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ABSTRACT

Malaysia has been misfortunate with intermittent haze episodes since 1997 which affect the airquality tremendously.
In Malaysia, an instrument named as air pollution index (API) is utilizedin determining the quality of air, which is
influenced by the presence of haze. API values arecalculated by considering the concentration of harmful particles
in haze. So, any haze episodeheavily affects the API values and can be considered as a determining factor. Since
Malaysiais prone to haze, it is crucial to identify and quantify the haze effect on the API values.Therefore, four models
—an autoregressive integrated moving average (ARIMA), regressionmodel with ARIMA errors (ARIMAX), time series
regression and Prophet models areemployed. It is found that ARIMAX (4,0,1) with non-zero mean is the best model in
describingthe API data with presence of haze as external regressor based on the smallest adequacy anderror measures
for training and test datasets. In conclusion, the effect of haze is significant indescribing the API values and thus,
proper health management is required during haze episodes.
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ABSTRAK

Malaysia mengalami nasib malang dengan episod jerebu yang berterusan sejak tahun 1997 yang memberi kesan yang
besar terhadap kualiti udara. Di Malaysia, terdapat satu pengukur yang dikenali sebagai indeks pencemaran udara
(IPU) yang digunakan untuk menentukan kualiti udara yang dipengaruhi oleh kehadiran jerebu. Nilai IPU dihitung
berdasarkan kepekatan zarah berbahaya dalam jerebu. Oleh itu, apa-apa episod jerebu akan memberi kesan yang
besar kepada nilai IPU dan boleh dianggap sebagai satu faktor penentu. Memandangkan Malaysia cenderung untuk
mengalami jerebu, adalah penting untuk mengenal pasti dan mengukur kesan jerebu terhadap nilai IPU. Oleh itu,
empat model — purata bergerak terintegrasi auto regresif (ARIMA), regresi dengan ralat ARIMA (ARIMAX), regresi
siri masa dan model Prophet digunakan. Didapati bahawa ARIMAX (4,0,1) dengan min bukan sifar merupakan model
terbaik dalam menerangkan data IPU dengan kehadiran jerebu sebagai regresor luaran berdasarkan ukuran kecukupan
serta ralat terkecil untuk set data latihan dan set data ujian. Kesimpulannya, kesan jerebu adalah signifikan dalam
menerangkan nilai IPU dan oleh yang demikian, pengurusan kesihatan yang betul diperlukan sepanjang jerebu berlaku.

Kata kunci: ARIMAX; kesan jerebu; regresi dengan ralat ARIMA

INTRODUCTION acid, ozone, nitrates and sulphuric acid (Liu et al. 2016).

Malaysia has been suffering from haze since 1997
sourcing from domestic and neighboring countries,
especially due to forest fires which was intensified by
El Nifio and improper management in Indonesia, which
then affected several countries in Southeast Asia (Glover
& Jessup 2006). Haze contains harmful particles such
as sulphur dioxide, nitrogen dioxide, sulphates, nitric

Concentrations of some of the harmful substances has
already been considered in developing air pollution index
(API) in Malaysia. Haze can be started by human factors
such as industrializations and open burnings. Besides
human factors, natural disasters which include volcanic
eruptions and wildfires can also contribute to haze. Haze
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can cause adverse effects to humans such as lung and
cardiovascular diseases (Isaifan 2023; Liu et al. 2016) as
well as respiratory diseases (Mohd Nadzir et al. 2021).
These effects indirectly may contribute to high hospital
admissions (Albahar et al. 2022; Priyankara et al. 2021;
Zhang et al. 2014).

In Malaysia, the Malaysian Department of
Environment is responsible in collecting data pertinent
to the development of API as well as strategizing in
reducing pollution nationwide. Prior to 2017, the API
values are calculated based on five influential observed
pollutants — sulphur dioxide (SO,), nitrogen dioxide
(NO,), carbon monoxide (CO), particulate matter less
than 10 microns in size (PM,)) and ozone (O,). The
PM, is measured in micrograms per cubic meter (ug/
m?®) whereas the remaining pollutants are measured in
the parts per million (ppm) unit mass of a containment.
Most of the time, the PM  and O, values dominate the
API due to their high value (Al-Dhurafi et al. 2018) and
in overall, the average PM, | value in Malaysia exceeds
the standard set by Recommended Malaysian Ambient
Air Quality Guideline (RMAAQG) (Rahim et al. 2023).
The PM | is mainly contributed by dust, waste burnings,
wildfires and industrial sources (California Air Resources
Board) which further contribute to the haze episodes.

