (v16). Human biological 
pathway unification (PathCards) database was used for 
annotations of the biological and inflammatory pathways. 
The biological processes shared by the AS comorbidities 
was measured with Jaccard index (JI):

  			                      (6)

 		                         (7)

JI determines the degree of similarity between AS and its 
comorbidities. Com1 and Com2 represent AS and any of 
its comorbidities. Biological function (BF) of Com1 and 
Com2 represents the biological processes involved in AS 
and any its comorbidities. The pathways for Com1 and 
Com2 are the biological pathways where ASrp associated 
with the comorbidities are shared. All pathways and 
interactions networks were visualized using Cytoscape 
v3.9.1. 

BONFERRONI CORRECTION

We used ClueGo algorithm to conduct the statistical 
analysis and Bonferroni method to control the group-wise 
error rate within a cluster. A network was determined at a 
significance level t if there were K variables (i.e., a pathway 
or comorbidity); each variable was calculated at t/K. Thus, 
only the nodes that have p-values of t/K were considered 
significant in the network. False positives were controlled 
at t by a probability function.
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PAIRWISE CORRELATION NETWORK

Shared network was constructed using pairs of shared 
pathways in shared comorbidities that have significant 
pairwise correlations. Each node in this paired correlation 
network represented a pathway or comorbidities, and the 
connections between the interactions showed the significant 
correlations between them. Pair correlation of a pathway 
or comorbidity could be either positive or negative, 
indicating that the interactions between shared pathways 
among comorbidities may be significantly stronger or 
weaker. Pairwise correlation on shared network was 
computed using the approach described by Tam, Chang 
and Hung (2013) which determines the correlation 
coefficient using D = n(n-1) potential nodes of the n-shared 
network. Since there are a total of n(n-1)/2 pairs of shared 
pathways (i, j), thus, the n(n-1)/2 coefficient matrices E for 
shared comorbidities are computed.

DETERMINATION OF ASSOCIATIONS’ STRENGTH 
BETWEEN SHARED PATHWAYS

Association correlational approach was used to determine 
the strength of associations between shared pathways. The 
interaction strengths between domains (domain-domain 
interactions) were computed from MCI of the shared 
pathways and the comorbidity pairs, using the following 
association approach (Sprinzak & Margalit 2001), which 
is based on the binary interaction between shared pathways’ 
information and allots a score to each domain pair (  , 

 ). The probability of interacting pathways (correlation 
score) for  ,  is computed as

 			                          (8)

where  denote the number of pathway pairs [scores 
obtained from Human Integrated Protein-Protein 
Interaction Reference (HIPPIE) (http://cbdm-01.zdv.uni-
mainz.de/~mschaefer/hippie/index.php)] containing 
domain pairs ( , ). The denote the number of 
interacting comorbidities pairs containing domain pairs 
(  , ).

COMORBIDITY-PATHWAY ASSOCIATION

The comorbidity-pathway association was performed using 
pathway-based methods (Li & Agarwal 2009; Yu & Gao 
2017), such as a one-sided Fisher’s Exact test that is to 
determine whether there is an overlap between a disease 
and a pathway, and FDR Benjamini–Hochberg technique 
which is used to adjust the p-values. Comorbidity-pathway 
pairs with adjusted p-value of 0.05 were gathered. All 
comorbidities were then examined for pathway association 
after being randomly assigned. The background distribution 

was created by repeating this procedure ten times. In cases 
where a comorbidity was associated to multiple pathways, 
the biological association of those pathways were assessed 
to generate a comorbidity-pathway association (CPA) 
score:

	  

                 (9)

 pathways associated with a comorbidities,
where n indicates the number of pathways associated with 
a comorbidity, n(n-1)/2 is the total number of distinctive 

pathway pairs,   indicates number of ASrp shared 

by pathways  and , and min( ) indicates the 

size of the smaller pathway between  and . A high 
CPA score suggests a group of pathways have a high degree 
of biological connection. It is equivalent to 1 when there 
are no overlaps between the pathways and 0 when there 
are no pathways at all. The pathway content index (PCI) 
is computed as:

 			                                  (10)

X( ) represents the overall number of ASrp from set , 
and Y( ) represents the number of distinctive ASrp from 
set , where  is a set of pathways connected to a 
comorbidity. When the connected pathways are entirely 
redundant, the PCI = 1, and when there is no pathway 
redundancy among comorbidities, it equals the size of 

. A similar assessment, the CCI (comorbidity content 
index), was used to quantify the function of associated 
comorbidities when a pathway is associated to many 
comorbidities.

