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Numerical Study on Phase-Fitted and Amplification-Fitted Diagonally Implicit Two 
Derivative Runge-Kutta Method for Periodic IVPs

 (Kajian Berangka ke atas Suai-Fasa dan Suai-Pembesaran Kaedah Dua-terbitan Pepenjuru Tersirat Kaedah Runge-
Kutta untuk MNA Berkala)

Norazak Senu, Nur Amirah Ahmad*, Zarina Bibi Ibrahim & Mohamed Othman

ABSTRACT

A fourth-order two stage Phase-fitted and Amplification-fitted Diagonally Implicit Two Derivative Runge-Kutta 
method (PFAFDITDRK) for the numerical integration of first-order Initial Value Problems (IVPs) which exhibits periodic 
solutions are constructed. The Phase-Fitted and Amplification-Fitted property are discussed thoroughly in this paper. 
The stability of the method proposed are also given herewith. Runge-Kutta (RK) methods of the similar property are 
chosen in the literature for the purpose of comparison by carrying out numerical experiments to justify the accuracy 
and the effectiveness of the derived method. 
Keywords: Diagonally implicit methods; initial values problems; ordinary differential equations; phase-fitted and 
amplification-fitted; stability region; two derivative Runge-Kutta method 

ABSTRAK

Kaedah Runge-Kutta Dua Terbitan Pepenjuru Tersirat Suai-Fasa dan Suai-Pembesaran (RKDTPTSFSP) tahap dua 
peringkat empat untuk penyelesaian pengamiran berangka Masalah Nilai Awal (MNA) peringkat pertama yang 
mengandungi penyelesaian berkala dibina. Sifat suai-fasa dan suai-pembesaran dibincangkan secara menyeluruh dalam 
kertas kajian ini. Kestabilan kaedah yang dicadangkan adalah seperti berikut. Kaedah Runge-Kutta (RK) dengan sifat 
yang sama dipilih di dalam kajian sorotan untuk tujuan perbandingan dengan menjalankan uji kaji berangka untuk 
memastikan kejituan dan keberkesanan kaedah yang diterbitkan.
Kata kunci: Kaedah pepenjuru tersirat; kaedah Runge-Kutta dua terbitan; masalah nilai awal; persamaan pembezaan 
biasa; rantau kestabilan; suai-fasa dan suai-pembesaran

Introduction

The Ordinary Differential Equations (ODEs) of first-order 
for the numerical solution of the IVPs are considered

(1)

where their solutions show periodically or oscillatory 
behavior in which the eigenvalue is in complex form. 
This type of problems appears throughout certain fields 
of applied sciences, for instance, mechanics, electronics, 
circuit simulation, orbital mechanics, astrophysics, and 

molecular dynamics. In general, periodically or oscillatory 
behavior problems are mostly known with second or 
higher order. It is therefore essential to perform order 
reduction to solve the ODEs (1) by reducing them to first-
order problems. 

Anastassi and Simos (2012), Chen et al. (2012), and 
Kosti et al. (2012a) efficiently solved the Schrödinger 
equation and related periodically problems by designing 
a new explicit phase-fitted and amplification-fitted for the 
optimization of the method. 

 𝑞𝑞′ = 𝑓𝑓(𝑡𝑡, 𝑞𝑞),   given the initial condition,  𝑞𝑞(𝑡𝑡) = 𝑞𝑞0, (1) 
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RK methods for solving oscillatory problems 
using several techniques, for instance, phase-fitted 
and amplification-fitted, trigonometrically-fitted and 
exponentially-fitted techniques have been developed and 
expanded by several famous authors such as Simos (1998) 
in his written paper. Simos (1998) designed a Runge-
Kutta method with exponentially-fitted properties for the 
numerical integration of IVPs of order five. Konguetsof 
and Simos (2003) introduced explicit symmetric 
multistep method which is exponentially-fitted and 
trigonometrically-fitted of eighth-order.

Recently, Adel et al. (2016) and Fawzi et al. (2015) 
derived two fourth-order modified RK and classical 
RK method with phase-fitted and amplification-fitted 
property, respectively. Meanwhile, Demba et al. (2016a, 
2016b) suggested Runge-Kutta-Nyström (RKN) methods 
with trigonometrically-fitted property to solve second-
order IVPs with periodic solutions in nature derived on 
Simos’ RKN method. Two Derivative Runge-Kutta 
(TDRK) methods which are explicit in nature given by 
Chan and Tsai (2010) in which they include the second 
derivative in its general formula making it special. Just one 
evaluation of function f is involved along with a several 
number of function g to be evaluated at every step. With 
this finding, they managed to derive methods up to order 
seven with five stages as well as some embedded pairs. 

The numerical integration of radial Schrödinger 
equation and periodic problems are constructed 
by Zhang et al. (2013) using a TDRK method with 
trigonometrically-fitted of order five. Other than that, Fang 
et al. (2013) and Chen et al. (2015) constructed two TDRK 
methods of order four and three practical TDRK methods 
with exponentially-fitted, respectively. The newly 
derived methods are compared with some widely-known 
optimized codes as well as conventional RK methods with 
exponentially-fitted property mentioned in the literature. 

In this recent year, there are no findings of research 
associated with phase-fitting and amplification-fitting 
in DITDRK methods. The benefits or drawbacks of 
applying phase-fitted and amplification-fitted property 
to DITDRK methods have not yet discussed thoroughly 
by researchers especially mathematicians. A two stage 
fourth-order DITDRK method with phase-fitted and 
amplification-fitted property is therefore derived in this 
paper. A summary of the TDRK method is discussed in 
Section 2. The next section considered the conditions 
for the phase-fitted and amplification-fitted property. The 
construction of the phase-fitted and amplification-fitted 

DITDRK method is defined in Section 4. A description 
on the stability property is discussed briefly in Section 5. 
The numerical results, discussion, and conclusion are 
presented briefly in Sections 6, 7, and 8, respectively.

Two Derivative Runge-Kutta Methods 

The scalar ODEs (1) is considered with 𝑔𝑔:ℜ𝑁𝑁 → ℜ𝑁𝑁 . It 
is assumed, in this case, the second derivative is known 
where

(2)

The numerical integration of IVPs (1) for a TDRK method 
is given by

(3)

(4)

 The lowest number of function evaluations for diagonally 
implicit methods can be established by considering the 
methods in the following manner 
where i = 1, …, s.   

