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ABSTRACT

Multi-robot path planning faces challenges such as conflict avoidance, collaboration, and dynamic environments. This 
paper proposes a multi-robot path planning algorithm that integrates the improved nutcracker optimization algorithm with 
the improved dynamic window approach. To address the nutcracker algorithm’s sensitivity to initial conditions and slow 
convergence, a population initialization strategy is introduced for more diverse initial populations. Additionally, a simplified 
path node strategy is also designed to shorten paths and reduce steering times. By incorporating a dynamic inertia weight 
factor w, the balance between global exploration and local optimization is improved. To address the limitations of the 
dynamic window approach, which is unable to avoid dynamic obstacles instantly and is prone to falling into local optimal 
solutions, the target distance subfunction, the path evaluation subfunction and the deviation from danger zone subfunction 
are added to the evaluation function. Finally, the two algorithms were fused together and we conducted four experiments 
to validate the performance of the MANOA, IDWA, and MANOA-IDWA algorithms, as well as the application of MANOA-
IDWA in multi-robot path planning. Results show that MANOA-IDWA significantly increases path planning success rates 
in dynamic environments, producing shorter and smoother paths, thus enhancing the safety and stability of multi-robot 
operations.
Keywords: Dynamic window approach; fusion algorithm; multi-robot path planning; nutcracker optimization algorithm 

ABSTRAK

Perancangan laluan berbilang robot menghadapi cabaran seperti mengelakkan konflik, kolaborasi dan persekitaran dinamik. 
Kertas ini mencadangkan algoritma perancangan laluan berbilang robot yang mengintegrasikan algoritma pengoptimuman 
nutcraker yang dipertingkatkan dengan pendekatan tetingkap dinamik yang dipertingkatkan. Untuk menangani kepekaan 
algoritma nutcracker kepada keadaan awal dan penumpuan perlahan, strategi pemula populasi diperkenalkan untuk populasi 
awal yang lebih pelbagai. Selain itu, strategi nod laluan yang dipermudahkan juga direka bentuk untuk memendekkan laluan 
dan mengurangkan masa stereng. Dengan menggabungkan faktor berat inersia dinamik w, keseimbangan antara penerokaan 
global dan pengoptimuman tempatan dipertingkatkan. Untuk menangani batasan pendekatan tetingkap dinamik yang 
tidak dapat mengelakkan halangan dinamik serta-merta dan terdedah kepada penyelesaian optimum tempatan, subfungsi 
jarak sasaran, subfungsi penilaian laluan dan sisihan daripada subfungsi zon bahaya ditambahkan pada fungsi penilaian. 
Akhirnya, kedua-dua algoritma telah digabungkan bersama dan kami menjalankan empat uji kaji untuk mengesahkan 
prestasi algoritma MANOA, IDWA dan MANOA-IDWA serta aplikasi MANOA-IDWA dalam perancangan laluan berbilang 
robot. Keputusan menunjukkan bahawa MANOA-IDWA dengan ketara meningkatkan kadar kejayaan perancangan laluan 
dalam persekitaran dinamik, menghasilkan laluan yang lebih pendek dan lancar, sekali gus meningkatkan keselamatan dan 
kestabilan operasi berbilang robot.
Kata kunci: Algoritma gabungan; algoritma pengoptimuman nutcracker; pendekatan tetingkap dinamik; perancangan 
laluan berbilang robot
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INTRODUCTION

The ongoing advancement of robotics technology 
has rendered it challenging for a single mobile robot 
to accomplish complex work tasks autonomously. 
Consequently, the concept of multi-robot systems has 
emerged. The process of multi-robot path planning entails 
the determination of the optimal route for a robot from 
its point of origin to its destination. Multi-robot systems 
require effective communication and coordination to 
share information, collaborate, and avoid conflicts (Lin 
et al. 2022; Madridano et al. 2021). Robots must also 
adapt in real-time to dynamic environments, making rapid 
path adjustment to avoid collisions a critical challenge. 
Therefore, high-performance path planning algorithms 
are essential for multi-robot systems. Robot path planning 
algorithms are usually divided into two parts: Global path 
planning and local path planning (Jian et al. 2021).

