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ABSTRACT

Air pollution poses a significant threat to human health and the environment, especially in developing nations facing rapid 
industrialization, urbanization, and increased vehicle emissions. As cities and factories continue to grow, the air quality 
problem worsens, making it crucial to enhance the monitoring, testing, and forecasting of air quality. In this context, this 
study focuses on building air quality models using Bayesian Structural Time Series (BSTS) models to predict air quality 
levels in Malaysia. The BSTS model integrates three main techniques: The structural model, which employs the Kalman 
filter approach to model trend and seasonality components; spike and slab regression for variable selection; and Bayesian 
model averaging to estimate the best-performing prediction model while accounting for uncertainty. The study utilized 
air quality time-series data spanning two years, from June 2017 to July 2019, obtained from the Malaysian Department 
of Environment (DOE). The primary objective of this study was to forecast air quality and assess the effectiveness of the 
Bayesian structural time series analysis on air quality time-series data. The results indicated that the BSTS technique is 
capable of modeling air quality time-series data with high accuracy, effectively capturing seasonal and trend components. 
The seasonal component showed a repetition of weekly concentration patterns, while the local linear trend component 
showed a steady decline in PM10 and PM2.5 concentration levels in most stations. Regression analysis demonstrated that 
humidity and ambient temperature significantly affected air quality in most locations in Malaysia.
Keywords: Air quality; Bayesian Structural Time Series; Monte Carlo Markov Chain (MCMC); spike and slab regression

ABSTRAK

Pencemaran udara menimbulkan ancaman besar kepada kesihatan manusia dan alam sekitar, terutamanya di negara 
membangun yang menghadapi perindustrian pesat, pembandaran dan peningkatan pelepasan kenderaan. Perkembangan 
bandar dan pertambahan kilang mengakibatkan masalah kualiti udara bertambah buruk, menjadikan pentingnya 
pemantauan, ujian dan ramalan kualiti udara. Dalam konteks ini, kajian ini tertumpu kepada pembinaan model kualiti 
udara menggunakan model Siri Masa Berstruktur Bayesian (BSTS) untuk meramalkan tahap kualiti udara di Malaysia. 
Model BSTS menyepadukan tiga teknik utama: Model struktur yang menggunakan pendekatan penapis Kalman untuk 
memodelkan komponen trend dan bermusim; regresi spike dan papak untuk pemilihan berubah; dan model Bayesian 
secara purata untuk menganggarkan model ramalan berprestasi terbaik sambil mengambil kira ketidakpastian. Kajian itu 
menggunakan data siri masa kualiti udara yang menjangkau dua tahun dari Jun 2017 hingga Julai 2019 yang diperoleh 
daripada Jabatan Alam Sekitar Malaysia (JAS). Objektif utama kajian ini adalah untuk meramal kualiti udara dan menilai 
keberkesanan analisis BSTS terhadap data siri masa kualiti udara. Keputusan menunjukkan bahawa teknik BSTS mampu 
memodelkan data siri masa kualiti udara dengan ketepatan yang tinggi, menangkap komponen bermusim dan trend dengan 
berkesan. Komponen bermusim menunjukkan pengulangan corak kepekatan mingguan, manakala komponen aliran linear 
tempatan menunjukkan penurunan yang stabil dalam tahap kepekatan PM10 dan PM2.5 di kebanyakan stesen. Analisis 
regresi menunjukkan bahawa kelembapan dan suhu ambien menjejaskan kualiti udara dengan ketara di kebanyakan lokasi 
di Malaysia.
Kata kunci: Kualiti udara; Rantaian Markov Monte Carlo (MCMC); regresi pepaku dan papak; Siri Masa Berstruktur 
Bayesian
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to non-linear patterns but are data-intensive and prone 
to overfitting. The Auto-Regressive Integrated Moving 
Average (ARIMA) models fail with non-stationary data. The 
k-means clustering and Long Short-Term Memory (LSTM) 
combination improves performance but requires substantial 
tuning and computational resources. Compositional time 
series analysis, though structurally insightful, complicates 
direct prediction. Markov chain models offer simplicity 
and interpretability but fall short of capturing long-term 
dependencies and non-linear relationships. The BSTS offers 
a robust alternative by incorporating multiple components 
within a state-space framework, accommodating complex 
dependencies and providing interpretable results through a 
Bayesian approach, making it particularly suitable for the 
dynamic and uncertain nature of air quality data.

The Bayesian Structural Time Series (BSTS) models 
incorporate prior knowledge and data to provide accurate 
and probabilistic estimates. The BSTS model uses three 
main techniques to analyze time-series data: Kalman 
filtering for estimating trend and seasonality components, 
spike and slab regression for selecting relevant regressors, 
and Bayesian model averaging to determine the best 
prediction model while accounting for uncertainty. This 
comprehensive approach allows for the inclusion of 
multiple covariates and a more accurate description of 
stochastic behaviour, resulting in more robust parameter 
estimates and improved forecast accuracy (Durbin & 
Koopman 2002; George & McCulloch 1997; Madigan & 
Raftery 1994; Scott & Varian 2014; Volinsky et al. 1999).