RESULTS AND DISCUSSION 
 
 

ASSOCIATION BETWEEN AS AND ITS COMORBIDITIES

The disease-disease association and protein-disease 
association information was obtained from the DisGeNET 
database of human gene-disease associations for the AS 
comorbidities [AS, axial spondyloarthritis (axSpA), 
rheumatic fever (RF), cardiovascular disease (CD), 
vasculitis (Vs), and Guillain-Barre syndrome (GBS). Table 
1 presents the results of functional mapping of the ASrp 
and their relationship with the comorbidities based on 
disease-disease and protein-disease associations. A total 
of 1,434 and 1,290 interactions for protein-disease 
associations and disease-disease associations, respectively, 
were obtained. The protein-disease association score 
(Score pda) showed a strong association between six AS 
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regulators, hormones, transcription factors, and immune 
responses. The results also showed that the disease 
specificity index for the protein (DSIp) and the disease 
pleiotropy index for the protein (DPIp) were higher and 
similar among comorbidities.

comorbidities. Most of the AS-related proteins associated 
with these comorbidities were cytokines, chemokines, 
interleukins, and growth factors. These ASrp were 
signaling proteins, enzymes, receptors, nucleic acid-
binding proteins, metabolites, kinases, epigenetic 

Key comorbidi-
ties

Associated 
comorbidities Shared pathways Pairwise 

correlation
p-value Bonferroni 

correction

AS

axSpA
Innate Immune System 1.0016 0.001 0.999
Canonical Wnt Pathway 1.0024 0.001 0.999

CD
PI3K-Akt signaling pathway 1.0032 0.001 0.999
Oxidative damage response 1.005 0.001 0.999

GBS
IL-6 family 1.0053 0.001 0.999
Oxidative damage response 1.0053 0.001 0.999

RF
Metabolism of proteins 1.0053 0.014 0.986
IL-1 family signaling 1.0053 0.001 0.999

Vs
B Cell Receptor Signaling 
Pathway

1.0053 0.001 0.999

PI3K-Akt signaling pathway 1.0071 0.001 0.999

axSpA

AS
Canonical Wnt Pathway -1.0071 0.001 0.999
Innate Immune System 1.0088 0.001 0.999

RF
Metabolism of proteins 1.0098 0.011 0.989
IL-1 family signaling 1.0101 0.001 0.999

Vs
PI3K-Akt signaling pathway 1.0103 0.001 0.999
B Cell Receptor Signaling 
Pathway

1.0103 0.016 0.984

CD
AS

Oxidative damage response 1.0137 0.001 0.999
PI3K-Akt signaling pathway 1.0154 0.001 0.999

GBS
IL-6 family 1.0169 0.001 0.999
Oxidative damage response 1.0238 0.001 0.999

GBS

AS
IL-6 family 1.0286 0.001 0.999
Innate Immune System 1.0286 0.001 0.999

CD
Cytokine Signaling in Immune 
system

1.0286 0.013 0.987

PI3K-Akt signaling pathway 1.0286 0.001 0.999

Vs

AS
PI3K-Akt signaling pathway 1.0286 0.001 0.999
Extracellular matrix organiza-
tion