Usually, air quality data are investigated using time
series analysis (Abdulali & Masseran, 2021; Gourav et al.
2020; Liu & Yuan 2023; Liu et al. 2018), machine learning
(Bakar et al. 2022; Leong et al. 2020; Mun et al. 2022)
or stochastic analysis (Alyousifi, Masseran & Ibrahim
2018; Alyousifi et al. 2020). However, recent studies
have examined the air quality data especially the API in
the context of intensity, duration, and severity (Ismail &
Masseran 2023; Masseran 2022, 2021; Masseran & Safari
2020a, 2020b). In this paper, we attempt to quantify the
effect of haze on the API values using time series analysis
with addition of an exogenous variable. Two ways of
modelling API with haze effect are time series regression
(TSR) with haze dummy variable and regression with
autoregressive integrated moving average (ARIMA)
errors or also known as ARIMAX. The ARIMAX model
is an extension to the commonly used time series model
which is the ARIMA model. However, it is well-known
that ARIMA-based models have greater flexibility over
traditional time series regression. One advantage of an
ARIMAX model over an ARIMA model is that an ARIMAX
model can estimate the effect of exogenous variables. One
can also consider seasonal ARIMAX models (SARIMAX),

but it is inefficient when dealing with daily API datasets
and hence, not included in this study. SARIMAX models
work better when the season is weekly or monthly.
However, converting the daily data into weekly data
by taking an average of every seven API values will
distort the original API values data which exceeds 200.
Therefore, it is not advisable to use other than daily API
data to investigate the effect of haze.

In this study, the presence of haze acts as an
exogenous variable. The usage of ARIMAX in describing
air quality data is not new. However, the exogenous
variable used may vary from research to research. Liu
et al. (2018) has considered particulate matter less
than 2.5 microns in size (PM,,), O, and NO, as the
exogenous variables in explaining the air quality in Hong
Kong. In Malaysia, the concentration of PM, , has only
been collected since 2017 and our dataset ends at 30th
December 2016. Furthermore, each component directly
involves in the calculation of API, therefore, it is not
advised to include any of the components as the external
regressors. Tagpinar (2015) on the other hand, used air
temperature and residential natural gas consumption as
the exogenous variables in explaining PM,, and SO,. In
this paper, we aim to quantify the effect of haze episodes
on the API values. The paper is organized as follows. Next
section explains about the air pollution data and haze
episodes. Subsequent section describes pre-analysis such
as separating the dataset into training and test datasets as
well as the stationarity tests. It also discusses the ARIMA
and ARIMAX modelling. In the section that follows, we
discuss the results of pre-analysis and model fittings along
with model adequacy measures. Last section concludes
the study.

AIR POLLUTION DATA

Figure 1 shows the flowchart for calculating API values
(Department of Environment 1997; Masseran 2022).
From Figure 1, it can be noted that the API are calculated
by taking the maximum values between five standardized

indices, one from each observed pollutant.

A trivial indicator of the presence of haze is the high
value API because SO,, NO, and SO, are contributed by
haze. API is a positive real number which takes on from
0 to co. Malaysian Department of Environment (2019)
has provided a simple guidance on the API levels, as
presented in Table 1.
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FIGURE 1. Flowchart of API calculations

TABLE 1. API levels and its descriptions

API Descriptions
0-50 Good
51-100 Moderate
101 —-200 Unbhealthy
201 —300 Very unhealthy
301 - 500 Hazardous
> 500 Emergency
Source: Department of Environment (2019)
The Malaysian Department of Environment (1997) Idx(NO,) =
has also outlined the formulae used to calculate the 2
standardized individual index for each pollutant as NO, x588.23529 . ifNO, <0.17 ppm
> 2 .

follows:
Idx(S0,) =

50, %2500 . if SO, <0.04 ppm
100+[ (50, -0.04)x384.61] . if0.04< 50, <0.30 ppm
200+[ (50, -0.30)x3233.333] ; if 0.30 < SO, < 0.60 ppm’

s

300+[(50,-0.60)x500| 5 if SO, >0.60 ppm

100+[(NO, ~0.17)x232.56] ; i 0.17 < NO, < 0.60 ppm
200+[(NO,-0.60)x166.667 | ; if 0.60 < NO, <1.20 ppm’
300+[(NO,~1.20)x250] ;  if NO, >1.20 ppm