The Bayesian structural time series (BSTS) model has 
been successfully applied in various fields. It outperformed 
the classical Auto-Regressive Integrated Moving Average 
(ARIMA) model in stock price forecasting (Almarashi & 
Khan 2020) and provided reliable long-term electricity 
demand forecasts for better planning in the energy sector 
(Mokilane et al. 2019). Additionally, Jun (2019) used 
the BSTS model and Bayesian regression to construct a 
sustainable technology structure for artificial intelligence, 
highlighting its reliability in analyzing and forecasting 
technology landscapes for improved decision-making.

This research aims to develop a reliable and accurate 
BSTS model for predicting air quality using historical data 
and variables like wind direction, wind speed, relative 
humidity, solar radiation, and ambient temperature. The 
process involves data collection, preprocessing, and 
Bayesian inference for parameter estimation. The goal was 
to improve air quality forecasting and support environmental 
management and policy decision-making. The remainder 
of this paper is organized as follows. The following section 
explains the Bayesian structural time-series method. The 
subsequent section presents an application to air quality 
data. Finally, the conclusions of this study are presented in 
the last section.

INTRODUCTION

Air quality is a critical global issue, with rising pollution 
levels impacting human health and the environment. 
According to the WHO, air pollution is a leading 
cause of premature deaths, contributing to respiratory 
and cardiovascular diseases. Rapid industrialization, 
urbanization, and increased vehicular emissions exacerbate 
these issues. In Malaysia, air pollution is managed by 
the Department of Environment under the Ministry of 
Environment and Water through the Air Pollutant Index 
of Malaysia (APIMS). The country faces challenges due to 
rapid economic development and urbanization, leading to 
frequent poor air quality episodes. Short-term air quality 
forecasting is essential for managing air pollution and 
protecting public health. It informs expected pollutant 
levels, allowing local governments to implement temporary 
measures and reduce emissions (Wen et al. 2024). 

Many studies have been conducted to predict air 
quality and its severity. Bakar et al. (2022) used Network 
Temporal Convolution (TCN) to predict air pollution levels 
in Peninsular Malaysia. Based on suspended particle time 
series, TCN outperformed Long Short-Term Memory 
(LSTM) in terms of accuracy. Mun, Abd Rahman and Che 
Ilias (2022) evaluated Multi-Layer Perceptron (MLP) and 
AutoRegressive Integrated Moving Average (ARIMA) 
models to predict Air Pollution Index (API) in central 
Malaysia and found that MLP models performed better 
than ARIMA models. Zheng et al. (2023) found long-term 
relationships between climate parameters and air quality 
fluctuations in Peninsular Malaysia, using observational 
data from 2000 to 2019. Meanwhile, Ariff, Bakar and Lim 
(2023) predicted Malaysia’s daily PM10 using a combination 
of k-means clustering and the LSTM model. Nasr Ahmed, 
Nurulkamal and Zamira Hasanah (2018) developed the 
compositional time series analysis method, which helps 
express air pollution data regarding the proportional term 
of each air pollutant component. Considering its structural 
and descriptive statuses, they proposed a mixed model 
corresponding to healthy and unhealthy conditions to 
characterize the distributional form of air pollution data. 
In contrast, Nurul Nnadiah et al. (2019) proposed a simple 
forecasting tool using the Markov chain model to evaluate 
the distribution of pollution levels in the long term. The 
model’s probability indicates the probability of a good, 
moderate, or hazardous state. Similarly,  Nurulkamal and 
Muhammad Aslam (2020) suggested using a five-state 
Markov chain model to study and characterize the dynamic 
fluctuation of air quality status with stochastic behaviours.

The models for predicting air quality have strengths 
and weaknesses. For instance, the Network Temporal 
Convolution (TCN) model is accurate but struggles with 
long-term dependencies and computational demands. 
The Multi-Layer Perceptron (MLP) models are adaptable 
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METHODS

BAYESIAN  STRUCTURAL TIME SERIES

A Bayesian Structural Time Series (BSTS) model was 
introduced by Scott and Varian (2014) to predict economic 
time series. The model combines the Kalman filter for 
estimating trend and seasonality, spike and slab regression 
for identifying variables, and Bayesian model averaging to 
improve forecasting.