-1.0326 0.001 0.999

axSpA

B Cell Receptor Signaling 
Pathway

1.0351 0.001 0.999

Cytokine Signaling in Immune 
system

1.0373 0.001 0.999

TABLE 1. Statistical analysis for the shared pathways

AS=ankylosing spondylitis; axSpA=axial spondyloarthritis; CD=cardiovascular diseases; GBS= Guillain-Barre syndrome; RF= 
rheumatic fever; Vs=vasculitis. The significant is P<0.05 
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AS and its key comorbidities, such as axSpA, RF, CD, 
Vs, and GBS, have been found to biologically and 
statistically link through several shared pathways, 
suggesting their involvement in several biological 
processes (e.g., acute inflammatory response, multi-
functional enzymatic activity in inflammation, cartilage 
development, tissue remodeling, and skeletal system 
development) that contribute to the difficulties in 
diagnosing AS accurately and providing effective 
treatments. Key shared mechanisms in comorbidities were 
associated with common shared pathways (both biological 
and inflammatory). Clinical research has shown that the 
coexistence of these comorbidities contributes to the 
complexity of the diagnosis and treatment processes; for 
example, treating one comorbidity will interfere with the 
treatment of another comorbidity (Choudhary et al. 2023; 
Singh & Magrey 2020). This coexistence showed that the 
comorbidities were associated via common pathways. 
Seronegative spondyloarthropathies, including AS and 
axSpA, have been found to be comorbid in the same 
patients (Khan 2023). Psarelis et al. (2017) reported GBS 
comorbid with AS in anti-TNF-α treatment. Similarly, 
Nygaard et al. (2023) reported long-term cardiovascular 
diseases in patients diagnosed with vasculitis. Weber et al. 
(2023) have indicated an association between systemic 
vascul i t is  and coronary ar tery microvascular 
(cardiovascular) dysfunction in patients with AS. All these 
reports provide strong evidence of the biological 
association between these comorbidities through their 
shared pathways.

COMORBIDITIES-PATHWAY MAPPING

Mapping of the pathways-related data produced overall 
22,219 pathways from PathCards. A total of 65 sub-
pathways and 22,154 other pathways (overall = 22,219) 
connected with these sub-pathways were found to be 
associated with AS and its comorbidities. The inflammatory-
related pathways were compared with biological pathways. 
On average, 50% of pathways from each comorbidity were 
statistically associated with biological pathways (p-value 
< 0.01), suggesting the possibility that the associated 
pathways can be used to functionally characterise 
comorbidities. The comorbidity-pathway associations were 
significantly distributed (p-value < 0.01). Comorbidities 
were connected to several pathways (mean = 100), and the 
pathways were connected to six comorbidities. For each 
comorbidity, the fraction of pathways (mean < 65) 
associated with comorbidities was statistically mapped. 
Collectively, these results implied that six comorbidities 
associated with various pathways were related and 
consistent with the sub-pathways.

The information from disease-disease associations, 
protein-disease associations, and associated pathways was 

used to construct the AS-comorbidities interactome 
network (Figure 1). The network was built by 22,219 (i.e., 
65 + 22,154) connections between related pathways 
(denoted by interacting edges), 2,724 connections between 
(PDA = 1434 + DDA = 1290) related diseases (denoted by 
yellow nodes), and 1,076 ASrp (denoted by black nodes) 
connected to the six comorbidities (i.e., AS, axSpA, RF, 
CD, GBS, and Vs). Figure 2 displays the AS PPI network, 
which consists of 409 nodes and 2,247 edges, which were 
then refined using MCODE to illustrate the 1,235 
interactions of the highly associated diseasome. The 
comorbidities were illustrated in different colours, while 
the lines represent the shared pathways involved. The 
application of group attribute layout and MCODE 
clustering on the network created different comorbidity 
clusters such as AS, axSpA, RF, CD, GBS, and Vs and 
their shared pathways. The network showed the interactions 
between different comorbidities. The non-interacted nodes 
were clustered separately under the main network. All the 
comorbidities appeared to be interconnected and 
interrelated across the topology.

The findings from pathway analysis showed that AS, 
axSpA, RF, CD, GBS, and Vs were associated with twelve 
key shared pathways, and nine of these pathways were 
involved in signaling, two pathways were involved in 
metabolic processes, and one pathway was involved in the 
regulatory processes in biological systems. These 
biological processes were involved in the dysfunctional 
and dysregulated processes among these comorbidities in 
AS patients. The innate immune system played a crucial 
role in the development of autoimmunity. It is the first 
non-specific mechanism for biological defence. The 
activation of this pathway started with the pattern 
recognition of biological molecules expressed in innate 
immune cells that were bound to the extracellular matrix 
(Mantovani & Garlanda 2023). Pattern-recognition 
receptors were involved in this process of immune response 
which detected negative signals (Tian et al. 2023). Innate 
immune signaling performs a variety of functions in 
response to a wide range of different infections. 
Uncontrolled immunological responses result in negative 
effects that trigger dysfunctional processes (Łukawska, 
Polcyn-Adamczak & Niemir 2018). The innate immune 
system triggers autoimmunity via B lymphocyte (B cell) 
activation to produce antibodies, which triggers T 
lymphocytes (T cells) to fight the antigens (Rubtsova et 
al. 2017). The innate regulators (NK cells, Tregs, basophils, 
NODs, neutrophils, PRRs, macrophages, mast cells, 
eosinophils, and DCs) of these processes regulate different 
signaling pathways. This implied that the innate immune 
system pathway played a role in a network of interactions 
with extracellular matrix organisation and B cell receptor 
signaling processes to trigger the autoimmune activities 
between the comorbidities.
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FIGURE 1. AS Comorbidities and Pathway Interactome (AS PPI Network). The pink 
colour represents a cluster of AS comorbidities, while the yellow colour denotes ASrp. 