1dx(CO) =

COx11.11111 . ifCO<9 ppm
100+[(CO-9)x16.66667| . if9<CO<15 ppm
200+ (CO-15)x6.66667 | ; if 15<CO <30 ppm’

300+[(CO-30)x10] ; if CO=30 ppm
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Idx(PMm)=

PM,, 5 ifPM,, <50ug /m’
50+[(PM,,=50)x0.5] . ir50< P, <350ug/m’
200+ (PM,,~350)x1.4286 | ; if 350 < PM,, < 420ug / m’
300+[(PM,,—420)x1.25] ; if 420< PM,, <500ug /m’

400+ PM,, —500] i ifPM,,2500ug /m’

0, %1000 .0, <0.2 ppm
Idx(0;) =4 200+[(0,-0.2)x500] ; if 0.2< 0, <0.4 ppm.
300+[(0,-0.4)x1000] 5 if O;20.4 ppm

From 2017, the concentration of particulate
matters less than 2.5 microns in size (PM, ) is also
considered in developing API values (Department
of Environment 2019). For this study, Klang city in
Peninsular Malaysia is selected because of its dense
population and an elevated economic activities. Hence,
the Klang city suffers from frequent unhealthy air
pollution (Masseran & Safari 2020a). Figure 2 shows

Air pollution index (1997-2016)
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a time series plot for the daily API values in Klang
city from January 1st, 1997, until December 30th,
2016. The green dotted line shows the cutoff between
moderate and unhealthy API. The blue dotted line
shows the cutoff between unhealthy and very unhealthy
API. The orange dotted line shows the cutoff between
very unhealthy and hazardous API. Finally, the red
dotted line shows the cutoff between hazardous and
emergency API. As seen from Figure 2, Klang city
does frequently have unhealthy API and occasionally,
the API skyrockets over 300. Between 1997 and 2016,
Klang city is fortunate to not experience emergency
level API. Even though Klang city is very prone
to air pollution, its API values has never exceeded
the emergency level. The Malaysian Department of
Environment (2021) has provided a comprehensive
chronology of haze episodes in Malaysia from 1997 to
2016, which is tabulated in Table 2. Figure 3 shows the
incorporation of the haze episodes and the API values.
From Figure 3, it is evident that the occurrence of haze
does affect the API values, especially when the API
values exceed 200. Therefore, it is crucial to include
the haze effect when modelling the API values.

! '
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Time

FIGURE 2. Time series plot for API of Klang, Malaysia



TABLE 2. Haze period from 1997 to 2016
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Date Occurrence of haze Length of days Cumulative length of days
01/01/1997 — 31/08/1997 No 243 243
01/09/1997 — 30/11/1997 Yes 91 334
01/12/1997 — 31/07/2005 No 2800 3134
01/08/2005 — 13/08/2005 Yes 13 3147
14/08/2005 — 16/07/2006 No 337 3484
17/07/2006 — 19/07/2006 Yes 3 3487
20/07/2006 — 20/09/2006 No 63 3550
21/09/2006 — 10/10/2006 Yes 20 3570
11/10/2006 — 30/04/2011 No 1633 5203
01/05/2011 —30/09/2011 Yes 153 5356
01/11/2011 —31/05/2012 No 244 5600
01/06/2012 —31/08/2012 Yes 92 5692
01/09/2012 — 14/06/2013 No 287 5979
15/06/2013 —27/06/2013 Yes 13 5992
28/06/2013 —31/01/2014 No 218 6210
01/02/2014 — 31/03/2014 Yes 59 6269
01/04/2014 —21/06/2014 No 82 6351
22/06/2014 —24/07/2014 Yes 33 6384
25/07/2014 — 16/09/2014 No 54 6438
17/09/2014 — 12/10/2014 Yes 26 6464
13/10/2014 - 31/07/2015 No 292 6756
01/08/2015 — 30/09/2015 Yes 61 6817
01/10/2015 —30/12/2016 No 457 7274
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METHODOLOGY