In recent years, scholars both domestically and 
internationally have used metaheuristic algorithms for 
global path planning. Metaheuristic algorithms generally 
possess strong global optimization capabilities. These 
algorithms effectively explore the solution space and 
improve the quality and convergence speed of solutions 
by simulating natural phenomena or social behaviors. 
Common metaheuristic algorithms include the firefly 
algorithm (Yang 2009; Yu et al. 2021) (FA), the cuckoo 
search algorithm (Kanoon, Al-Araji & Abdullah 2022)(CS), 
the sparrow search algorithm (Xue & Shen 2020)(SSA). 
However, some drawbacks still exist such as difficulty 
in parameter setting, high consumption of computational 
resources, and excessive memory usage. Therefore, several 
scholars have enhanced the conventional metaheuristic 
algorithms. Chen et al. (2019) introduced two innovative 
and effective strategies, namely Levy flight and chaotic 
local search, simultaneously to better balance its global 
and local search capabilities in complex environments 
in WOA. Liu et al. (2021) improved the SSA algorithm 
for optimizing UAV routes and avoiding obstructions 
and collisions within a given flight area by introducing a 
chaotic strategy, adaptive inertia weights, and a Cauchy-
Gaussian mutation strategy. Wang et al. (2016) proposed 
the NAFA algorithm to address excessive gravitational 
attraction, which can cause oscillations and increase 
computational time complexity during the search process 
of FA. The nutcracker optimization algorithm (Ida 
Evangeline et al. 2024) (NOA) is a new metaheuristic 
algorithm and was proposed in 2023 by Abdel-Basset et 
al. (2023) based on two different behaviors of nutcracker. 
Twenty-three standard functions, test suites of CEC2014, 
CEC-2017, and CEC-2020 were employed in this work 
to evaluate the performance of NOA. The experimental 
results show that NOA can well balance global exploration 
and local exploitation, with faster convergence and better 
adaptation. Common local path planning methods include 
the potential field method (Ge & Cui 2002), the dynamic 
window method (Han et al. 2022)(DWA), and sampling-

based methods (Karaman & Frazzoli 2011). Among 
these methods, DWA stands out due to its high real-time 
performance, adjustable parameters and consideration of 
robot dynamic constraints. 

In dynamic environments, multiple robots encounter 
moving obstacles and changing terrain, complicating path 
planning. The improved metaheuristic algorithms can 
effectively plan collision-free paths in static conditions. 
However, increased obstacle coverage or dynamic obstacles 
significantly raises the likelihood of robots getting trapped 
in local optima and reduces path planning success rates. 
To facilitate effective conflict avoidance and coordination 
among multiple robots, greater algorithm complexity is 
required. After comprehensive consideration, this paper 
proposes a path planning method that combines the multi-
strategy adaptive nutcracker optimization algorithm 
(MANOA), with the improved dynamic window approach 
(IDWA). 

THE TRADITIONAL NUTCRACKER OPTIMIZATION 
ALGORITHM

The foraging and storage strategy as well as the cache 
search and retrieval strategy are proposed to mimic 
nutcrackers’ behaviors.

Foraging and storage strategy
During this phase, NOA balances global exploration with 
local exploitation based on probability 1aP . The formulas 
for updating the location during this phase are as follows:
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where 
1t

iX
+→  represents the i-th nutcracker’s position at the 

( 1t + )-th iteration; ,
t
i jX  represents the i-th nutcracker’s j

-dimensional position at the t-th iteration; ,
t
m jX  represents 

the mean of all nutcrackers’ j-dimensional position at 
the t-th iteration; t

bestX
  represent the optimal nutcracker’s 

position at the t-th iteration; A, B, and C represent three 
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randomly selected nutcrackers without duplication; jU  and 
jL  are the upper bound as well as the lower bound of the 

j-dimensional position; γ  , λ and 5τ  are random numbers 
generated by levy flight; 1τ , 2τ , 3τ , r, 1r , 2r , 3r , and φ are 
uniformly distributed over the interval [0,1]; 4τ  is a random 
number that follows a normal distribution; the value of δ  is 
0.05; 1aP  and l are variables that decrease linearly with the 
number of iterations.