The dark black spot represents the counts of associated pathways in AS and its 
comorbidities. The PPI network was constructed using data from protein-disease 

associations and the associated pathways

FIGURE 2. The Clusters of Human Diseasome. The comorbidities are represented 
by different colours, while the lines represent the shared pathways. Blue = AS, 
Yellow = asSpA, Pale Blue = GBS, Red = Vs, Green = RF, Pink = CD. Note: 

AS=ankylosing spondylitis; axSpA=axial spondyloarthritis; CD=cardiovascular 
diseases; GBS= Guillain-Barre syndrome; RF= rheumatic fever; Vs=vasculitis
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THE ASSOCIATION BETWEEN COMORBIDITIES THROUGH 
THEIR SHARED PATHWAYS AND SPECIFIC PATHWAYS

Shared pathways, either in a similar or different direction, 
can be an underlying mechanism for the dysfunctional 
processes encouraging comorbidity coexistence and their 
pathobiology. Shared pathways include biological and 
inflammatory pathways that function holistically and in 
tandem in biological systems. In order to determine the 
associations between comorbidities through their common 
linker, we first determined the shared pathways and the 
common pathways for each comorbidity using PPI 
analysis. Figure 3(A) illustrates the AS diseasome and its 
associating pathways. AS diseasome was associated with 
22 shared pathways (red edges). Meanwhile, 23 other 
pathways (pink edges) were specific to AS. The interactions 
between shared and specific pathways may contribute to 
negative or positive responses in disease pathobiological 
processes. Figure 3(B) depicts the axSpA diseasome and 
its associating pathways. The axSpA diseasome was 
associated with 12 shared pathways (red edges) that can 
be used to describe the pathobiological processes in axSpA, 
while 11 other pathways (pink edges) were specific to 
axSpA only. 

Figure 4(A) displays the CD diseasome and the 
pathways that connect it to other diseases. Eight of these 
pathways (shown by red edges) were shared with other 
comorbidities, while the other twelve were unique to CD. 
The interactions between shared and common pathways 
can be used to describe the pathobiological processes in 
CD and its comorbidities. The GBS diseasome and its 
associating pathways are shown in Figure 4(B). There were 
nine pathways associated with the GBS diseasome (red 
edges) that were shared with other comorbidities. However, 
ten other pathways were common to the GBS diseasome, 
which interact with the shared pathways to produce 
comorbid pathobiological processes.

Figure 5(A) shows the RF diseasome and its 
associating pathways. The RF diseasome was found to be 
associated with 11 shared pathways (red edges). However, 
11 other pathways were found to be common to RF. It was 
possible that the interactions between the shared pathways 
and these other pathways contributed to positive or 
negative comorbid pathobiological processes. Figure 5(B) 
illustrates the Vs diseasome and its associating pathways. 
The Vs diseasome was found to be associated with 16 
shared pathways (red edges). However, 11 other pathways 
were found to be common to Vs. It is possible that the 
interactions between the shared pathways and these other 
pathways contribute to positive or negative comorbid 
pathobiological processes.

The findings of this study also showed strong 
connections between the extracellular matrix (ECM), 
innate immune system, cytokine signaling in the immune 
system, IL-1 family signaling, and IL-6 family signaling 