PRE-ANALYSIS

Prior to modelling the API time series data, the data
from 01/01/1997 to 30/12/2016 (7274 data points) is
separated into training set (7264 data points) and test set
data (10 data points). Since ARIMA-based models are
great for short-term forecasting, it is reasonable to only
select the latest 10 data points for the forecasting. The
stationarity of the training set data is investigated using
unit root tests such as Augmented Dickey-Fuller (ADF)
and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests.
In ADF test, the hypotheses are:

Air pollution index (1997-2016)
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300~

API values

200 -

100-

0 2000

H,: The time series is not stationary

H : The time series is stationary
In KPSS test, the hypotheses are:
H : The time series is stationary
H: The time series is not stationary
Using these above tests, a time series is said to be

stationary if the null hypothesis in the ADF test is rejected
but fail to reject the null hypothesis in the KPSS test.

4000 6000

Time

FIGURE 3. Time series plot for API of Klang, Malaysia with haze
episodes (in red dots)



ARIMA AND ARIMAX MODELLING

ARIMA model

The common time series analysis involves autoregressive
integrated moving average (ARIMA) model with orders
p.d,q. An ARIMA (p,d,q.) model which can be written as:

1=06+4y ,+thy., +"'+¢pyt—p +e,+0¢, ,+0,¢, ,
+.+0,5, , , £~NID(0,0%). (1

where d refers to the order of integration or differencing.

Regression with ARIMA errors or ARIMAX model

One way of quantifying the effect of haze using the API
time series is by employing regression with ARIMA
errors. In general, a regression model with ARIMA
errors or hereon as ARIMAX model for a time series
¥, explained by k predictors x,, fori =1, 2, ..., k can be
written as:

v, =B+ ﬂlxl,t + ﬂzxz,r +..+ ﬂk'xk,t +7,

n=¢n_+én_,+..+ ¢p77[7p +é +0¢, ,+0,¢,,

2

+..+0,

£,~NID(0,07).
An ARIMAX model, in general can be written as:
V=B Bx, + BoXy t et B B DY, e

+¢pyt—p +‘9t + glgt—l + 92‘9:—2 + "'+9!/gt—q ’ (3)

£ ~NID(0,67).

The regression model with ARIMA errors and
ARIMAX model may be mathematically equivalent,
but ARIMAX model has slight difficulty in terms
of interpretation (Hyndman 2022). Furthermore, in
regression with ARIMA errors, regression is conducted
first, and the residuals are modelled using ARIMA
procedures. On the other hand, in ARIMAX model, the
exogenous variables are fitted along with the ARIMA
components. Hyndman (2022) mentioned that the g,
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coefficients should be interpreted conditional to lagged
v, values.

However, it is common to refer one with the other
and hence, we have opted to do the same. In this study,
the form in (2) is used and referred as ARIMAX using the
‘forecast’ package (Hyndman et al. 2020). For this study,
only one predictor which is the presence of haze, 4, will
be considered and /, is a dummy variable with indicator
function which indicates one if haze presents at time t
and zero vice-versa. The general formula for the model
can be written as:

yo=pBy+Bh+n, ;
n=0n,+én ,+..+ ¢p77r7p +te,+0¢, ,+0,6, )
+..+0e
& ~NID(0,67).

The 7, can be considered the as the remaining API values
unexplained by the haze episodes.

TSR model

Time series regression is another technique to quantify
the haze effect in API data. General TSR model with haze
dummy and polynomial trend can be written as:

k
Nz :ﬂ0+zﬂptp+ﬂk+lh[+gt . Q)
p=1

If the API is found to be stationary, a simple TSR
model with haze dummy and no trend will be considered
for modelling the API data and quantifying haze effect.
The model can be written as:

Vi=By+Bh+e, ©)

Prophet model

Prophet model is an open-source framework by Facebook
which takes into account linear additive between growth,
seasonality and influence of holidays (Taylor & Letham
2018). A general additive Prophet model is defined as:

yl:g(t)+s(t)+v(t)+5, , (7
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where g(¢), s(t) and v(¢) refer to growth, seasonality,
and holidays influence components, respectively. The
‘prophet’ package (Prophet 2022) is used for fitting the
Prophet model. The growth, referring to the trend can be
either linear, logistics or flat. In the case of stationary data,
flat trend seems more plausible than linear or logistics.
The seasonality component, which can take on daily,
weekly and yearly seasonality, incorporates Fourier series
for more flexibility periodic effects (Taylor & Letham
2018). In this study, we do not introduce any holiday
influence component, but an additional haze effect is
considered. So, one may deduce that v(¢) = A,