STRUCTURAL TIME SERIES

To utilize a structural time series model, it is essential to 
establish a set of equations that connect  to a vector of 
latent state variables αt.

forecasting and support environmental management and policy decision-making. The 

remainder of this paper is organized as follows. The following section explains the Bayesian 

structural time-series method. The subsequent section presents an application to air quality 
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Equation (1) is known as the observation equation, and 
Equation (2) is known as the state equation or transition 
equation which responsible for determining how the state 
variables will change over time. In this formulation,  is a 
rectangular matrix (control matrix) with dimensions m × q, 
while Tt is a square transition matrix, 𝑍t is a fixed vector of 
size m × 1. The observation error,  , has a mean of zero 
and a variance of  (a positive scalar), following a normal 
distribution. An m × q state variance matrix is represented 
by  (Brodersen et al. 2015). Structural time series, as 
defined by Durbin and Koopman (2002), are models in 
which the observations consists of trend, seasonal, and 
regression error variables. 

The following state equations describe various 
components of the latent state. The local linear trend, the 
initial component of our model, is characterized by two 
equations. These equations capture the trend behaviour of 
the time series.

(3)

(4)

For seasonality, the most commonly used model is 
represented by

(5)

where  the level of the time series; is the slope of 
the time series;  is the seasonal component; and 

is the seasonal effect. The components  
are independent Gaussian random noise elements with a 
normal distribution and variances ( ). 

The seasonal component , comprises a series of S 
dummy variables with dynamic coefficients constrained to 
have zero expectation over an S-season period. In this study, 
we modelled daily data with an S of 52 and a season duration 
of 7. S=52 is chosen for modelling weekly seasonality over 
a year, assuming there are 52 weeks in a year. This choice 
helps capture the repeating weekly patterns in the data. 
State estimation is using the Kalman filter.
To incorporate external factors, explanatory variables  are 
added to the equation: 

( ) (6)

 Parameters to estimate include regression coefficients 
(β) and error term variances .

KALMAN FILTER ESTIMATION

The Kalman Filter is a method used to estimate the state 
of a system using observed data and system dynamics. It 
operates through two main stages which are the prediction 
and update stages. The Kalman Filter can be implemented 
in the following steps (Kalman 1960):
Initialization The algorithm begins with an initial estimate 
of the state vector α0 and its associated error covariance 
matrix P0.
Prediction In the prediction step, the filter forecasts the 
state vector αt+1 and its associated error covariance matrix 
Pt+1 using the provided equations, based on the current state 
vector estimate αt and its error covariance matrix Pt.

𝛼̂t+1|t = F𝛼̂t|t (7)
Pt+1|t = F Pt F› + Q

where F is the state transition matrix; and Q is the process 
noise covariance matrix.
Update The filter integrates integration of the projected 
state with the new observation yt+1, the filter enhances 
the estimation of the state vector αt+1 and its associated 
error covariance matrix Pt+1 after the prediction step. The 
equations used to achieve this improvement are as follows:

Kt+1 = Pt+1 | t H› (H Pt+1 | t H› + R)^-1

(8)αt̂+1|t+1 = αt̂+1|t + Kt+1 (yt+1 - H α̂t+1|t)
Pt+1|t+1 = (I - Kt+1 H) Pt+1|t

In these equations, R represents the measurement noise 
covariance matrix, which reflects the uncertainty related to 
the observation, and H represents the observation matrix 
that connects the state to the observations.
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Repeat The prediction and update steps are iteratively 
applied at each time step to estimate the state vector and its 
associated error covariance matrix.

SPIKE-AND-SLAB REGRESSION

George and McCulloch (1997) and Madigan and Raftery 
(1994) proposed a method to select models based on 
spikes and slabs. This is used for estimating regression 
coefficients and selecting regressors, which can reduce the 
number of variables and incorporate prior opinions into the 
model. Spike and slab priors consist of two parts: A spike 
that determines the probability of a variable being chosen 
for the model, and a slab that shrinks these coefficients 
towards zero. 

To set up the prior distributions, Zellner’s g-prior 
is used, which supposes a normal distribution for the 
coefficients with mean zero and a variance-covariance 
matrix scaled by the scalar g times the error variance, 
represented as σ². The hyperparameter g determines the 
strength of the prior information: smaller values make 
the prior more informative, while larger values make it 
less informative (Brodersen et al. 2015; Zellner 1986). 
Zellner’s g-prior is a preferred prior due to its balance 
between informativeness and flexibility. It allows for prior 
beliefs about coefficients to be incorporated while allowing 
data to influence the posterior distribution. This is useful 
in situations where prior knowledge about variables is 
needed.. Other priors might be too rigid or too diffuse, 
either overly constraining the coefficients or not providing 
enough regularization. Zellner’s g-prior strikes a balance, 
making it a practical choice for many regression problems.

To joint distribution of (𝛽, 𝛾, ) with a spike and slab 
prior is calculated using the following equation, 

𝑝 (𝛽, 𝛾, ) = 𝑝 (𝛽 𝛾 | 𝛾, ) 𝑝 (  | 𝛾) 𝑝(𝛾) (9)

Spike Prior The spike is the marginal distribution 𝑝(𝛾), 
which places the point mass at zero, representing a 
Bernoulli distribution.