shared pathways. ECM was a complex network made up 
of a variety of multidomain macromolecules arranged in 
a cell-tissue-specific pattern (Zhang, Liu & Zhang 2021). 
The mechanical properties of cells were influenced by the 
ECM that linked them together to produce a structurally 
stable complex. The ECM appeared to be a structurally 
supportive protein that supports cell survival and other 
biological functions. For example, collagen, laminin, and 
fibronectin were a few of the complex proteins that make 
up the ECM and were essentially for tissue growth. The 
spatial organization of ECM proteins significantly affected 
cell contact guidance (Szabo & Momen-Heravi 2020). In 
the skeletal muscles, collagen makes up the majority of 
ECM proteins (Zhang, Liu & Zhang 2021). In addition to 
many bioactive ECM breakdown products that affected 
cells, ECM appeared to be a main and great source of 
cytokines (including IL-6, IL-1, IL-2, IL-3, IL-17, IL-23) 
and growth factors (Boehme & Rolauffs 2018). This can 
explain the association between IL-6 family signaling, IL-1 
family signaling, and extracellular matrix organization 
pathways, which were shared among the comorbidities. 
These pathways were discovered to connect: AS and Vs 
via extracellular matrix organization; GBS, CD, and axSpA 
via cytokine signaling in the immune system; AS, GBS, 
and CD via IL-6 family signaling; AS, RF, and axSpA via 
IL-1 family signaling. Both the IL-6 family signaling 
pathway and the IL-1 family signaling pathway were 
inflammatory cytokines that trigger innate immune 
responses, likely triggering autoimmune activities. This 
might be because IL-1 produced from the ECM and other 
immune cells provided immunity to the cells, increasing 
the release of defensins, which create a feedback-like 
reaction within the cells. Proinflammatory cytokines 
(including IL-1, IL-6) were involved in both the initiation 
and effector stages of the innate immune response 
pathways. Moreover, a complex of proteins known as the 
inflammasome, which might be made up of caspase-1, 
ASC, and NLR, was activated during autoimmune 
responses. Following their activation, they cleave pro-IL-
1β, pro-IL-18, IL-37, and IL-12, allowing for their 
maturation and release (Li, Guo & Bi 2020). Several 
inflammatory functions and processes involve the initiation 
of inflammasomes.

ESTABLISHING SHARED PATHWAYS THROUGH 
TOPOLOGICAL AND STATISTICAL ANALYSIS

The interactions between shared pathways among 
comorbidities (Figure 6(A)) showed significant interactions 
among key shared pathways and comorbidities across the 
network. AS (number of associated comorbidities = 5, 
number of associated pathways = 8) and axSpA (number 
of associated comorbidities = 3, number of associated 
pathways = 6) had the most shared pathways. Six of the 
comorbidities were associated to the same signaling 
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F  IGURE 3. Diseasome network in AS and axSpA. (A) The AS diseasome and linking 
pathways. Green circle nodes and black texts indicate pathways involved in AS; red edges 
indicate common pathways shared by AS and its comorbidities; and cyan edges indicate 
pathways specifi c to AS with indirect interactions. (B) T he axSpA diseasome and linking 
pathways. Green circle nodes and black texts indicate pathways involved in axSpA; red 

edges indicate common pathways shared by axSpA and other comorbidities; and cyan edges 
indicate pathways specifi c to axSpA with indirect interactions

A

B
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A

B

F IGURE 4. Diseasome network in CD and GBS. (A) CD diseasome and linking pathways.
Green circle nodes and black texts indicate pathways involved in CD; red edges indicate shared 
pathways shared by CD and other comorbidities; and cyan edges indicate pathways specifi c to 
CD with indirect interactions. (B) GBS diseasome and linking pathways. Green circle nodes 
and black texts indicate pathways involved in GBS; red edges indicate common pathways 

shared by GBS and other comorbidities; and cyan edges indicate pathways specifi c to GBS with 
indirect interactions
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FIGURE 5. D iseasome network in RF and Vs. (A) RF diseasome and linking pathways. 
Green circle nodes and black texts indicate pathways involved in RF; red edges indicate 

common pathways shared by RF and other comorbidities; and pink edges indicate pathways 
specifi c to RF with indirect interactions. (B) Vs diseasome and linking pathways. Green 

circle nodes and black texts indicate pathways involved in Vs; red edges indicate common 
pathways shared by Vs and other comorbidities; and cyan edges indicate pathways specifi c 

to Vs with indirect interactions

A

B
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pathways. These were the PI3K-Akt pathway (n = 6), the 
oxidative damage response (n = 4), the innate immune 
system (n = 3), the B cell receptor signaling pathway (n = 
3), and the IL-6 family (n = 3). The interactions among 
these shared pathways contribute to the mechanisms that 
promote negative or positive dysfunction and dysregulation 
activities.