Comparison between ARIMA, ARIMAX, TSR and Prophet
models

The best fitted model from each modelling approach is
obtained and compared in terms of Akaike’s Information
Criterion (AIC), corrected AIC (4ICc) and Bayesian
Information Criterion (B/C). The formulae for AIC
(Akaike, 1974), AIC . (Sugiura 1978) and BIC (Schwarz
1978) are respectively given a:

AIC=-2InL+2k ;

2k (k+1)
AIC, = AIC+——""L (8)

n—k-1
BIC=-2InL+klnn ,

where In L is the log-likelihood values; 7 is the length of
training data; and & is the number of estimated parameters.
The four models are also compared by calculating error
measurements for in-sample and out-sample using

i:(yz_j}z‘)2 >

RMSE = l
m-

the root mean squared error values, RMSE, the mean
absolute error values, MAE, the mean absolute percentage
error values, MAPE and the weighted mean absolute
percentage error values, WMAPE. The formulae for error
measurements are given, respectively, as:

B

1 & N
MAE—;Z|yt—y,

t=1

B

1 m
MAE =—|y —$
” ;Iyt 7,

m

Z|yt_j>t|

WMAPE =100%-=——— ;

>,
(=1

1 & R 2
RMSLE = \/;;[ln(y[ +1)=In(5,+1)] ;

where m can be either 7264 (in-sample) or 10 (out-
sample); J, is the estimated y, at time ¢ < m. The best
model among ARIMA, ARIMAX, TSR, and Prophet
models is selected based on the smaller values of
RMSE,MAE,MAPE,WMAPE and RMSLE.

RESULTS

PRE-ANALYSIS

The stationarity of the training API data is tested using
ADF and KPSS tests. The results from the unit root tests
are presented in Table 3. From Table 3, it is clear that the
training dataset is stationary.

TABLE 3. Results from unit root tests

Unit root tests p-value Decision Conclusion
ADF 0.0100 Reject null hypothesis o .
The training API data is
KPSS 0.1000 Fail to reject null stationary

hypothesis




MODELLING

The auto.arima(—I ) function from the library ‘forecast’
by Hyndman et al. (2020) in R software (R Core Team
2022) is used to obtain the best model for the ARIMA
and for the ARIMAX models. For the ARIMAX model,
additional information as ‘xreg’ will be passed into
the auto.arima(—|) function. The ‘xreg’ argument will
allow us to add the presence of haze as the exogenous
variable in the original ARIMA model, yielding an
ARIMAX model. For ARFIMA and ARFIMAX models, the
arﬁma(-l ) function from the same library ‘forecast’ will
be used. For all models, the arguments ‘approximation’
and ‘stepwise’ are set to ‘FALSE’ to allow comprehensive
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ARIMA model
Table 4 summarizes the model fittings with its associated
AIC,. values. The ARIMA (4,0,1) with non-zero mean

model is found to be the best model in describing the
training API data. The fitted model can be written as:

v, =56.8634+1.7964y,_, —1.0145y_, +0.3027y, ,
~0.0914y, , +£,-0.9352¢, ,

€, ~NID(0,141.37).

model fittings.