(10)

where πk is the probability of including k in the model, 
and it is often set to the ratio of the expected model size 𝑝 
(number of nonzero predictors) to the number of regressors 
𝐾, 𝜋k = 𝑝/𝐾. 
Slab Prior 𝑝 (𝛽 𝛾 | 𝛾, ) For the slab prior, 𝑏 is denoted 
as the vector of prior predictions about the regression 
coefficients› values 𝛽. In the case of the symmetric matrix 
Ω-1, the rows and columns of  Ω-1 that correspond to 𝛾k = 1 
are denoted as Ω𝛾 

-1
. The slab prior is given as

 | -1) (11)

where Ω-1 is the symmetric full model, given by Ω-1 = k 
(w𝐗T𝐗 +(1-w) diag(𝐗T𝐗)) /n. Here, 𝐗 is the predictor matrix 
with row 𝒙ₜ corresponding to time 𝑡, 𝑤 is typically set to 
1/2, and k is set to 1. The matrix diag(𝐗T𝐗) represents the 
diagonal matrix with diagonal elements equal to those of 
𝐗ᵀ𝐗. Additionally, it is common to set the vector of prior 
means, b to zero. This simplifies the model by assuming 
no prior knowledge about the means of the predictors, 
allowing the data to fully inform the estimation process 
(Brodersen et al. 2015).
Error Variance Prior 𝑝 (  | 𝛾) The gamma distribution 
with mean r/s and variance r/s2 is denoted by Ga(r,s). Also, 
ss can be thought as a prior sum of squares, and df, which 
is the prior sample size in Equation (12). The prior sum 
can be calculated using the expected R2 from the regression 
and df to determine the weight assigned to that guess. Then, 
𝑠𝑠/df = (1-R2) , where is the marginal variance of the 
response. Meanwhile scaling by  implies that our priors 
are data-determined. Scott and Varian (2014) acknowledge 
that this violates the Bayesian paradigm, but claim that it 
was effective in their applications.

              | 
(12)

In summary, the spike and slab prior introduced here allow 
for significant flexibility in expressing prior beliefs through 
the parameters πₖ, b, Ω⁻¹, ss, and df. For simplicity, prior 
information can be summarized using an expected model 
size, expected R², and a sample size df, or default values. 
This study used Bayesian structural time series with weakly 
informative priors (defaults) with values 𝑅2 = 0.5, df = 
0.01, and πk = 0.5. These values balance data influence and 
regularization, with 𝑅² indicating a moderate prior belief in 
explaining 50% of data variation, and df = 0.01 providing 
flexibility to accommodate unexpected data patterns. Using 
Bayesian inference with spike-and-slab priors facilitates 
effective Bayesian model averaging. Drawing from the 
posterior distribution provides multiple parameter sets for 
forecasting ( yt+1). Repeating this process yields an estimate 
of the posterior distribution. 

RESULTS AND DISCUSSION

This study used structural time series analysis to investigate 
air quality, with air pollutant readings as the dependent 
variable and five explanatory variables: wind direction, 
wind speed, relative humidity, and temperature. Data 
was collected hourly from four Malaysian monitoring 
stations which comprises of rural, industrial, sub-urban, 
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and urban stations between July 2017 and June 2019. 
To create an accurate air quality model, relevant data 
is critical. The data was processed, and missing values 
were removed and averaged into daily measurements for 
four monitoring stations. It was split into training and 
test sets, with 90% in the former. A Bayesian structural 
time series model was fitted to the PM2.5 and PM10 data 
using the ‘bsts’ package. The Monte Carlo Markov Chain 
(MCMC) was used to simulate posterior distributions over 
1000 iterations, with the first 100 discarded as burn-in 
and the parameter estimates’ uncertainty evaluated using 
posterior distributions derived from the MCMC simulation. 
By employing weakly informative default values (𝑅2 = 
0.5, df = 0.01, and πk = 0.5), the Bayesian structural time 
series model can be initialized, and preliminary parameter 
estimates can be obtained. 

As part of creating the state specification, a prior for the 
time series component is specified. The prior distributions 
for the variances (σ2) are specified as gamma distributions. 
The prior sum of squares (ss) and prior sample size (df) 
were used to calculate the prior sum, based on the expected 
R2 from the regression. Then, 𝑠𝑠 / df = (1-R2)  , where 
is the marginal variance of the response. 

By scaling the prior sum of squares by 
 the prior variance becomes data-

determined. This approach allows for the specification of 
the prior distribution for variables such as PM2.5 and PM10 
(Table 1). By using the prior sum of squares, a guess of the 
variance can be derived (df/ss) for the estimation process by 
using default prior for the variance σ2,  .