(5)

(6)

where i = 1, …, s. 
Assume that all of the following DITDRK parameters aij, 
𝑎̂𝑎    ij,bi,𝑏̂𝑏 i and ci are real and s is method’s stages number. We 
introduced the -dimensional vectors b = [b1,b2, …, bs]

T, 𝑏̂𝑏  
= [𝑏̂𝑏 1,𝑏̂𝑏 , …,𝑏̂𝑏 s]

T, c = [c1, c2, …, cs ]
T and s × s matrices  A 

= [aij] and 𝐴̂𝐴  = [𝑎̂𝑎    ij] where 1 ≤ i, j ≤ s. We use the following 
simplifying assumption, 

(7)

Table 1 shows the order conditions for unique DITDRK 
methods given in Chan and Tsai (2010).

 𝑞𝑞′′ = 𝑔𝑔(𝑞𝑞):= 𝑓𝑓′(𝑞𝑞)𝑓𝑓(𝑞𝑞), 𝑔𝑔:ℜ𝑁𝑁 → ℜ𝑁𝑁. (2) 

 

 
𝑞𝑞𝑛𝑛+1 = 𝑞𝑞𝑛𝑛 + 𝛥𝛥𝛥𝛥∑𝑏𝑏𝑖𝑖

𝑠𝑠

𝑖𝑖=1
𝑓𝑓(𝑞𝑞𝑖𝑖) + 𝛥𝛥𝛥𝛥2∑𝑏̂𝑏𝑖𝑖

𝑠𝑠

𝑖𝑖=1
𝑔𝑔(𝑄𝑄𝑖𝑖), (3) 

 
𝑄𝑄𝑖𝑖 = 𝑞𝑞𝑛𝑛 + Δ𝑡𝑡∑𝑎𝑎𝑖𝑖𝑖𝑖

𝑠𝑠

𝑗𝑗=1
𝑓𝑓(𝑞𝑞𝑗𝑗) + Δ𝑡𝑡2∑𝑎̂𝑎𝑖𝑖𝑖𝑖

𝑠𝑠

𝑗𝑗=1
𝑔𝑔(𝑄𝑄𝑗𝑗), (4) 

 

 
𝑞𝑞𝑛𝑛+1 = 𝑞𝑞𝑛𝑛 + 𝛥𝛥𝛥𝛥𝛥𝛥(𝑡𝑡𝑛𝑛, 𝑞𝑞𝑛𝑛) + 𝛥𝛥𝛥𝛥2∑𝑏̂𝑏𝑖𝑖

𝑠𝑠

𝑖𝑖=1
𝑔𝑔(𝑡𝑡𝑛𝑛 + 𝛥𝛥𝛥𝛥𝑐𝑐𝑖𝑖, 𝑄𝑄𝑖𝑖), (5) 

 
𝑄𝑄𝑖𝑖 = 𝑞𝑞𝑛𝑛 + 𝛥𝛥𝛥𝛥𝑐𝑐𝑖𝑖𝑓𝑓(𝑡𝑡𝑛𝑛, 𝑞𝑞𝑛𝑛) + 𝛥𝛥𝛥𝛥2∑𝑎̂𝑎𝑖𝑖𝑖𝑖

𝑖𝑖

𝑗𝑗=1
𝑔𝑔(𝑡𝑡𝑛𝑛 + 𝛥𝛥𝛥𝛥𝑐𝑐𝑗𝑗, 𝑄𝑄𝑗𝑗), (6) 

 

 
∑𝑎̂𝑎𝑖𝑖𝑖𝑖
𝑠𝑠

𝑗𝑗=1
= 1
2 𝑐𝑐𝑖𝑖

2, (7) 

 



	 	 1801

Table 1. Order conditions for unique DITDRK methods

Order Conditions 

1 𝑏𝑏𝑇𝑇𝑒𝑒 = 1     

2 𝑏̂𝑏𝑇𝑇𝑒𝑒 = 1
2     

3 𝑏̂𝑏𝑇𝑇𝑐𝑐 = 1
6     

4 𝑏̂𝑏𝑇𝑇𝑐𝑐2 = 1
12     

5 𝑏̂𝑏𝑇𝑇𝑐𝑐3 = 1
20 𝑏̂𝑏𝑇𝑇𝐴̂𝐴𝑐𝑐 = 1

120    

6 𝑏̂𝑏𝑇𝑇𝑐𝑐4 = 1
30 𝑏̂𝑏𝑇𝑇𝑐𝑐𝐴̂𝐴𝑐𝑐 = 1

180 𝑏̂𝑏𝑇𝑇𝐴̂𝐴𝑐𝑐2 = 1
360   

7 𝑏̂𝑏𝑇𝑇𝑐𝑐5 = 1
42 𝑏̂𝑏𝑇𝑇𝑐𝑐2𝐴̂𝐴𝑐𝑐 = 1

252 𝑏̂𝑏𝑇𝑇𝑐𝑐𝐴̂𝐴𝑐𝑐2 = 1
504 𝑏̂𝑏𝑇𝑇𝐴̂𝐴𝑐𝑐3 = 1

840 𝑏̂𝑏𝑇𝑇𝐴̂𝐴2𝑐𝑐 = 1
5040 

 

Order               Conditions

The method described herewith is identified as a 
unique DITDRK method. The remarkable aspect of this 
method is it requires just one evaluation of function  f 
and a few evaluations of function g per step compared 
to a number of evaluations of function f per step in the 
conventional RK methods. The following Butcher tableau 
illustrates the significant difference between the DITDRK 
method and the unique DITDRK method. 