TABLE 4. The A4IC_ for various ARIMA models

Model AIC, Model AIC,
ARIMA (0,0,0) with zero mean 80173.17 ARIMA (1,0,4) with non-zero mean 56615.35
ARIMA (0,0,0) with non-zero mean 64174.55 ARIMA (2,0,0) with zero mean 57577.54
ARIMA (0,0,1) with zero mean 71923.67 ARIMA (2,0,0) with non-zero mean 56824.47
ARIMA (0,0,1) with non-zero mean 59302.49 ARIMA (2,0,1) with zero mean 57525.47
ARIMA (0,0,2) with zero mean 67048.87 ARIMA (2,0,1) with non-zero mean 56755.67
ARIMA (0,0,2) with non-zero mean 57878.53 ARIMA (2,0,2) with zero mean -
ARIMA (0,0,3) with zero mean 64392.38 ARIMA (2,0,2) with non-zero mean 56603.54
ARIMA (0,0,3) with non-zero mean 57410.85 ARIMA (2,0,3) with zero mean -
ARIMA (0,0,4) with zero mean 62896.79 ARIMA (2,0,3) with non-zero mean 56598.49
ARIMA (0,0,4) with non-zero mean 57177.33 ARIMA (3,0,0) with zero mean 57193.59
ARIMA (0,0,5) with zero mean 61649.67 ARIMA (3,0,0) with non-zero mean 56676.12
ARIMA (0,0,5) with non-zero mean 56991.76 ARIMA (3,0,1) with zero mean -
ARIMA (1,0,0) with zero mean 57576.59 ARIMA (3,0,1) with non-zero mean 56625.15
ARIMA (1,0,0) with non-zero mean 56878.54 ARIMA (3,0,2) with zero mean -
ARIMA (1,0,1) with zero mean 57576.61 ARIMA (3,0,2) with non-zero mean 56602.26
ARIMA (1,0,1) with non-zero mean 56798.24 ARIMA (4,0,0) with zero mean 57096.33
ARIMA (1,0,2) with zero mean - ARIMA (4,0,0) with non-zero mean 56658.95
ARIMA (1,0,2) with non-zero mean 56676.19 ARIMA (4,0,1) with zero mean -
ARIMA (1,0,3) with zero mean - ARIMA (4,0,1) with non-zero mean 56590.60
ARIMA (1,0,3) with non-zero mean 56622.92 ARIMA (5,0,0) with zero mean -
ARIMA (1,0,4) with zero mean - ARIMA (5,0,0) with non-zero mean 56645.99

* The best ARIMA model is written in bold
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ARIMAX model

Table 5 summarizes the model fittings with its associated
AIC,. values. The ARIMAX (4,0,1) with non-zero mean
model is found to be the best model in describing the

training API data. The fitted model can be written as:

¥y, =55.8270+13.0460h, +1, ;

n, =1.79837, , —1.01637,_, +0.30877,_, —0.09647, ,

+¢&,-0.9467¢,_,.

& ~NID(0,140.67).

TABLE 5. The AIC . for various ARIMAX models

Model AIC, Model AIC,

ARIMAX (0,0,0) with zero mean 79246.76 ARIMAX (1,0,4) with non-zero mean 56584.31
ARIMAX (0,0,0) with non-zero mean 63660.79 ARIMAX (2,0,0) with zero mean 57576.73
ARIMAX (0,0,1) with zero mean 71208.53 ARIMAX (2,0,0) with non-zero mean 5677.18
ARIMAX (0,0,1) with non-zero mean 58972.80 ARIMAX (2,0,1) with zero mean 57524.83
ARIMAX (0,0,2) with zero mean 66601.86 ARIMAX (2,0,1) with non-zero mean 57607.57
ARIMAX (0,0,2) with non-zero mean 57677.93 ARIMAX (2,0,2) with zero mean -

ARIMAX (0,0,3) with zero mean 64147.94 ARIMAX (2,0,2) with non-zero mean 56573.35
ARIMAX (0,0,3) with non-zero mean 57270.30 ARIMAX (2,0,3) with zero mean -

ARIMAX (0,0,4) with zero mean 62743.92 ARIMAX (2,0,3) with non-zero mean 56563.95
ARIMAX (0,0,4) with non-zero mean 57061.86 ARIMAX (3,0,0) with zero mean 57184.85
ARIMAX (0,0,5) with zero mean 61525.22 ARIMAX (3,0,0) with non-zero mean 56633.13
ARIMAX (0,0,5) with non-zero mean 61525.22 ARIMAX (3,0,1) with zero mean -

ARIMAX (1,0,0) with zero mean 57576.01 ARIMAX (3,0,1) with non-zero mean 56595.14
ARIMAX (1,0,0) with non-zero mean 65836.34 ARIMAX (3,0,2) with zero mean -

ARIMAX (1,0,1) with zero mean 57575.57 ARIMAX (3,0,2) with non-zero mean 56568.98
ARIMAX (1,0,1) with non-zero mean 56748.75 ARIMAX (4,0,0) with zero mean 57087.62
ARIMAX (1,0,2) with zero mean - ARIMAX (4,0,0) with non-zero mean 56619.52
ARIMAX (1,0,2) with non-zero mean 56635.48 ARIMAX (4,0,1) with zero mean -