The term ‘prior guess’ refers to the initial estimate 
for the standard deviation of a component before fitting a 
model. The ‘prior.df’ parameter represents the prior sample 
size or the degree of certainty associated with the prior 
guess. By default, the prior.df is set to 0.01, indicating a 
relatively low level of certainty or diffuse prior distribution. 

The initial value is crucial for the model fitting process 
as it affects performance and convergence. To simplify 
the process, the initial values of the parameters are set to 
the prior guess values. An upper limit, calculated as (prior 
guess/df), is set to prevent unrealistic or unstable results 
during the model fitting process. If the estimated value 
exceeds the upper limit, it will be truncated to the upper 
limit value. This constraint helps ensure that the model 
produces reliable and interpretable results.

In Table 1, for each monitoring station and pollutant 
component, the model estimates three parameters: A level 
parameter ( ), a slope parameter ( ), and a seasonal 
parameter ( ). For example, The prior guess for each 
parameter in the CA13A station is 0.134 for PM2.5 and 
0.172 for PM10. This pattern repeats for the CA05K, 
CA46D, and CA20B stations. noted that the time series 

components have the same standard deviation value before 
observing any data, this simplifies the initialization process 
and provides a convenient starting point for estimation. 
The prior degrees of freedom are the same (0.01) in all 
stations, accommodating a wider range of potential values. 
The initial values can be updated and refined during the 
estimation process as the model learns from the data. The 
upper limits for the Bayesian structural time series model 
parameters are set significantly higher than prior guesses 
to provide flexibility for capturing significant variations in 
PM2.5 and PM10 levels. Historical data shows typical levels 
range from 5 to 50 µg/m³, and the chosen limits (13.4 for 
PM2.5 in the CA13A station) are set 100 times higher than 
the prior guesses. This allows the model to handle extreme 
events and unexpected variations while balancing the risk 
of overfitting.

The specifications for the prior distribution of the 
initial value of the component in Table 2 are included in the 
model specifications that describe the state vector’s prior 
distribution at time 1. It utilizes a Normal (scalar Gaussian) 
prior distribution. Table 2 displays the initial values and 
prior distributions for various components of a state space 
model that will be utilized to simulate air quality data from 
different monitoring stations. The parameter μ specifies the 
mean of the normal prior and sigma specifies the standard 
deviation. The initial value for the level in the state space 
model.

For instance, the first row shows that the monitoring 
station ‘CA13A’ has two pollutants: PM2.5 and PM10. The 
initial value of  (level) is 32.18, and it follows a normal 
distribution with an average of  32.18 and a standard 
deviation of 13.4. Similarly, the initial value for  (slope) 
is 0.014, and for  (seasonal) is 0. Also, for PM10 the initial 
value of  (level) is 41.24, and the prior for this parameter 
is a normal distribution with a mean of 41.24 and a standard 
deviation of 17.2. Similarly, the initial value for  (slope) 
is 0.018, and for  (seasonal) is 0. This pattern repeats for 
the CA05K, CA46D, and CA20B stations. 

Noted that ‘initial value’ is equivalent to μ. In some 
cases, the initial value can be used as the prior mean (μ) 
because it is a good starting point for the prior distribution. 
This assumption assumes that the initial value is a reasonable 
estimate of the true underlying parameter. It is possible that 
in the specific context are referring to, the initial value is 
used as the prior mean (μ) for simplicity and as an initial 
assumption (Scott & Varian 2014).

In our modelling process, we will use Table 3 values 
to initialize the state space model and estimate the model 
parameters from the data. In this section, we set the spike 
and slab priors for the regression component so that all 
potential independent variables have an equal chance 
(50%) of being included in the model (πk = 0.5). We set 
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TABLE 1. The standard deviation prior distribution for each components and stations

Stations Components Prior guess prior.df initial.value upper.limit
CA13A PM2.5

 (level)
0.134 0.01 0.134 13.4

(slope)
0.134 0.01 0.134 13.4

(seasonal)
0.134 0.01 0.134 13.4

PM10  (level)
0.172 0.01 0.172 17.2

(slope)
0.172 0.01 0.172 17.2

(seasonal)
0.172 0.01 0.172 17.2

CA05K PM2.5  (level)
0.185 0.01 0.185 18.5

(slope)
0.185 0.01 0.185 18.5

(seasonal)
0.185 0.01 0.185 18.5

PM10  (level)
0.194 0.01 0.194 19.4

(slope)
0.194 0.01 0.194 19.4

(seasonal)
0.194 0.01 0.194 19.4

CA46D PM2.5  (level)
0.128 0.01 0.128 12.8

(slope)
0.128 0.01 0.128 12.8

(seasonal)
0.128 0.01 0.128 12.8

PM10  (level)
0.158 0.01 0.158 15.8

(slope)
0.158 0.01 0.158 15.8

(seasonal)
0.158 0.01 0.158 15.8

CA20B PM2.5  (level)
0.135 0.01 0.135 13.5

(slope)
0.135 0.01 0.135 13.5

(seasonal)
0.135 0.01 0.135 13.5

PM10  (level)
0.172 0.01 0.172 17.2

(slope)
0.172 0.01 0.172 17.2

(seasonal) 0.172 0.01 0.172 17.2
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TABLE 2. Specification for the prior distribution of the initial values for each components and stations