Phase-Fitted And Amplification-Fitted Property

The following linear scalar equation is considered, 

(8)

The exact solution with initial value q(t0) = q0 of this 
equation satisfies

(9)

 𝑞𝑞′ = 𝑖𝑖𝑖𝑖𝑖𝑖. (8) 

 

 

 
 

 

𝑐𝑐 𝐴𝐴 𝐴̂𝐴
𝑏𝑏𝑇𝑇 𝑏̂𝑏𝑇𝑇                      𝑐𝑐 𝐴̂𝐴

𝑏̂𝑏𝑇𝑇  

𝑞𝑞(𝑡𝑡0 + 𝛥𝛥𝛥𝛥) = 𝐻𝐻0(𝑧𝑧)𝑞𝑞0, 

where H0(z) = exp (z), z = iv. A phase advance v = 
λΔt is experienced by the exact solution whereby the 
amplification appears to remain stable and secure after a 
cycle of time Δt. 
The DITDRK method is adapted to the test equation (8) 
to yield

(10)

where

(11)

where e = [1, …, 1]T.. 
The stability function of the DITDRK method is 

presented by H(z) which in term of complex number. 
The function is split in terms of the real (denoted 
as U(v)) and imaginary  (denoted as U(v)) part of  
H(z), Further, we have the argument of H(z) or simply  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧) = 𝑡𝑡𝑡𝑡𝑛𝑛−1 (𝑉𝑉(𝑣𝑣)𝑈𝑈(𝑣𝑣))  and the magnitude of H(z) or 
|𝐻𝐻(𝑧𝑧)| = √𝑈𝑈2(𝑣𝑣) + 𝑉𝑉2(𝑣𝑣) for small Δt. According to the 
analysis above, the following definition arises. 

𝑞𝑞1 = 𝐻𝐻(𝑧𝑧)𝑞𝑞0, 

𝐻𝐻(𝑧𝑧) = (1 + 𝑣𝑣2𝑏̂𝑏(𝐼𝐼 − 𝑣𝑣2𝐴̂𝐴)−1𝑒𝑒) + 𝑖𝑖 (𝑣𝑣 + 𝑣𝑣3𝑏̂𝑏(𝐼𝐼 − 𝑣𝑣2𝐴̂𝐴)−1𝑐𝑐), 
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Definition 1 (van der Houwen & Sommeijer (1987)) 
The quantities 

(12)

are defined as the phase lag (or dispersion) and the error 
of amplification factor (or dissipation) of the method, 
respectively. If 

(13)

then, the method is defined as dispersive of order α and 
dissipative of order β, respectively.
 If

(14)

the method is defined as phase-fitted (or zero-dispersive) 
and amplification-fitted (or zero dissipative), respectively. 
Theorem 2 (Chen et al. 2012)
The method is justified as phase-fitted and amplification-
fitted if and only if 

(15)

The local truncation error (LTE), LTE = q (t0+ Δt) = 𝒪𝒪 (Δt 
ζ+1), for any (ζ + 1-th differentiable function g (q), when 
equations (5) and (6) are applied to the first-order ODEs (1). 
Thence, the method is said to have a (algebraic) order ζ. 
Define 

(16)

where τj
(ζ+1) is the error coefficient of the method. The non-

negative number 

(17)

is known as the method’s error constant. 

Derivation Of The New Phase-Fitted And 
Amplification-Fitted Method 

If and only if Theorem 2 is satisfied, then only a DITDRK 
method appeared to be phase-fitted and amplification-fitted. 
Thus, the proposed method is derived by combining the 
DITDRK method with the phase-fitted and amplification-
fitted property proposed in this section. 

First, a fourth-order two stages DITDRK method will 
be derived. Referring to the order conditions in Table 1 up 
to fourth-order, we have 

(18)

(19)

(20)

Solving equation (18)-(20) we obtain 𝑏̂𝑏 1𝑏̂𝑏 2 and c1 in term 
of c2

(21)

(22)

(23)

Our main focus is to choose c1 in such a way that 
a very small value of the principal local truncation error 
coefficient, ‖τ(5)‖2 might be achieved. There will be a 
significant global error difference with an inaccurate 
choice of c1. The graph of ‖τ(5)‖2 against c1 is plotted in 
Figure 1 where a small value of c1 is chosen within the 
range of [0.0,1.0]. Therefore, the value of c1 is between 
[0.1,0.3] with the help of Maple software where we use 
the minimisation command for non-linear functions. For 
simplicity, we have chosen  𝑐𝑐1 =

1
5  for an ideal optimized 

pair by running empirical experiment.

 

 𝑃̃𝑃(𝑣𝑣) = 𝑣𝑣 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧), 𝐷̃𝐷(𝑣𝑣) = 1 − |𝐻𝐻(𝑧𝑧)|, (12) 

 

 𝑃̃𝑃(𝑣𝑣) = 𝑐𝑐𝜙𝜙𝑣𝑣𝛼𝛼+1 + 𝒪𝒪(𝑣𝑣𝛼𝛼+3), 𝐷̃𝐷(𝑣𝑣) = 𝑐𝑐𝑑𝑑𝑣𝑣𝛽𝛽+1 + 𝒪𝒪(𝑣𝑣𝛽𝛽+3), (13) 

 

 𝑃̃𝑃(𝑣𝑣) = 0, 𝐷̃𝐷(𝑣𝑣) = 0, (14) 

 

 

 𝑃̃𝑃(𝑣𝑣) = 𝑣𝑣 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧), 𝐷̃𝐷(𝑣𝑣) = 1 − |𝐻𝐻(𝑧𝑧)|, (12) 

 

 𝑃̃𝑃(𝑣𝑣) = 𝑐𝑐𝜙𝜙𝑣𝑣𝛼𝛼+1 + 𝒪𝒪(𝑣𝑣𝛼𝛼+3), 𝐷̃𝐷(𝑣𝑣) = 𝑐𝑐𝑑𝑑𝑣𝑣𝛽𝛽+1 + 𝒪𝒪(𝑣𝑣𝛽𝛽+3), (13) 

 

 𝑃̃𝑃(𝑣𝑣) = 0, 𝐷̃𝐷(𝑣𝑣) = 0, (14) 

 

 

 𝑃̃𝑃(𝑣𝑣) = 𝑣𝑣 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧), 𝐷̃𝐷(𝑣𝑣) = 1 − |𝐻𝐻(𝑧𝑧)|, (12) 

 

 𝑃̃𝑃(𝑣𝑣) = 𝑐𝑐𝜙𝜙𝑣𝑣𝛼𝛼+1 + 𝒪𝒪(𝑣𝑣𝛼𝛼+3), 𝐷̃𝐷(𝑣𝑣) = 𝑐𝑐𝑑𝑑𝑣𝑣𝛽𝛽+1 + 𝒪𝒪(𝑣𝑣𝛽𝛽+3), (13) 

 

 𝑃̃𝑃(𝑣𝑣) = 0, 𝐷̃𝐷(𝑣𝑣) = 0, (14) 

 

 

 𝑈𝑈(𝑣𝑣) = 𝑐𝑐𝑐𝑐𝑐𝑐 ( 𝑣𝑣), 𝑉𝑉(𝑣𝑣) = 𝑠𝑠𝑠𝑠𝑠𝑠 ( 𝑣𝑣). (15) 