During the summer and autumn, nutcrackers collect 
and store pine nuts. Their location information is generated 
through one iteration of either Equations (1) or (3). 
Equation (1) corresponds to the foraging strategy, enabling 
global exploration to identify regions that may contain 
near-optimal solutions. Equation (3) corresponds to the 
storage strategy, which focuses solutions in the regions that 
contain near-optimal solutions to enhance coverage.

Cache-search and recovery strategy
During this phase, NOA balances global exploration with 
local exploitation based on probability 2aP .The formulas 
for updating the location during this phase are as follows:
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where ,1
t
iRP


 and ,2

t
iRP


 represent RPs of the i-th nutcracker 

in the current generation t; α is a variable that decreases 
linearly with the number of iterations; θ  is a random 
radian between 0 and π ; 2r


 is a vector that includes values 

randomly generated between 0 and 1; rpP  takes the value of 
0.2; RP is a random position; maxT  represents the maximum 
number of iterations; 3τ  , 4τ  , 5τ  , 6τ  , 7τ  , 8τ  , 1r , 2r  and φ  
are uniformly distributed over the interval [0,1]; 2aP  takes 
the value of 0.4.

In winter and spring, nutcrackers search for and 
consume stored pine nuts. Equations (5) to (11) define 
the reference positions of nutcrackers. Equation (17) 
corresponds to the cache-search strategy, designed to 
quickly guide the algorithm toward the near-optimal 
solution by exploring regions near the reference positions 
(RPs). Equation (16) corresponds to the recovery strategy, 
allowing NOA to perform fine searches within the near-
optimal region while also enabling global searches to avoid 
local minimum.

Implementation of NOA
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where RM


 is a random vector in the interval [0,1].
Equation (19) defines the initialization method for the 

nutcracker population. Equation (20) provides a method for 
identifying the precise location of the nutcracker following 
one iteration, based on its fitness value.

THE TRADITIONAL DYNAMIC WINDOW APPROACH

DWA aims to select the best speed and steering angle to 
avoid obstacles. Its evaluation function computes a score 
based on the robot’s current state and the actions taken, 
assessing their effectiveness. The speed constraints and 
evaluation function in DWA are as follows:
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where maxv  and maxω  are the maximum value of the linear 
velocity and the angular velocity; _ maxva  and _ maxaω  are 
the maximum linear acceleration and maximum angular 
acceleration.

IMPROVED NOA ALGORITHM

IMPROVED POPULATION INITIALIZATION STRATEGY

Starting from the beginning of the initial path, grids are 
continually inserted between adjacent grids to create a 
continuous path. If a grid and its eight surrounding grids 
are non-insertable, NOA will discard this path. However, 
some subsets of the population inadequately represent the 
solution space. To address this the paper introduces a new 
grid using the following strategy. The specific steps for 
inserting a grid are as follows:

Step 1 Generate a random number r uniformly distributed 
in [0,1], and let 1c = ; 

Step 2 Calculate the total number of rows and columns 
between the two grids. If 1

2
r ≥ , proceed to step 3 or 5 based 

on the parity of rows; otherwise, proceed to step 4;
Step 3 Firstly, check if moving the grid with the larger 
serial number up by (c+1) units results in a position that is 
free of obstacles and within the map. If both conditions are 
met, insert the grid and exit the loop; otherwise, move the 
grid with the smaller serial number up by c units and re-
evaluate the conditions. If both conditions are met, insert 
the grid and exit the loop; otherwise, proceed to step 10;

TABLE 1. The way to insert a new node

Random 
number r

Corresponding 
step

Is it true that 
the grid with 

the larger serial 
number also has 
a larger column?