Stations Initial components μ Sigma initial.value
CA13A PM2.5  (level)

32.18 13.4 32.18

(slope)
0.014 13.4 0.014

(seasonal)
0 13.4 0

PM10  (level) 41.24 17.2 41.24

(slope)
0.018 17.2 0.018

(seasonal)
0 17.2 0

CA05K PM2.5  (level)
16.32 18.5 16.32

(slope)
0.029 18.5 0.029

(seasonal)
0 18.5 0

PM10  (level)
25.92 19.4 25.92

(slope)
0.028 19.4 0.028

(seasonal)
0 19.4 0

CA46D PM2.5  (level)
3.808 12.8 3.808

(slope)
0.009 12.8 0.009

(seasonal)
0 12.8 0

PM10  (level)
7.215 15.8 7.215

(slope)
0.020 15.8 0.020

(seasonal)
0 15.8 0

CA20B PM2.5  (level)
41.99 13.5 41.99

(slope)
-0.031 13.5 -0.031

(seasonal)
0 13.5 0

PM10  (level)
59.89 17.2 59.89

(slope)
-0.046 17.2 -0.046

(seasonal)
0 17.2 0
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TABLE 3. Spike and slab prior for each station

Stations prior. inclusion.probabilities μ sigma. guess prior. df sigma. upper.limit
CA13A PM2.5 0.833 0 9.479 0.01 16.09

PM10 0.833 0 12.13 0.01 20.58
CA05K PM2.5 0.833 0 13.08 0.01 22.19

PM10 0.833 0 13.71 0.01 23.26
CA46D PM2.5 0.833 0 9.072 0.01 15.39

PM10 0.833 0 11.19 0.01 19.00
CA20B PM2.5 0.833 0 9.530 0.01 16.17

PM10 0.833 0 12.16 0.01 20.63

FIGURE 1. Comparison of actual with fitted values based on the BSTS odel for PM2.5 and

PM10 time series for each station

By understanding how PM10 and PM2.5 levels are likely to fluctuate at different 

locations, we can take targeted actions to reduce pollution and improve air quality in those 

areas. For more information about model evaluation, refer to Table 4. Table 4 compares the 

(a) CA13A Station

(b) CA05K Station

(c) CA46D Station

(d) CA20B Station

FIGURE 1. Comparison of actual with fitted values based on the BSTS  
odel for PM2.5 and PM10 time series for each station
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the model’s prior for the overall variation explained to 0.5  
(R2 = 0.5), and the shrinkage parameter to 1% (df = 0.01). 
We employ the entire Bayes technique with slight variations 
as  is determined by data (Scott & Varian 2014). Table 3 
displays the results of the spike and slab regression model 
used to determine the prior distributions for each station. 
The priors will guide the estimation process by specifying 
the range of plausible values for each parameter.

The results for the spike and slab prior are displayed 
in Table 3. The table specifies the inclusion probabilities, 
means, and standard deviation of the regression coefficients 
for each pollutant and station in a Bayesian structural time 
series model. The inclusion probabilities indicate the prior 
probability that each regression coefficient is included in 
the model. In this case, all six regression coefficients have 
an equal inclusion probability of 0.833. The μ parameter 
is set to 0 for all regression coefficients, indicating a prior 
assumption that the predictors have no significant effect on 
the response variable. This is a conservative assumption 
when there is no prior information available about the 
coefficients’ expected values. The sigma. guess parameter 
represents the prior guess for the error term’s standard 
deviation ( ) in the model. The prior.df parameter controls 
the shape of the gamma distribution for the error variance 
 ( ). In this case, prior.df is set to 0.01, indicating a diffuse 
prior distribution. The sigma. upper. limit parameter sets the 
upper limit for the standard deviation of the error term. Any 
values higher than this limit will be truncated at this value, 
preventing the prior from being too diffuse and allowing 
for unrealistic or uninformative values. These prior values 
inform the model and provide a starting point for the 
estimation of the posterior distribution of the regression 
coefficients and error variance.

After training the model, the actual and fitted values 
were compared to assess the model’s performance. If the 
results are satisfactory, the model can be used to forecast 
the future values. The accuracy of the model’s predictions 
were evaluated based on the mean absolute percentage error 
(MAPE). In Figure 1, the actual PM values were compared 

with the fitted values from the BSTS model. The shaded 
grey region is the 95% credible range for the forecast. 