  

 

𝐸𝐸𝐶𝐶𝜁𝜁+1(𝑣𝑣) = (∑(𝜏𝜏𝑗𝑗
(𝜁𝜁+1))

2
𝑗𝑗

𝑖𝑖=1
)

1
2

(16) 

 

 𝐸𝐸𝐶𝐶𝜁𝜁+1 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑣𝑣→0

𝐸𝐸 𝐶𝐶𝜁𝜁+1(𝑣𝑣), (17) 

 

 

 𝑈𝑈(𝑣𝑣) = 𝑐𝑐𝑐𝑐𝑐𝑐 ( 𝑣𝑣), 𝑉𝑉(𝑣𝑣) = 𝑠𝑠𝑠𝑠𝑠𝑠 ( 𝑣𝑣). (15) 

  

 

𝐸𝐸𝐶𝐶𝜁𝜁+1(𝑣𝑣) = (∑(𝜏𝜏𝑗𝑗
(𝜁𝜁+1))

2
𝑗𝑗

𝑖𝑖=1
)

1
2

(16) 

 

 𝐸𝐸𝐶𝐶𝜁𝜁+1 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑣𝑣→0

𝐸𝐸 𝐶𝐶𝜁𝜁+1(𝑣𝑣), (17) 

 

 

 𝑈𝑈(𝑣𝑣) = 𝑐𝑐𝑐𝑐𝑐𝑐 ( 𝑣𝑣), 𝑉𝑉(𝑣𝑣) = 𝑠𝑠𝑠𝑠𝑠𝑠 ( 𝑣𝑣). (15) 

  

 

𝐸𝐸𝐶𝐶𝜁𝜁+1(𝑣𝑣) = (∑(𝜏𝜏𝑗𝑗
(𝜁𝜁+1))

2
𝑗𝑗

𝑖𝑖=1
)

1
2

(16) 

 

 𝐸𝐸𝐶𝐶𝜁𝜁+1 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑣𝑣→0

𝐸𝐸 𝐶𝐶𝜁𝜁+1(𝑣𝑣), (17) 

 

 𝑏̂𝑏1 + 𝑏̂𝑏2 −
1
2 = 0, (18) 

 𝑏̂𝑏1𝑐𝑐1 + 𝑏̂𝑏2𝑐𝑐2 −
1
6 = 0, (19) 

 𝑏̂𝑏1𝑐𝑐12 + 𝑏̂𝑏2𝑐𝑐22 −
1
12 = 0. (20) 

 

 𝑏̂𝑏1 = 1
(36 𝑐𝑐12 − 24 𝑐𝑐1 + 6), (21) 

 
𝑏̂𝑏2 = 1

3(
9 𝑐𝑐12 − 6 𝑐𝑐1 + 1
6 𝑐𝑐12 − 4 𝑐𝑐1 + 1), (22) 

 𝑐𝑐2 = 1
2 (

2 𝑐𝑐1 − 1
3 𝑐𝑐1 − 1). (23) 

 

Figure 1.  The graph of ‖τ(5)‖2 against c1
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Table 2. Butcher Tableau for DITDRK(2,4) Method

The stability function (11) for two stages fourth-order 
DITDRK method is considered. Therefore, by choosing  
𝑎̂𝑎21  and c1 as free parameters, we have 

(24)

We substituted the matrices (24) into H(z) given by 
equation (11) and splitted the complex number of H(z) into 
real and imaginary as mentioned. The free parameters,  𝑎̂𝑎21 
and c1 are taken as the ideal combination for the optimized 
value of the maximum global error. By implementing 
Theorem 2, (15) is solved to get the coefficients of 𝑏̂𝑏 1 and  
c4 and this resulting in 

(25)

sin (v)

(26)

By solving (25) and (26) we will obtain the following

(27)

(28)

TABLE 2. Butcher Tableau for DITDRK(2,4) Method 

1
5

1
50

3
4

209
800

1
50

25
66

4
33

 

 

 

𝐼𝐼 = [1 0
0 1] , 𝑒𝑒 = [11] , 𝑏̂𝑏 = [

25
66
4
33

] , 𝑐𝑐 = [
𝑐𝑐1
3
4
] , 𝐴̂𝐴 = [

1
50
𝑎̂𝑎21

1
50

]. (24) 

 

 

𝐼𝐼 = [1 0
0 1] , 𝑒𝑒 = [11] , 𝑏̂𝑏 = [

25
66
4
33

] , 𝑐𝑐 = [
𝑐𝑐1
3
4
] , 𝐴̂𝐴 = [

1
50
𝑎̂𝑎21

1
50

]. (24) 

 

 

𝐼𝐼 = [1 0
0 1] , 𝑒𝑒 = [11] , 𝑏̂𝑏 = [

25
66
4
33

] , 𝑐𝑐 = [
𝑐𝑐1
3
4
] , 𝐴̂𝐴 = [

1
50
𝑎̂𝑎21

1
50

]. (24) 

 

 

𝐼𝐼 = [1 0
0 1] , 𝑒𝑒 = [11] , 𝑏̂𝑏 = [

25
66
4
33

] , 𝑐𝑐 = [
𝑐𝑐1
3
4
] , 𝐴̂𝐴 = [

1
50
𝑎̂𝑎21

1
50

]. (24) 

 

 

𝐼𝐼 = [1 0
0 1] , 𝑒𝑒 = [11] , 𝑏̂𝑏 = [

25
66
4
33

] , 𝑐𝑐 = [
𝑐𝑐1
3
4
] , 𝐴̂𝐴 = [

1
50
𝑎̂𝑎21

1
50

]. (24) 

 

 

𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) = 1
33 10000 𝑣𝑣4𝑎̂𝑎21 − 792 𝑣𝑣4 − 37950 𝑣𝑣2 + 82500

(𝑣𝑣2 + 50)2 , (25) 

sin (𝑣𝑣)

= 1
33 𝑣𝑣

(10000 𝑣𝑣4𝑎̂𝑎21𝑐𝑐1 − 625 𝑣𝑣4𝑐𝑐1 − 117 𝑣𝑣4 − 31250 𝑣𝑣2𝑐𝑐1 − 4200 𝑣𝑣2 + 82500)
(𝑣𝑣2 + 50)2 . 