rows columns A grid with a larger serial 
number /

A grid with a smaller 
serial number

1
2

r ≥ Step 3 — Odd 
number

— Move up（c +1）units /
Move down c units

1
2

r ≥ Step 5 — Even 
number

— Move up c units /Move 
down（c +1）units

1
2

r < Step 6 Yes — Odd 
number

Shift right（c +1）units / 
Shift left c units

1
2

r < Step 7 Yes — Even 
number

Shift right c units / Shift 
left（c +1）units

1
2

r < Step 8 No — Odd 
number

Shift left c units / Shift 
right（c +1）units

1
2

r < Step 9 No — Even 
number

Shift left（c +1）units / 
Shift right c units
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Step 4 Firstly, check if the column of the grid with the 
larger serial number is larger than that of the smaller one. 
If this condition is met, proceed to step 6 or 7 based on the 
parity of columns; otherwise, proceed to step 8 or 9;
Steps 5 to 9 These steps correspond to the corresponding 
steps in Table 1. If the specific conditions are met, insert 
the grid; otherwise, proceed to step 10;
Step 10 Let 1c c= +  and proceed to step 2.

After inserting a new grid between the two existing 
grids, the algorithm assesses whether the first two and 
last two grids can generate a path. This enhanced strategy 
reduces the likelihood of discarding initial paths, prevents 
the algorithm from becoming trapped in local minima due 
to limited solution diversity, and results in shorter robot 
trajectories. Additionally, the algorithm’s computational 
efficiency improves due to a more even distribution of 
initial solutions across the decision interval.

SIMPLIFIED PATH NODE STRATEGY

The path planned by NOA has too many grids, which 
increases the length of the trajectory and the number 
of steering operations, requiring more precise control. 
Therefore, this paper further processes the trajectory 
obtained after initialization.

It is necessary to clarify that nodes a, b and c represent 
three immediately adjacent nodes in the path, with node 
a is initially situated at the starting point. If b is at the 
endpoint, subsequent operations will not be executed. The 
main idea is to delete node b when the distances between 
the straight-line segments connecting a and c and the 
obstacles are within the safe range. The path is updated, 
keeping  node a’s position unchanged, and then assessing 
node b can be deleted; When the distances are not within 
the safety range, a takes the position of b, and the process 
continues to evaluate whether node b can be deleted.

ADD A DYNAMIC INERTIA WEIGHT FACTOR w
The inertia weight factor was originally proposed by 
Kennedy and Eberhart (1995) and is set to 1 for the 
position of the previous generation nutcracker during 
iterations. However, it must be adjusted based on specific 
circumstances to balance global exploration and local 
exploitation. This paper introduces a dynamic inertia 
weight factor w with chaotic perturbation, expressed as 
follows:
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where 1(0)
2

k ≠ ; maxw  and minw  represent the maximum and 
minimum values of the dynamic inertia weight factor w
, with maxw  is set to 0.9 and minw  is set to 0 in this work; 

1rand  is uniformly distributed over the interval [0,1].
In early iterations, the position of the previous generation 
nutcracker is weighted more heavily to expand the NOA’s 
search space. Occasionally, chaotic factors may reduce 
this weight, enabling local optimization. In later iterations, 
enabling local optimization, although chaotic factors may 
sometimes increase it to prevent NOA from falling into a 
local optimum.

EVALUATION METRICS

The evaluation function for assessing the performance 
of paths planned by MANOA incorporates three metrics, 
necessitating normalization due to differing bases for each 
indicator:
1. Path length: Reducing path length typically enhances 

efficiency, minimizing time and energy consumption;
2. Smoothness: This metric describes path coherence 

and is evaluated based on the curvature, the ratio of 
straight to curved segments, and the rate of change of 
the path segment;

3. Number of path nodes: An optimal number of nodes 
balances path accuracy and computational efficiency, 
assessed through factors such as the time required for 
path planning, the memory for storing path data, and 
the number of nodes.

IMPROVED DWA ALGORITHM

ADD A PATH EVALUATION SUBFUNCTION

In dynamic environments, globally planned paths may 
become invalid or unsafe. DWA is particularly suited 
for scenarios requiring rapid response and real-time 
adjustments (Yang et al. 2022), but its effectiveness is 
limited in complex environments due to window range 
constraints. By fusing MANOA and DWA together, the 
robot can adjust in real-time based on current environmental 
information.