The performance of the Bayesian Structural Time 
Series (BSTS) model was evaluated in Figure 1. The 
BSTS model successfully captured seasonal patterns and 
trends in the data. Its predictions for the next 30 days were 
mostly accurate, with MAPE values ranging from 1.99% 
to 16.45%. The model showed a gradual decline in PM10 
and PM2.5 levels at CA05B stations, while fluctuating levels 
at CA13A and CA46D stations suggest instability in air 
quality.

By understanding how PM10 and PM2.5 levels are likely 
to fluctuate at different locations, we can take targeted 
actions to reduce pollution and improve air quality in those 
areas. For more information about model evaluation, refer to 
Table 4. Table 4 compares the forecast accuracy of Bayesian 
Structural Time Series (BSTS) and Structural Time Series 
(STS) models for PM2.5 and PM10 across multiple stations. 
Overall, BSTS generally outperforms STS, showing lower 
MAPE values, particularly at stations like CA13A and 
CA46D, and demonstrating better consistency with lower 
residual and prediction standard deviations at stations such 
as CA13A and CA05K. BSTS also tends to have a relative 
goodness of fit (GOF) closer to zero, indicating a better 
model fit. While STS occasionally outperforms BSTS, as 
seen at CA05K for PM2.5, BSTS typically provides more 
accurate and reliable forecasts.

After training and making predictions, further analysis 
can be conducted to improve understanding of air quality 
time series data, including trend and seasonality analysis 
and regression analysis. This comprehensive approach aids 
in identifying factors impacting air quality and guiding the 
development of effective strategies for future improvement.

Figure 2 shows that air pollution levels have decreased 
at most stations in recent years due to better regulations 
and reduction efforts. Air quality data fluctuates seasonally, 
with higher pollution in summer and lower in winter. 
Random fluctuations in the residual component indicate 
unpredictable factors affecting air quality. Estimating 

 TABLE 4. Compare between measures of forecast accuracy for the BSTS and STS models

Station model MAPE residual. sd prediction. sd Relative. gof R2

STS BSTS STS BSTS STS BSTS STS BSTS STS BSTS
CA13A PM2.5

PM10

1.32
2.43

1.99
4.44

5.72
7.60

5.41
7.21

10.9
12.7

10.7
12.6

-0.27
0.03

-0.22
0.04

0.81
0.80

0.84
0.82

CA05K PM2.5
PM10

4.83
3.93

16.5
13.3

3.98
3.78

2.25
1.91

11.8
11.4

11.8
11.4

-0.06
-0.08

-0.07
-0.09

0.95
0.96

0.98
0.99

CA46D PM2.5
PM10

2.31
0.44

3.59
0.19

2.99
2.73

3.38
2.89

7.80
9.49

7.51
9.40

-0.14
-0.12

-0.05
-0.09

0.94
0.97

0.93
0.97

CA20B PM2.5
PM10

1.69
1.55

6.62
5.75

3,44
3.60

3.74
3.68

8.00
9.50

7.79
9.29

-0.07
-0.08

-0.02
-0.03

0.93
0.95

0.92
0.95
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predictions. These estimates show variable relationships and assess the model's effectiveness, 

as shown in Table 5.  

Table 5 shows the posterior distribution of coefficient values ( ) for models analyzing 

the impact of environmental variables on PM2.5 and PM10 air pollution at stations CA13A, 

CA05B, CA05K, and CA46D. Each model has PM2.5 and PM10 as dependent variables, with 

humidity, temperature, wind speed, wind direction, and solar radiation as independent 

variables. The table presents the estimated coefficients for each independent variable, along 

with their posterior means and standard deviations, and the probability that each coefficient is 

 column 

indicates the variation and uncertainty in these values, with larger standard deviations 

that each coefficient is non-zero, indicating its importance in predicting air pollution levels. 

 

 

 

FIGURE 2. Components contribution to PM2.5 and PM10 time series for each station 

              

FIGURE 2. Components contribution to PM2.5and PM10 time series for each station 
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TABLE 5. Posterior distribution of the coefficient values (β) for the PM2.5 and PM10 models for each station