Further topological analysis was carried out to 
determine the degree of association between pathways and 
comorbidities. Figure 6(B) displays the result of the 
topological association between shared pathways and 
comorbidities. The topological analysis showed that there 
were stronger associations between shared pathways and 
comorbidities than between EPC and shared pathways. 
The higher the degree of connectivity among nodes, the 
greater the associations between them. However, the EPC 
showed the probability of connectivity and interaction 
between edges (centrality) that were less related. The 
higher the EPC, the less the association between connected 
edges and nodes. Thus, the result showed a stronger 
association between shared pathways and comorbidities. 
Table 1 presents the statistical analysis for shared pathways. 
The pairwise correlation revealed strong associations 
(p-value ≤ 0.001) between shared pathways and their 
corresponding comorbidities. The Bonferroni correction 
showed a low group-wise error across all shared pathways 
and that the shared pathways were closely associated.

Shared protein metabolism pathways were associated 
with cytokine signaling in the immune system, innate 
immune system, IL-1, and IL-6 pathways, which was 
critical in connecting AS and its comorbidities. Additionally, 
the metabolites produced in this process serve as signaling 
molecules that directly control inflammatory reactions. 
Granulocytes and monocytes, which trigger innate immune 
responses, tightly entwined their ECM metabolism. This 
process promotes ECM disruption, weakening, and damage 
(Zhang, Liu & Zhang 2021). Granulocytes and monocytes 
originate from hematopoietic stem cells in the bone 
marrow. This might be because the machinery controlling 
mRNA in skeletal muscle in the spine, through activated 
cellular pathways such as JAK-STAT signaling and the 
canonical Wnt pathways, may receive signals to control 
protein metabolism. Protein structure could be altered by 
metabolic changes caused by inflammatory events in the 
cells. The metabolism may regulate changes in muscle 
mass by controlling the production and breakdown of 
muscle protein. All these shared pathways in protein 
metabolism showed the strength of the molecular 
comorbidity association between the shared pathways in 
AS and its comorbidities. Thus, these processes might help 
explain some of the dysfunctional mechanisms that activate 
spinal immobilization and erosion in AS.

THE STRENGTH OF ASSOCIATION AMONG THE 
COMORBIDITIES IN THE SHARED PATHWAYS

Based on the pathway overlap finding, the strength of 
connection and association between two shared pathways 
in the diseasome was determined, which can help us 
understand the nature of the relationships and their 
functions. Table 2 illustrates the strength of comorbidity 
associations between shared pathways, where the ones 
with higher comorbidity associations in order of their 
strength were the innate immune system (94.2%), 
extracellular matrix organization (95.6%), IL-6 family 
signaling (95.8%), and B cell receptor signaling pathway 
(96%). The order of strength also includes the PI3K-Akt 
signaling pathway (96.7%), the metabolism of proteins 
(96.9%), the Canonical Wnt Pathway (97.3%), the JAK-
STAT Signaling Pathway (97.7%), and cytokine signaling 
in the immune system (97.9%). Lastly, the order of strength 
includes oxidative damage response (98.2%), death 
receptor signaling (98.3%), and IL-1 family signaling 
pathways (98.4%). These results indicated that the strength 
of comorbidity associations between shared pathways can 
be associated with the dysfunctional pathways in the 
network. The strength and closeness could also define 
possible mechanisms of autoimmune responses in AS 
through the connected shared pathways.

The JAK-STAT signaling pathway was crucial for 
biological and inflammatory responses via the cytokine 
signaling pathway between the comorbidities. The JAK-
STAT signaling system appeared to be a network of protein 
interactions that played a role in a number of cellular 
functions, including cell division, tumor development, and 
cell death (Xin et al. 2020). The pathway transmits 
information from chemical signals outside of a cell to the 
cell nucleus, leading to transcription for gene activation. 
JAKs, signal transducers and activators of transcription 
proteins (STATs), and receptors were essential components 
of JAK-STAT signaling (Hu et al. 2021). AS, axSpA, RF, 
CD, GBS, and Vs were autoimmune diseases caused by 
the dysfunctional and dysregulated JAK-STAT signaling 
(Guo et al. 2021; Malemud 2018; Tzeng, Chyuan & Lai 
2021; Xue et al. 2023). The JAK-STAT pathway was also 
associated with the TGF-beta pathway, which appeared to 
be the key pathway associated with HLA-B27 protein 
(Grandon et al. 2019; Tran et al. 2023). This protein was 
also associated with interleukin in AS, which seemed to 
be one of the main ASrp found in AS comorbidities. The 
existence of HLA-B27 on cells (such as white blood cells, 
which can be both T cells and B cells) could cause the 
immune system to attack the healthy cells. As a result, 
immune-mediated or autoimmune conditions like AS, 
axSpA, and RF might develop (Appel et al. 2004; Grandon 
et al. 2019). Changes made to the receptors let the 
intracellular JAKs that were connected to them 
phosphorylate and start the binding of ligands from outside 
the cell (Seif et al. 2017).
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F IGURE 6. T he relationship between the comorbidities. (A) The interactions between 
shared pathways among comorbidities. (B) Topological association between shared 