To fuse the two algorithms, this paper introduces a 
path evaluation subfunction and the concepts of interim 
starting points and endpoints. DWA extracts critical nodes 
from the MANOA-planned path to create starting point and 
endpoint matrices. The robot follows the DWA-planned 
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path from interim starting point 1a  to interim end point 2a . 
Reaching the point 2a  indicates that the robot has reached 
a new interim starting point, which is stored in the starting 
point matrix, and continues towards the new interim 
endpoint, which is stored in the endpoint matrix, until it 
reaches the final destination. The specific expression for 
the subfunction _ ( , )dist line v ω  is as follows:
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where istart


 and igoal


 represent the current interim 
starting point and end point of the robot, corresponding to 
the i-th and ( 1i + )-th grid positions of the trajectory planned 
by NOA; endx


 represents the position of the end point of the 

predicted trajectory; obstacler  represents the safety distance 
of the robot, which is set to 0.2 in this work.To ensure that 
the robot’s next position aligns as closely as possible with 
the NOA-planned path, the distance 0_dist line  between 
the predicted trajectory’s endpoint at the forward prediction 
time t∆  and the line connecting the start and end points 
should be small, while _ ( , )dist line v ω  should be 
large. So, the expression for _ ( , )dist line v ω  should 
be as shown in Equation (30). Specifically, when the end 
point coincides with the starting point (i.e., 0_dist line
=0), this position’s fitness is higher. Setting 

0_dist line
= 5obstacler ×  helps avoid the robot getting stuck at the 
starting point.

ADD A TARGET DISTANCE SUBFUNCTION

To prevent the increasing distance between the robot and 
the destination, and to minimize excessive path length due 
to obstacle avoidance, this paper adds a target distance 
subfunction goal ( , )dist v ω  to the evaluation function. The 
specific expression of the subfunction is as follows:

0goal
3( , )
2

endi idist v x goal x goalω = − × − −
   

(31)

where 0x


 represents the current position of the robot.
The smaller the distance from the end of the predicted 

trajectory after the forward prediction time t∆ , the larger 
goal ( , )dist v ω  will become, which in turn affects the 

magnitude of the fitness of the candidate velocity vector 
( , )v ω . The target distance subfunction goal ( , )dist v ω
can continue to guide the robot to move towards the stage 
endpoint based on guiding the robot to bypass the obstacle, 
thus, improving the robustness and adaptability of the 
robot.

ADD A DEVIATION FROM THE DANGER ZONE 
SUBFUNCTION

The limited search range of DWA’s linear and angular 
velocities makes it challenging for robots to effectively avoid 
dynamic obstacles. To enhance real-time responsiveness 
to environmental changes, this paper adds the deviation 
from the danger zone subfunction _ ( , )devi danger v w  
to the evaluation function. The specific expression of the 
subfunction is as follows:
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_1 2 __ __ ( , ) ( , ) ( , )danger zone danger zone mmdevi danger v w dist v angl v wβ ω β= × + ×

(35)
_1 2 __ __ ( , ) ( , ) ( , )danger zone danger zone mmdevi danger v w dist v angl v wβ ω β= × + ×

where 0v  represents the current velocity of the robot; maxv
a  

represents the maximum value of linear deceleration; 
0 jobs


 represents the j-th obstacle’s current position; 

_ _danger zone mdist  and _ _danger zone mangl  are the average values of 
the 

_ _ ( , )danger zone jdist v ω  function and the _ _ ( , )danger zone jangl v w  
function; both 

1β  and 2β  are set to 0.5.
If the braking distance 0_brak dist  is too small, the 

robot may incorrectly assume that numerous obstacles will 
not hinder its movement, resulting in DWA’s inability to 
handle complex dynamic environments.

When 0 0 0_x obs brak dist− >
 

, it indicates that the robot 
will not collide with this obstacle when it decelerates 
and moves. Therefore, it can be considered that the robot 
is not situated within the danger zone. Otherwise, it is 
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not possible to determine whether the robot has entered 
the danger zone. The following will discuss the specific 
expression of this subfunction when 0 0 0_x obs brak dist− ≤

 
.