(26) 

 

𝑎̂𝑎21

=
(33  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) + 792)𝑣𝑣4 + (3300  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) + 37950)𝑣𝑣2 + 82500  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) − 82500

10000 𝑣𝑣4 ,
(27) 

𝑐𝑐1 = 33  𝑠𝑠𝑠𝑠𝑠𝑠 (𝑣𝑣) 𝑣𝑣2 + 117 𝑣𝑣3 + 1650  𝑠𝑠𝑠𝑠𝑠𝑠 (𝑣𝑣) − 1650 𝑣𝑣
33  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) 𝑣𝑣3 + 167 𝑣𝑣3 + 1650  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) 𝑣𝑣 − 1650 𝑣𝑣. (28) 

 

 

𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) = 1
33 10000 𝑣𝑣4𝑎̂𝑎21 − 792 𝑣𝑣4 − 37950 𝑣𝑣2 + 82500

(𝑣𝑣2 + 50)2 , (25) 

sin (𝑣𝑣)

= 1
33 𝑣𝑣

(10000 𝑣𝑣4𝑎̂𝑎21𝑐𝑐1 − 625 𝑣𝑣4𝑐𝑐1 − 117 𝑣𝑣4 − 31250 𝑣𝑣2𝑐𝑐1 − 4200 𝑣𝑣2 + 82500)
(𝑣𝑣2 + 50)2 . 

(26) 

 

𝑎̂𝑎21

=
(33  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) + 792)𝑣𝑣4 + (3300  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) + 37950)𝑣𝑣2 + 82500  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) − 82500

10000 𝑣𝑣4 ,
(27) 

𝑐𝑐1 = 33  𝑠𝑠𝑠𝑠𝑠𝑠 (𝑣𝑣) 𝑣𝑣2 + 117 𝑣𝑣3 + 1650  𝑠𝑠𝑠𝑠𝑠𝑠 (𝑣𝑣) − 1650 𝑣𝑣
33  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) 𝑣𝑣3 + 167 𝑣𝑣3 + 1650  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) 𝑣𝑣 − 1650 𝑣𝑣. (28) 

 

 

𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) = 1
33 10000 𝑣𝑣4𝑎̂𝑎21 − 792 𝑣𝑣4 − 37950 𝑣𝑣2 + 82500

(𝑣𝑣2 + 50)2 , (25) 

sin (𝑣𝑣)

= 1
33 𝑣𝑣

(10000 𝑣𝑣4𝑎̂𝑎21𝑐𝑐1 − 625 𝑣𝑣4𝑐𝑐1 − 117 𝑣𝑣4 − 31250 𝑣𝑣2𝑐𝑐1 − 4200 𝑣𝑣2 + 82500)
(𝑣𝑣2 + 50)2 . 

(26) 

 

𝑎̂𝑎21

=
(33  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) + 792)𝑣𝑣4 + (3300  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) + 37950)𝑣𝑣2 + 82500  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) − 82500

10000 𝑣𝑣4 ,
(27) 

𝑐𝑐1 = 33  𝑠𝑠𝑠𝑠𝑠𝑠 (𝑣𝑣) 𝑣𝑣2 + 117 𝑣𝑣3 + 1650  𝑠𝑠𝑠𝑠𝑠𝑠 (𝑣𝑣) − 1650 𝑣𝑣
33  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) 𝑣𝑣3 + 167 𝑣𝑣3 + 1650  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) 𝑣𝑣 − 1650 𝑣𝑣. (28) 

 

 

𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) = 1
33 10000 𝑣𝑣4𝑎̂𝑎21 − 792 𝑣𝑣4 − 37950 𝑣𝑣2 + 82500

(𝑣𝑣2 + 50)2 , (25) 

sin (𝑣𝑣)

= 1
33 𝑣𝑣

(10000 𝑣𝑣4𝑎̂𝑎21𝑐𝑐1 − 625 𝑣𝑣4𝑐𝑐1 − 117 𝑣𝑣4 − 31250 𝑣𝑣2𝑐𝑐1 − 4200 𝑣𝑣2 + 82500)
(𝑣𝑣2 + 50)2 . 

(26) 

 

𝑎̂𝑎21

=
(33  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) + 792)𝑣𝑣4 + (3300  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) + 37950)𝑣𝑣2 + 82500  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) − 82500

10000 𝑣𝑣4 ,
(27) 

𝑐𝑐1 = 33  𝑠𝑠𝑠𝑠𝑠𝑠 (𝑣𝑣) 𝑣𝑣2 + 117 𝑣𝑣3 + 1650  𝑠𝑠𝑠𝑠𝑠𝑠 (𝑣𝑣) − 1650 𝑣𝑣
33  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) 𝑣𝑣3 + 167 𝑣𝑣3 + 1650  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) 𝑣𝑣 − 1650 𝑣𝑣. (28) 

 

The following Taylor expansions as v → 0 are obtained 
as follows

The following expansions shall be obtained by direct 
calculation: 

(29)

Subsequently, all of the order conditions till order four 
are satisfied by the coefficients shown in Table 2. But the 
condition for order five was not satisfied. For instance, 

(30)

Therefore, it is a method of order four. The coefficients of 
error of the DITDRK(2,4) for order five are given by

(31)

𝑎̂𝑎21 =
209
800 +

77 𝑣𝑣2
120000 −

781 𝑣𝑣4
6720000 +

803 𝑣𝑣6
604800000 +

59 𝑣𝑣8
7257600000 −

2081 𝑣𝑣10
6604416000000

+⋯, 

𝑐𝑐1 =
1
5 +

11 𝑣𝑣2
3125 + 3476 𝑣𝑣4

41015625 +
13111549 𝑣𝑣6

3691406250000 +
1679796241 𝑣𝑣8

9228515625000000

+ 66016889468987 𝑣𝑣10
6298461914062500000000 +⋯. 

 

𝑏̂𝑏𝑇𝑇𝑒𝑒 = 1
2 ,

𝑏̂𝑏𝑇𝑇𝑐𝑐 = − 5
66 + 825  𝑠𝑠𝑠𝑠𝑠𝑠 (𝑣𝑣) 𝑣𝑣2 + 2925 𝑣𝑣3 + 41250  𝑠𝑠𝑠𝑠𝑠𝑠 (𝑣𝑣) − 41250 𝑣𝑣

2178  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) 𝑣𝑣3 + 11022 𝑣𝑣3 + 108900  𝑐𝑐𝑐𝑐𝑐𝑐 (𝑣𝑣) 𝑣𝑣 − 108900 𝑣𝑣

= 1
6 + 𝒪𝒪(𝑣𝑣),

𝑏̂𝑏𝑇𝑇𝑐𝑐2 = − 1
66 + 25

66 (𝑀𝑀
𝑁𝑁)

2
= 1

12 + 𝒪𝒪(𝑣𝑣). 