ARIMAX (1,0,3) with zero mean - ARIMAX (4,0,1) with non-zero mean 56555.42
ARIMAX (1,0,3) with non-zero mean 56589.48 ARIMAX (5,0,0) with zero mean -

ARIMAX (1,0,4) with zero mean - ARIMAX (5,0,0) with non-zero mean 56609.59

* The best ARIMAX model is written in bold



TSR model

For TSR model, ordinary least square (OLS) technique is
utilized which estimates the parameters p by minimizing
the squared error values. Since the API data is stationary,
model in (6) with B = (8, B)) will be considered for
modelling. The fitted model is written as:

¥, =55.3549+19.6122h,.

Despite both estimated f,s being significant for i =
0,1, the resulting R-square value showed that there
is only 6.8% variation in the data is explained by the
fitted TSR model. A vast proportion of the data are still
unexplainable by the fitted TSR model.
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Prophet model
In Prophet model, the growth rate is set as flat, and the
seasonality is set to ‘auto’ for the API data. Since the API
data is a daily-type time series data, the daily seasonality
in ‘prophet’ package (Prophet 2022) is automatically
disabled. To consider the haze effect, a dummy variable
is considered in place of holiday influence. Furthermore,
by considering Table 2, a total of 23 changepoints are
considered and included in the fitting command in R
software (R Core Team 2022). These changepoints
basically shows the possible structural change switching
from absence to presence of haze.

Figure 4 shows the components from the Prophet
model. Based on Figure 4, the flat trend can be seen
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FIGURE 4. Prophet component plot
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throughout years but there is a small dip on Mondays
and a surge on Tuesdays. Besides that, yearly seasonality
shows that high values of API occurs in late Junes, late
Augusts, and late Septembers. The effect of the external
regressor, which is the presence of haze, can also be
noticed in Figure 4. Despite being easy to conduct
analysis, the likelihood-based values such as 4/C, AIC,
and BIC are not obtainable. Furthermore, the full model
cannot be extracted from the results of the analysis as
well.

Comparison between ARIMA, ARIMAX, TSR and Prophet
models

Table 6 compares the A/C, AIC , and BIC values from the
best ARIMA, ARIMAX, TSR, and Prophet models. The
ARIMAX (4,0,1) with non-zero mean model provides a
smaller AIC, AIC, and BIC values and hence may be
chosen as the better model. Prophet model, despite being
new and simpler model than any ARIMA-based models,
the log-likelihood values as well as the AIC, AIC o and
BIC values cannot be obtained.

Therefore, further comparison between the four
best models is required so that an objective decision
can be made on the final best model in describing the
API data. Despite ARIMAX (4,0,1) with non-zero mean
yields smaller 4/C, compared to that found from ARIMA

(4,0,1) with non-zero mean, it is customary to measure
the adequacy and the accuracy of the models using the
training data (in-sample) and test data (out-sample).
Table 7 shows the results of adequacy measures for in-
sample and out-sample data. From Table 7, ARIMAX
model gives smallest values of RMSE, MSE, WMAPE, and
RMSLE for in-sample data and the smallest values of
MAE,MAPE,WMAPE and RMSLE for out-sample data.
ARIMA model, on the other hand, gives the smallest
MAPE for in-sample data and the smallest values of
RMSE for out-sample data. Both TSR and Prophet models
do not perform admirably and adequately in describing
the API data. However, Prophet model did perform
slightly better than TSR model.

Ultimately, it can be concluded that the ARIMAX
model ultimately describes the APIdata adequately and
provides the best model fitting followed by ARIMA
model, Prophet modeland finally, TSR model. The final
best fitted ARIMAX model is given as:

¥, =55.8270+13.0460h, +17, ;
n,=1.7983n,_,—-1.01637,_, +0.30877,_, —0.09647,_,
+¢,-0.9467¢,_, ;

& ~NID(0,140.67).