1. On the basis that 0 0 0_x obs brak dist− ≤
 

 and the position 
of the obstacle changes with time, the specific 
expressions for the 

1 _ ( , )danger jdist v ω  function and the 
1 _ ( , )danger jangl v w  function are as follows:
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where jobstacleθ  represents the j-th dynamic obstacle’s 
heading angle; 1θ  represents the robot’s heading angle 
moving along a candidate velocity vector; 3 j

θ represents the 
angle between the j-th dynamic obstacle’s current position 
and the horizontal direction; jobstacleθ , 1θ , 2 j

θ , 3 j
θ [ , )π π∈ − .

The central angle 0 j
θ of the danger zone is defined by 

the moving direction of both the robot and the obstacle, the 
radius corresponds to the braking distance 0_brak dist
, with the vertex at the robot’s current position. When the 
obstacle is within the danger zone, it indicates the robot 
may enter a danger zone. The purpose of this function is to 

reduce the risk of collision after a forward prediction time (
t∆ ). We need to determine the positions and heading angles 

of the robot and the obstacle after a forward prediction 
time. The specific expressions for the 

2 _ ( , )danger jdist v ω  function 
and the 2 _ ( , )danger jangl v w  function are as follows:

2

_
max

_ max( , 5)
2

j

v

end
end j obstacle

v
brak dist r

a
= ×

×
(39)

2 _ ( , ) jend enddanger jdist v x obsω = −
 

(40)

6 j jobstacleθ θ π= − (41)

4 5 6 5 6max( , ) min( , )
j j j

θ θ θ θ θ= − (42)

2

4
_ 5 6 7( , ) min( , )

2
j

j jdanger jangl v w
θ

θ θ θ= + − (43)

where endx


 represents the robot’s position after t∆ ; jendobs


 
represents the j-th dynamic obstacle’s position after t∆ ; 

4 j
θ  represents the central angle of the danger zone formed 
by the robot and the j-th dynamic obstacle after t∆ ; 5θ  
represents the robot’s heading angle after t∆ ; 7 j

θ  is the 
angle between the j-th dynamic obstacle’s position and 
the horizontal direction after t∆ ; 

jobstacleθ , 4 j
θ ,

5θ , 6 j
θ , 7 j

θ
[ , )π π∈ − .

FIGURE 1. A robot that falls into the danger zone



3416

If the obstacle is within the danger zone after the 
forward prediction time, it indicates that the robot is in the 
danger zone. The subfunction assigns a low fitness value 
to the candidate velocity vector that would lead the robot 
to that position, thereby preventing its selection in the 
iteration process.
2. In the map, there are also many static obstacles. So, 

on the basis of 
0 0 0| | _x obs brak dist

→ →

− ≤ , the specific 
expressions for the 

1 _ ( , )danger jdist v ω  function and the 
1 _ ( , )danger jangl v w  function are as follows:

2 1j
θ θ= (44)

1
0 0_ ( , ) | |jdanger jdist v x obsω = −
 

(45)

1

3 1

_

0
( , )

2

j

danger jangl v w
otherwise

θ θ

π

=
= 


(46)

When the v in the candidate velocity vector points towards 
the obstacle, the robot is considered to have entered 
the danger zone. Introduction this subfunction into the 
evaluation function allows for real-time path adjustments 
when a high probability of collision is anticipated.

EVALUATION METRICS

The evaluation function of DWA is shown in Equation (22), 
while IDWA’s evaluation function is presented in Equation 
(47). The original metrics are enhanced by adding the path 
evaluation, the target distance, and the deviation from the 
danger zone functions, significantly improving the robot’s 
environmental perception and enhancing safety and 
efficiency in path planning. Due to the inconsistency of 
the base for each indicator, normalizing the results of each 
evaluation metric is essential to avoid errors.

1 2 3 4

5 goal 6

( , ) ( ( , ) ( , ) ( , ) _ ( , )
( , ) _ ( , ))

G v heading v dist v vel v dist line v
dist v devi danger v w
ω σ α ω α ω α ω α ω

α ω α
= × + × + × + ×

+ × + × (47)
1 2 3 4

5 goal 6

( , ) ( ( , ) ( , ) ( , ) _ ( , )
( , ) _ ( , ))

G v heading v dist v vel v dist line v
dist v devi danger v w
ω σ α ω α ω α ω α ω

α ω α
= × + × + × + ×

+ × + ×

1 2 3 4

5 goal 6

( , ) ( ( , ) ( , ) ( , ) _ ( , )
( , ) _ ( , ))

G v heading v dist v vel v dist line v
dist v devi danger v w
ω σ α ω α ω α ω α ω

α ω α
= × + × + × + ×

+ × + ×

where 1α , 2α , 3α , 4α , 5α  and 6α  are the weights of the 
individual functions.