pathways and AS comorbidities. Note: Pink nodes represent the comorbidities, yellow nodes 
represent shared pathways, pale blue edges represent interactions, and arrows represent the 

direction of association. AS=ankylosing spondylitis; axSpA=axial spondyloarthritis; 
CD=cardiovascular diseases; GBS= Guillain-Barre syndrome; RF= rheumatic fever; 

Vs=vasculitis; EPC=Edge Percolated Component
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Shared pathway MCI HIPPIE score p-value
B cell receptor signaling pathway 96.0% 0.93 0.001
Canonical Wnt Pathway 97.3% 0.91 0.001
Cytokine signaling in the immune system 97.9% 0.89 0.001
Death receptor signaling 98.3% 0.8 0.001
Extracellular matrix organization 95.6% 0.88 0.001
IL-1 family signaling pathways 98.4% 0.93 0.001
IL-6 family signaling 95.8% 0.9 0.001
Innate immune system 94.2% 0.95 0.001
JAK-STAT Signaling Pathway 97.7% 0.88 0.001
Metabolism of proteins 96.9% 0.95 0.001
Oxidative damage response 98.2% 0.86 0.001
PI3K-Akt signaling pathway 96.7% 0.89 0.001

TABLE 2. Strength of comorbidities associations between shared pathways

The closeness of MCI (yellow bar) to shared pathways indicates strong association. The closeness of MCI to HIPPIE scores 
(green bar) indicates weak association. Low percentage shows better strength. HIPPIE scores are based on longer paths in a 
network of nodes closeness. MCI = molecular comorbidities index; HIPPIE = Human Integrated Protein-Protein Interaction 
Reference

The oxidative damage response and canonical Wnt 
signaling pathways were associated with death receptor 
signaling pathways, and shared between AS, axSpA, RF, 
CD, GBS, and Vs. The oxidative stress response is 
associated with these comorbidities when cellular defense 
mechanisms were incapable of managing the presence of 
ROS. ROS seemed to be connected to a process that 
activates apoptosis without the use of caspase (Poprac et 
al. 2017; Xiang et al. 2020). These comorbidities interact 
based on their pathways and functions. Apoptosis can 
change structural proteins in the oxidative damage response 
and canonical Wnt signaling pathways. This could stop 
the protein signal and cause more complicated biological 
functions. This process results in cell death and might 
activate mechanisms responsible for spine eroding, 
potentially leading to further cell death. These pathways 
involved in protein carbonylation might be triggered by 
ROS, which could directly oxidise amino acids associated 
with the structural proteins (Ghosh & Shcherbik 2020). 
Damage to complex proteins appeared to be a negative 
regulator of the canonical Wnt signaling pathway because 
it encouraged cytoplasmic β-catenin mutilation when Wnt 
signaling was not likely to be present.

CONCLUSION

Twelve shared pathways have been identified as linkers 
between AS and its comorbidities such as axSpA, RF, CD, 
GBS, and Vs and can be used to explain their underlying 
mechanisms. MCI analyses showed strong association 
between these shared pathways. Information on shared 
pathways between AS, axSpA, RF, CD, GBS, and Vs can 
be used to explain the pathobiology of AS and its 
comorbidities, assisting in accurate diagnosis and effective 
treatment. The findings of this study could aid biological 
and clinical research in understanding the role of biological 
pathways in complex mechanisms of AS pathobiology to 
enhance clinical treatment, drug target actions, and 
biomarker discovery. Furthermore, it provides high-
throughput biological information on significant 
comorbidities associated with AS and their common 
pathways, which could be crucial in investigating 
dysregulation and malfunctioning proteins in the 
inflammatory pathways in any of AS comorbidities. 
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