TABLE 6. The comparisons of the results between the best ARIMA, ARIMAX, TSR, and Prophet models

Model ARIMA ARIMAX TSR Prophet
Order (p,d,q) (4,0,1) (4,0,1) - -
Mean Non-zero Non-zero - -
Log-likelihood -28288.29 -28269.70 -31819.5 -
AIC 56590.58 56555.40 63645.02 -
AIC, 56590.60 56555.42 63645.02 -
BIC 56638.82 56610.53 63665.69 -
02 141.37 140.67 373.65 -

*The better model is written in bold
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TABLE 7. The adequacy measures for ARIMA, ARIMAX, TSR and Prophet models

In-sample (training)

Type of model ARIMA ARIMAX TSR Prophet
RMSE 11.8852 11.8548 19.3479 18.6475
MAE 7.5153 7.5093 11.9779 11.5594
MAPE (%) 13.7236 13.7286 223111 21.3567
WMAPE (%) 13.2130 13.2026 21.0590 20.3232
RMSLE 0.1736 0.1735 0.2779 0.2647

Out-sample (test)
RMSE 7.2882 7.2987 11.5899 8.6147
MAE 6.4725 6.4691 10.0711 7.6788
MAPE (%) 13.4905 13.4708 24.0111 17.7980
WMAPE (%) 13.7457 13.7383 21.3879 16.3074
RMSLE 0.1462 0.1461 0.2398 0.1837

*The smaller error measurement is written in bold

Figure 5 shows the training API dataset and the fitted
values from the best ARIMAX model above. From Figure
5, it can be seen that the ARIMAX model still slightly
underestimates the API values even during the haze
period, especially when the API values are tremendously
high. This suggests that there may be some other hidden
factors, other than haze, which may have contributed to
the high spike in the API values, which warrants further
investigation in future.

The presence of haze impose a total of 13.0460
effect on the API values. In general, one can describe that
if the haze is present currently, then the current API value
will increase by 13.0460. The value of 13.0460 may seem

low but it affects the API significantly when the lagged 7,5
are considered together. Figure 6 shows the superimposed
plot between Figure 3 and Figure 5. From Figure 6 and as
explained for Figure 5, even with the presence of haze, the
ARIMAX model still underestimate the true API values.
This suggests that when the haze is present, the true API
values will be much greater than what this ARIMAX
model can explain. This serves as a wake-up call for the
pertinent authorities such as the Malaysian Department of
Environment to equip themselves and public with proper
knowledge regarding the dos and don’ts during haze
period as well as preparing the distribution of certified
protection gears such as N95 to the public.
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FIGURE 5. Time series plot for API of Klang, Malaysia (in black) and its
fitted values from ARIMAX (4,0,1) with non-zero mean (in green)
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from ARIMAX (4,0,1) with non-zero mean (in green) and haze presence (in red)



CONCLUSIONS

Haze has been a contributing factor to the quality of air
in Malaysia, which is determined using air pollution
index (API) values. Concentrations of harmful substances
in haze are used in quantifying the API values. In
Malaysia, haze happens biennially from 2011 (Table 2 &
Figure 3). The haze can occur due to man-made or natural
catastrophes. The effect of haze episodes was investigated
using the API values from Klang City, a city with high
population density and vibrant economic activities. Model
fittings from ARIMA and ARIMAX procedures showed
that the ARIMAX model with order (4,0,1) with non-zero
mean is the best model in describing the API values with
the presence of haze. The haze is found to affect the API
values by 13.0460. The values may seem small at glance,
but it is advised to note that the #, refers to the remaining
API values unexplained by the haze occurrences. Both
77, and haze episodes concurrently affect the API values.
The presence of haze described by the ARIMAX model
indicates that the API values will skyrocket than what the
model can predict.

Factors such as the transportation, rapid
industrialization and open burnings may affect the haze
and it may be fruitful to study the effect of each factor
to air quality data rather than haze as a collective factor.
One way of studying the effect of these factors is by
employing a new ARIMAX model with each factor serves
as individual exogenous variable. By doing such, we
can identify the most influential factors in contributing
to the high values of API. Besides that, it is advised to
conduct spatiotemporal analysis on the API values of
whole Malaysia to further determine the polluted cities
and the polluting cities. By knowing the hotspots of
the polluted cities and the polluting cities as well as
the influential factors, the Malaysian Department of
Environment may take proper course of action through
policies or regulations to mitigate the damages to the
environment. Besides policies or regulations, general
awareness campaigns for the public can be implemented
to further sow knowledge and importance of environment
for the current and future generations.

All in all, haze does affect humans and we should
always take precautionary measures to prevent the haze
by not becoming a contributing factor, as well as to
survive the haze by wearing protective and quality masks.
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