FUSION ALGORITHM

Figure 2 shows the specific implementation steps of the 
fusion algorithm. Firstly, MANOA plans the complete 
path based on the static environmental information. 
Subsequently, IDWA formulates a dynamic route that 
enables the robot to evade obstacles and reach the 
destination point in a continually changing environment, 
utilizing both path data and environmental information.

FIGURE 2. MANOA-IDWA algorithm flowchart
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EVALUATION METRICS

The evaluation function used to validate the performance 
of the paths planned by MANOA-IDWA considers four 
metrics: obstacle avoidance success rate, moving time, 
path length growth rate compared to MANOA and path 
smoothness.

MULTI-ROBOT PATH PLANNING

The objective of multi-robot path planning is to address the 
issue of path planning when multiple robots are engaged 
in collaborative tasks. Such tasks may entail collaboration, 
resource allocation, distributed search, and other 
operations, including goods sorting in logistics centers, 
unmanned aerial vehicle formation flight, and multi-robot 
exploration. In multi-robot systems, preventing collisions 
between robots is crucial (Gerkey & Mataric 2003; Huang, 
Cao & Zhu 2019; Matoui et al. 2020; Nunes, McIntire & 
Gini 2017). Real-time monitoring of robot paths allows the 
system to detect potential collisions and take appropriate 
measures to avoid them.

In multi-robot systems, robots should share position, 
velocity, and target information in real time to coordinate 
their actions effectively. Firstly, MANOA-IDWA is 
employed to generate a collision-free path for each robot. 
Robot priorities are determined based on path lengths, with 
shorter paths receiving higher priority (Andreychuk & 
Yakovlev 2018). Robots gather local information by sensing 
their environment and monitoring the states of neighboring 
robots. When a higher-priority robot approaches a lower-
priority robot, it transmits its position, velocity, and task 
status. The lower-priority robot processes this information 
to whether to adopt a secondary departure strategy or a 
priority departure strategy, effectively coordinating their 
movements.

RESULTS AND DISCUSSIONS

Four sets of experiments were used to further evaluate the 
performance of the MANOA-IDWA. Each set of comparison 
experiments was conducted 20 times.

MANOA ALGORITHM PERFORMANCE VALIDATION 
EXPERIMENTS

A comparative analysis was conducted to evaluate the 
performance of MANOA, NOA, HHO, WOABAT, FHO 
and SO using a map with 40% obstacle coverage. As 
illustrated in Figure 3, the comparison algorithms all fall 
into a local optimum. As evidenced in Figure 3(b) and 
Table 2, the MANOA-planned path demonstrates superior 
performance in comparison to the comparison algorithms, 
exhibiting both reduced path length and a smaller number 
of path nodes. The fitness curves indicate that the MANOA-
based path achieves faster convergence and superior fitness 
compared to the comparison algorithms. This illustrates 

MANOA’s ability to identify the optimal path more quickly 
while maintaining robust global search capabilities in 
later iterations, providing a significant advantage over 
the inherent limitations of the less stable comparison 
algorithms.

IDWA ALGORITHM PERFORMANCE VALIDATION 
EXPERIMENTS

The performance of DWA and IDWA was evaluated by 
varying the number of randomly distributed dynamic 
obstacles within the map. As demonstrated in Figure 4 and 
Table 3, in environments with a high density of dynamic 
obstacles, DWA’s probability of planning a complete path 
is significantly reduced, hindering task completion. In 
contrast, IDWA remains capable of planning a complete 
path in complex dynamic environments. The IDWA-based 
path length is shorter and the path is smoother when both 
robots reach the same destination. The high stability of 
IDWA ensures that the robot is able to operate safely and 
complete tasks effectively in a range of environments.