(29) 

 

 

 𝑏̂𝑏𝑇𝑇𝑐𝑐3 = 0 ≠ 1
20 + 𝒪𝒪(𝑣𝑣). (30) 

 

 𝜏𝜏1
(5) = 1

240 , 𝜏𝜏2
(5) = 1

750. (31) 

 

 𝐸𝐸𝐶𝐶5 =
1

6000√689. (32) 

 

 

 𝑏̂𝑏𝑇𝑇𝑐𝑐3 = 0 ≠ 1
20 + 𝒪𝒪(𝑣𝑣). (30) 

 

 𝜏𝜏1
(5) = 1

240 , 𝜏𝜏2
(5) = 1

750. (31) 

 

 𝐸𝐸𝐶𝐶5 =
1

6000√689. (32) 

 

The following Butcher tableau represents the coefficients of the method and are referred to as DITDRK(2,4). 
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Therefore, for DITDRK(2,4), we obtain the following

(32)

As we have proven that this newly derived method is 
fourth-order, it is therefore known as PFAFDITDRK(2,4). 
The error coefficients of PFAFDITDRK(2,4) are given by

(33)

For PFAFDITDRK(2,4), we have

(34)

where M = 33(v) v2 + 117 v3 + 1650 sin (v)-1650 v, N = 
33 cos (v) v3 + 167 v3 + 1650 cos (v) v - 1650 v, P =33 cos 
(v) v4 + 792 v4 + 3300 cos(v) v2 + 37950 v2 + 82500 cos 
(v) - 82500.  
PFAFDITDRK(2,4) will reduce to its actual method, 
DITDRK(2,4) as v → 0. Apart from that, PFAFDITDRK(2,4) 

will have the identical error constant as DITDRK(2,4) as 
v → 0.

STABILITY AND CONVERGENCE OF THE NEW METHOD 

The linear stability of the method being developed is 
analysed in this section. Applying equation (8) to the 
DITDRK method produces the difference equation 

(35)

where H(z) is given as (11). 
Definition 3 A DITDRK method is said to be absolutely 
stable if |H(z)|<1 for all z∈(-v,0). The stability polynomial 
of the PFAFDITDRK(2,4) method is shown as follows. 

(36)

We plot and compare the region of stability of the 
PFAFDITDRK(2,4) method up to vi, i = 6,8,14 and its actual 
method as in Figure 2.

 

 𝑏̂𝑏𝑇𝑇𝑐𝑐3 = 0 ≠ 1
20 + 𝒪𝒪(𝑣𝑣). (30) 

 

 𝜏𝜏1
(5) = 1

240 , 𝜏𝜏2
(5) = 1

750. (31) 

 

 𝐸𝐸𝐶𝐶5 =
1

6000√689. (32) 

 

 
𝜏𝜏1
(5) = 1

880 +
25
66 (

𝑀𝑀
𝑁𝑁)

3
,

𝜏𝜏2
(5) = ( 1

132 +
1

82500 𝑣𝑣4) (
𝑀𝑀𝑀𝑀
𝑁𝑁 ) − 43

6600 .
 (33) 

 

 𝐸𝐸𝐶𝐶5(𝑣𝑣) = ( 1
108900000000 𝑁𝑁6 (15625000000 𝑀𝑀6 + 93750000 (𝑀𝑀𝑀𝑀)3

+ 6250000 (𝑀𝑀𝑀𝑀2)2 − 10750000 𝑀𝑀𝑁𝑁5 + 4763125 𝑁𝑁6)

+ 1
108900000000 𝑁𝑁6𝑣𝑣4 (20000 (𝑀𝑀𝑀𝑀2)2𝑃𝑃 − 17200 𝑀𝑀𝑁𝑁5𝑃𝑃)

+ 1
6806250000 𝑣𝑣8 (

𝑀𝑀𝑀𝑀
𝑁𝑁 )

2
)
1
2
,

(34) 

 

 

 𝑞𝑞𝑛𝑛+1 = 𝐻𝐻(𝑧𝑧)𝑞𝑞𝑛𝑛, 𝑧𝑧 = 𝑖𝑖𝑖𝑖, 𝑖𝑖2 = −1, (35) 

 

𝐻𝐻(𝑣𝑣) = 1
49883818359375000000000 (𝑣𝑣2 − 50)2 (56936760886197823 𝑣𝑣

15

− 4763031005859375 𝑣𝑣14 + 1022777450921523750 𝑣𝑣13 + 

122886657714843750 𝑣𝑣12 + 17921737015284375000 𝑣𝑣11 + 

20070098876953125000 𝑣𝑣10 + 105179969425781250000 𝑣𝑣9

− 1756820983886718750000 𝑣𝑣8 + 

9699631347656250000000 𝑣𝑣6 + 590291850585937500000000 𝑣𝑣5 + 

2751923979492187500000000 𝑣𝑣4 + 15796542480468750000000000 𝑣𝑣3 + 

57366391113281250000000000 𝑣𝑣2 + 124709545898437500000000000 𝑣𝑣 + 

 124709545898437500000000000 +⋯).  
 

(36) 

 

 

 𝑞𝑞𝑛𝑛+1 = 𝐻𝐻(𝑧𝑧)𝑞𝑞𝑛𝑛, 𝑧𝑧 = 𝑖𝑖𝑖𝑖, 𝑖𝑖2 = −1, (35) 

 

𝐻𝐻(𝑣𝑣) = 1
49883818359375000000000 (𝑣𝑣2 − 50)2 (56936760886197823 𝑣𝑣

15

− 4763031005859375 𝑣𝑣14 + 1022777450921523750 𝑣𝑣13 + 

122886657714843750 𝑣𝑣12 + 17921737015284375000 𝑣𝑣11 + 

20070098876953125000 𝑣𝑣10 + 105179969425781250000 𝑣𝑣9

− 1756820983886718750000 𝑣𝑣8 + 

9699631347656250000000 𝑣𝑣6 + 590291850585937500000000 𝑣𝑣5 + 

2751923979492187500000000 𝑣𝑣4 + 15796542480468750000000000 𝑣𝑣3 + 

57366391113281250000000000 𝑣𝑣2 + 124709545898437500000000000 𝑣𝑣 + 

 124709545898437500000000000 +⋯).  
 