Stations Coefficients mean Sd Incremental probability

CA13A PM2.5 Humidity 0.274 0.266 1
Ambient.Temperature 0.907 1.084 0.69

Solar.Radiation -0.003 0.003 0.61
Wind.speed -0.119 0.231 0.23

Wind.direction 0.000 0.000 0.00
(Intercept)     0 0 0

PM10           Ambient.Temperature 0.445 0.796 0.64
Humidity 0.067 0.172 0.52

Wind. direction 0.003 0.006 0.27
Wind.speed -0.287 0.637 0.24

Solar.Radiation -0.0003 0.001 0.12
(Intercept) 0 0 0

CA05K PM2.5 Wind.speed -2.380 0.766 1
Ambient.Temperature 0.425 0.766 0.84

Solar.Radiation -0.009 0.007 0.75
Humidity -0.079 0.093 0.73

Wind.direction -0.0002 0.001 0.11
(Intercept) 0 0 0

PM10 Solar.Radiation -0.015 0.006 0.93
Humidity 0.004 0,093 0.74

  Ambient.Temperature   0.293 0.409 0.72
Wind.speed -0.498 0.915 0.31

Wind.direction 0.0002 0.002 0.28
(Intercept) 0 0 0

CA05B PM2.5 Humidity 0.512 0.146 0.99
Ambient.Temperature 1.948 0.654 0.99

    Wind.direction 0.003 0.004 0.41
 Solar.Radiation    -0.0008 0.002 0.24

Wind.speed -0.114 0.324 0.18
(Intercept) 0 0 0

PM10 Ambient.Temperature 1.928 0.684 1
Humidity 0.531 0.141 1

Solar.Radiation -0.004 0.003 0.61
Wind.direction 0.004 0.005 0.45

Wind.speed -0.109 0.332 0.19
(Intercept) 0 0 0

CA46D PM2.5 Ambient.Temperature 2.183 0.399 1
Humidity 5.086 0.099 1

Wind.speed 8.872 0.187 0.12
Wind.direction -3.881 0.001 0.08
Solar.Radiation 7.734 0.0004 0.06

(Intercept) 0 0 0
PM10 Ambient.Temperature 1.378 0.571 0.99

Humidity 2.738 0.156 0.94
Wind.speed 4.931 0.719 0.41

Wind.direction -1.099 0.001 0.11
   Solar.Radiation 7.055 0.001 0.07

(Intercept) 0 0 0
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coefficients is key to understanding a model’s dynamics, 
identifying influential variables, and making accurate 
predictions. These estimates show variable relationships 
and assess the model’s effectiveness, as shown in Table 5.

Table 5 shows the posterior distribution of coefficient 
values (β) for models analyzing the impact of environmental 
variables on PM2.5 and PM10 air pollution at stations 
CA13A, CA05B, CA05K, and CA46D. Each model has 
PM2.5 and PM10 as dependent variables, with humidity, 
temperature, wind speed, wind direction, and solar 
radiation as independent variables. The table presents the 
estimated coefficients for each independent variable, along 
with their posterior means and standard deviations, and the 
probability that each coefficient is nonzero. The ‘mean’ 
column shows the average value for each coefficient. The 
‘sd’ column indicates the variation and uncertainty in these 
values, with larger standard deviations signifying greater 
uncertainty. The ‘Incremental Probability’ column displays 
the probability that each coefficient is non-zero, indicating 
its importance in predicting air pollution levels.

Table 5 presents an insightful analysis of how 
environmental variables affect PM2.5 and PM10 levels across 
various stations. At most stations, variables like ambient 
temperature and humidity consistently show high inclusion 
probabilities, indicating their significant influence on 
air pollution levels. For example, at CA46D, ambient 
temperature and humidity have strong positive effects on 
PM2.5, with high inclusion probabilities, emphasizing their 
crucial role. Conversely, some variables, like wind speed 
for PM2.5 at CA13A, exhibit considerable uncertainty due 
to higher standard deviations. This variability highlights 
the complex and sometimes unpredictable nature of air 
pollution factors. Overall, the table shows that while certain 
variables are consistently important, their effects can vary 
significantly, reflecting the diverse influences on air quality.

CONCLUSIONS

This study aimed to create a dependable and precise model 
for predicting air quality in Malaysia using the Bayesian 
structural time series (BSTS) method. The study focused 
on two pollutants, PM10 and PM2.5, and developed a model 
that included a regression component, a local linear trend 
component, and a seasonal component with a duration of 
7 and a period of 52 weeks. The estimation of the model’s 
parameters was done using Markov Chain Monte Carlo 
(MCMC) methods to calculate the posterior distribution. 
The model’s effectiveness was evaluated using various 
measures.

The results of the study showed that the Bayesian 
structural time series approach was highly successful in 
modelling air quality in Malaysia. The model was able to 
accurately capture the seasonal and trend components of 

the air quality data and account for the impact of predictor 
variables on air quality, the study by Bakar et al. (2022) 
supports the finding that incorporating meteorological 
variables improves the performance of the model when 
used for LSTM models for predicting PM10. The local 
linear trend component indicated a gradual decrease in 
PM10 and PM2.5 concentrations over time in most stations, 
while the seasonal component showed weekly fluctuations 
in concentrations. The regression component showed that 
humidity and ambient temperature significantly affected 
air quality in most stations, whereas wind direction did 
not have a significant impact. Additionally, the model was 
able to accurately predict air quality for upcoming periods, 
making it a valuable tool for decision-making and planning 
aimed at improving air quality in Malaysia.
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