FUSION ALGORITHM PERFORMANCE VALIDATION 
EXPERIMENTS

The performance of NOA-DWA, HHO-DWA, WOABAT-
DWA, FHO-DWA, and SO-DWA was evaluated by 
randomly introducing 20 or 40 dynamic obstacles into the 
map. The starting and ending points indicated in Figure 
5(a) to 5(f) and 5(g) to 5(l) differ, with 5(g)-5(l) having 
a greater distance between them, which increases the 
likelihood of obstacle encounters and complicates task 
completion. As illustrated in Figure 5(a) to 5(f) and Table 
4, with an increase in dynamic obstacles, the path length of 
MANOA-IDWA is shorter and smoother compared to the 
comparison algorithms. In more complex environments, 
the likelihood of the comparison algorithms successfully 
planning complete paths is significantly reduced. At this 
juncture, MANOA-IDWA is demonstrably more adaptive, 
robust, and practical.

MULTI-ROBOT PATH PLANNING VALIDATION 
EXPERIMENTS

The performance of NOA-DWA and MANOA-IDWA 
was evaluated through a comparative analysis, with the 
addition of either 4 or 8 robots and 20 randomly distributed 
dynamic obstacles in each trial. The black dashed line in 
Figure 6 represents the path generated by MANOA.

Figure 6 demonstrates that the MANOA-IDWA-
based multi-robot systems is capable of performing the 
assigned tasks in an efficient manner. In 20 experiments, 
the environment in which the robots are located has been 
changing dynamically, and the success rate of obstacle 
avoidance of the MANOA-IDWA-based multiple robots 
is about 75%. Furthermore, it can be observed that the 
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(d) Fitness curves in scene 1
 

 

 
  

 
  

  

(e) Fitness curves in scene 2

 

 

 
  

 
  

  

(f) Fitness curves in scene 3

FIGURE 3. Paths planned by six different algorithms, and their 
respective fitness curves
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FIGURE 4. Paths planned by the two algorithms for dynamic obstacle 
numbers of 40 and 60, respectively

TABLE 2. Experimental results of path planning with six different algorithms

— NOA HHO WOABAT FHO SO MANOA
Average number of nodes 50 58 61 59 60 11

Average path length 72.248 84.834 91.969 89.076 90.669 63.075

TABLE 3. Comparison of paths based on DWA and IDWA

Number of 
dynamic obstacles

Algorithm Obstacle avoidance 
success rate

Average length of 
feasible paths

Average moving 
time /s

Path 
smoothness

20 DWA 0.39 30.996 76.274 0.656
IDWA 0.80 26.125 65.791 0.402

40 DWA 0.15 36.476 260.123 1.56
IDWA 0.74 28.952 148.241 0.720
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FIGURE 5. Paths planned by fusion algorithms
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TABLE 4. Paths based on MANOA-IDWA compared to paths based on comparison algorithms

Algorithm Obstacle avoidance 
success rate

Average moving time/s Path length growth rate 
compared to MANOA

Path smoothness

MANOA-IDWA 
algorithm

0.75 96.150 0.091 1.701

Other 5 
comparison 
algorithms

0.16 169.562 0.501 4.126

FIGURE 6. Paths planned by multiple robots

actual routes of the robots do not deviate significantly 
from the static paths planned by MANOA. This indicates 
that the paths based on MANOA-IDWA continue to exhibit 
exceptional fitness.

CONCLUSION

The domain of multi-robot path planning confronts a 
myriad of challenges. To address these challenges, this 
paper proposes a path planning method that combines 
the improved nutcracker optimization algorithm named 
multi-strategy adaptive nutcracker optimization algorithm 
(MANOA), with the improved dynamic window approach 
(IDWA). Global planning uses MANOA to generate 
static paths for robots. Through innovative strategies 
like population initialization and simplified path node, 

MANOA aims to diversify initial populations, reduce 
path complexity, thereby enhancing movement stability. 
By adding the dynamic inertia weight factor w , the 
optimization of performance in different stages has been 
achieved. Local planning uses IDWA to handle obstacle 
avoidance and trajectory adjustment problems. The 
evaluation ability of the evaluation function is enhanced 
by adding the other three subfunctions to improve planning 
efficiency, robustness, and adaptability.
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