(36) 

 

Figure 2. Stability region of PFAFDITDRK(2,4) method for different order
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The stability interval with the coefficients v6, v8 
and v12 of this method are (-2.843,0.000), (-2.837,0.000) 
and (-2.833,0.000), respectively. The stability regions in 
Figure 2 is observed and as the coefficients order tends to 
infinity, the stability interval becomes further away from 
the original method where it is given by (-3.347,0.000). 

Through the stability interval, we can literally 
consider the largest value of Δt the method could take to 
ensure it will remain stable. v = λΔt is mentioned earlier 
and the test problems represents the value of λ. Therefore, 
the value of Δt is obtained by dividing v with λ. The 
stability test as following would illustrate on how the 
regions of stability are used for practical purposes. We have 

given that φ(t) is a smooth function. Letting  λ = -1, φ(t) 
= sin (t) and q(t) = φ(t) is the exact solution. 

Stability of the method can be achieved once the 
maximum global error is small enough and therefore 
converging to its exact solution. Instead of that, a larger 
maximum global error indicates that the method is 
unstable, meaning that they are actually diverging from 
its exact solution. The stability test will be conducted to 
demonstrate the connection between Δt, λ and |H(z)|. 
When Δt = 4.15, the stability is achieved whereby this is 
the largest value of  Δt can be used to ensure the method 
remain stable in this particular test for stability. Table 3 
represents the global error for a variety of Δt values. 

𝑞𝑞′ = 𝜆𝜆(𝑞𝑞 − 𝜑𝜑) + 𝜑𝜑′, 𝑞𝑞(0) = 𝜑𝜑(0), 𝑅𝑅𝑅𝑅(𝜆𝜆) < 0, 𝑡𝑡 ∈ [0,2000], 

 

𝑞𝑞′ = 𝜆𝜆(𝑞𝑞 − 𝜑𝜑) + 𝜑𝜑′, 𝑞𝑞(0) = 𝜑𝜑(0), 𝑅𝑅𝑅𝑅(𝜆𝜆) < 0, 𝑡𝑡 ∈ [0,2000], 

 

𝑞𝑞′ = 𝜆𝜆(𝑞𝑞 − 𝜑𝜑) + 𝜑𝜑′, 𝑞𝑞(0) = 𝜑𝜑(0), 𝑅𝑅𝑅𝑅(𝜆𝜆) < 0, 𝑡𝑡 ∈ [0,2000], 

 

𝑞𝑞′ = 𝜆𝜆(𝑞𝑞 − 𝜑𝜑) + 𝜑𝜑′, 𝑞𝑞(0) = 𝜑𝜑(0), 𝑅𝑅𝑅𝑅(𝜆𝜆) < 0, 𝑡𝑡 ∈ [0,2000], 

 

Table 3.  Stability test for PFAFDITDRK(2,4) using coefficient of v8 with λ = -1 for variable Δt 

                 Δt              |H(z)| Global Error

3.20 2.399948118 1.729241 ×10236

3.00 1.496894148 5.112085 × 10114

2.83 0.9808945284 4.720623 × 100

1.00 0.3650531765 1.836955 × 10(-3)

0.15 0.8607077753 5.005154 × 10(-7)

0.01 0.9900498337 9.473644 × 10(-12)

Definition 4  (Henrici, 1962)
The numerical method with order p is zero stable if 
numerical solutions remain bounded in the limit Δt → 
0, with the modulus of roots for the first characteristic 
polynomial are less than or equal to zero. 

In studying the zero stability of the DITDRK method, 
the characteristic polynomial of method (5)-(6) is:
  
                                     p (ξ ) = (ξ - 1)                          (37)

Hence, the method is zero stable since the roots, ξ = 1  are 
less than or equal to one.

Definition 5  (Suli & Mayers 2003)
The method is consistent with the order at least p if and 
only if local truncational error, Tp+1 = 𝒪𝒪 (Δt p+1 )  as Δt → 0. 
Consider DITDRK methods in the class as follow:

(38)

On putting s = 1, then

(39)

 
∑ 𝛿𝛿𝑗𝑗𝑞𝑞𝑛𝑛+𝑗𝑗 = Δ𝑡𝑡𝛾𝛾𝑗𝑗𝑓𝑓𝑛𝑛+𝑗𝑗 + Δ𝑡𝑡2𝜙𝜙𝜙𝜙(

𝑠𝑠

𝑗𝑗=0
𝑞𝑞𝑛𝑛+𝑘𝑘, 𝑞𝑞𝑛𝑛+𝑘𝑘−1, … , 𝑞𝑞𝑛𝑛, 𝑡𝑡𝑛𝑛; Δ𝑡𝑡2). (38) 

 

 
𝛿𝛿1 = 1, 𝛿𝛿0 = −1, 𝛾𝛾0 = 1, 𝜙𝜙𝜙𝜙(𝑞𝑞𝑛𝑛, 𝑡𝑡𝑛𝑛; Δ𝑡𝑡2) = ∑ 𝑏̂𝑏𝑖𝑖

𝑠𝑠

𝑖𝑖=1
𝑄𝑄𝑖𝑖,

𝑄𝑄𝑖𝑖 = 𝑞𝑞𝑛𝑛 + 𝛥𝛥𝛥𝛥𝑐𝑐𝑖𝑖𝑓𝑓(𝑡𝑡𝑛𝑛, 𝑞𝑞𝑛𝑛) + 𝛥𝛥𝛥𝛥2 ∑ 𝑎̂𝑎𝑖𝑖𝑖𝑖

𝑖𝑖

𝑗𝑗=1
𝑔𝑔(𝑡𝑡𝑛𝑛 + 𝛥𝛥𝛥𝛥𝑐𝑐𝑗𝑗, 𝑄𝑄𝑗𝑗),

(39) 

 

 
∑ 𝛿𝛿𝑗𝑗 = 0,

𝑠𝑠

𝑗𝑗=0
 ∑(𝑗𝑗𝑗𝑗𝑗𝑗 − 𝛾𝛾𝑗𝑗) = 0,

𝑠𝑠

𝑗𝑗=0

𝜙𝜙𝜙𝜙(𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑞𝑞(𝑡𝑡𝑛𝑛), … , 𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑡𝑡𝑛𝑛; 0)
∑ 𝑗𝑗𝑗𝑗𝑗𝑗,𝑠𝑠

𝑗𝑗=0
= 𝑔𝑔(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)).

(40) 

 

 
∑ 𝛿𝛿𝑗𝑗𝑞𝑞𝑛𝑛+𝑗𝑗 = Δ𝑡𝑡𝛾𝛾𝑗𝑗𝑓𝑓𝑛𝑛+𝑗𝑗 + Δ𝑡𝑡2𝜙𝜙𝜙𝜙(

𝑠𝑠

𝑗𝑗=0
𝑞𝑞𝑛𝑛+𝑘𝑘, 𝑞𝑞𝑛𝑛+𝑘𝑘−1, … , 𝑞𝑞𝑛𝑛, 𝑡𝑡𝑛𝑛; Δ𝑡𝑡2). (38) 

 

 
𝛿𝛿1 = 1, 𝛿𝛿0 = −1, 𝛾𝛾0 = 1, 𝜙𝜙𝜙𝜙(𝑞𝑞𝑛𝑛, 𝑡𝑡𝑛𝑛; Δ𝑡𝑡2) = ∑ 𝑏̂𝑏𝑖𝑖

𝑠𝑠

𝑖𝑖=1
𝑄𝑄𝑖𝑖,

𝑄𝑄𝑖𝑖 = 𝑞𝑞𝑛𝑛 + 𝛥𝛥𝛥𝛥𝑐𝑐𝑖𝑖𝑓𝑓(𝑡𝑡𝑛𝑛, 𝑞𝑞𝑛𝑛) + 𝛥𝛥𝛥𝛥2 ∑ 𝑎̂𝑎𝑖𝑖𝑖𝑖

𝑖𝑖

𝑗𝑗=1
𝑔𝑔(𝑡𝑡𝑛𝑛 + 𝛥𝛥𝛥𝛥𝑐𝑐𝑗𝑗, 𝑄𝑄𝑗𝑗),

(39) 

 

 
∑ 𝛿𝛿𝑗𝑗 = 0,

𝑠𝑠

𝑗𝑗=0
 ∑(𝑗𝑗𝑗𝑗𝑗𝑗 − 𝛾𝛾𝑗𝑗) = 0,

𝑠𝑠

𝑗𝑗=0

𝜙𝜙𝜙𝜙(𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑞𝑞(𝑡𝑡𝑛𝑛), … , 𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑡𝑡𝑛𝑛; 0)
∑ 𝑗𝑗𝑗𝑗𝑗𝑗,𝑠𝑠

𝑗𝑗=0
= 𝑔𝑔(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)).

(40) 
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where i = 1, …, s. 
The condition for (39) to be consistent are 

(40)

Applying the conditions (40), the necessary and sufficient 
condition for DITDRK methods to acquire consistency is

(41)

Here, local truncation error, Tn+1 at tn+1  at is expressed as 

the residual when qn+j is replaced by q(tn+j) which is

(42)

where ϕg is defined in (39). Assuming that p is the largest 
integer whereby Tn+1 = 𝒪𝒪 (Δt p+1 ), then the method has 
order p (Lambert 1991). We denote by 𝑞̃𝑞 n+1 the value at  
tn+1 generated by DITDRK method when the localising 
assumption, qn = q (tn)  is made. Since

(43)

Then we have

(43)

DITDRK method is consistent if they follow (41) such that

(44)

By reason of f’ ‘ (tn ) = g (tn, q (tn )), Tn+1  for DITDRK method 
is equal to 𝒪𝒪 (Δt3 ), it shows that DITDRK method is 
consistent if their order is at least 2, which is in line with 
our definitions of order for linear multistep methods. Since 
the order of DITDRK method is at least 2, and hence, this 
method is consistent.

Convergence is a property of numerical method 
related to truncation errors that ensures the numerical 
solution converges onto the exact solution and the global 
truncation error goes to zero at all step size indices in 

the limit  Δt → 0 (Atkinson 2009). Maximum absolute 
global truncation error between the analytical solution 
and numerical solution the gets smaller as the step size 
becomes lesser.
Definition 6 (Lambert 1991)
The numerical method is convergent if acquiring the 
properties of zero stability and consistency.

Since DITDRK method is zero-stable and consistent, 
implies that DITDRK method is convergent.

PROBLEMS TESTED AND NUMERICAL RESULTS

The derived method PFAFDITDRK(2,4) are compared in 
term of their numerical performances with some famous 
existing RK and TDRK methods by considering 
Problems 1-5 as follows. C Programming codes are used 
for solving differential equations where all the problems 
chosen are having oscillatory solutions. 
Problem 1 (Harmonic Oscillator) 

Exact solution is 

Total energy as given in Pokorny (2009)

where Ψ depends on the initial conditions. 
Problem 2 (Inhomogeneous problem (Van de Vyver 
2007))

Exact solution is 

Problem 3 (An almost Periodic Orbit problem (Stiefel & 
Bettis 1969)) 

 
∑ 𝛿𝛿𝑗𝑗𝑞𝑞𝑛𝑛+𝑗𝑗 = Δ𝑡𝑡𝛾𝛾𝑗𝑗𝑓𝑓𝑛𝑛+𝑗𝑗 + Δ𝑡𝑡2𝜙𝜙𝜙𝜙(

𝑠𝑠

𝑗𝑗=0
𝑞𝑞𝑛𝑛+𝑘𝑘, 𝑞𝑞𝑛𝑛+𝑘𝑘−1, … , 𝑞𝑞𝑛𝑛, 𝑡𝑡𝑛𝑛; Δ𝑡𝑡2). (38) 

 

 
𝛿𝛿1 = 1, 𝛿𝛿0 = −1, 𝛾𝛾0 = 1, 𝜙𝜙𝜙𝜙(𝑞𝑞𝑛𝑛, 𝑡𝑡𝑛𝑛; Δ𝑡𝑡2) = ∑ 𝑏̂𝑏𝑖𝑖

𝑠𝑠

𝑖𝑖=1
𝑄𝑄𝑖𝑖,

𝑄𝑄𝑖𝑖 = 𝑞𝑞𝑛𝑛 + 𝛥𝛥𝛥𝛥𝑐𝑐𝑖𝑖𝑓𝑓(𝑡𝑡𝑛𝑛, 𝑞𝑞𝑛𝑛) + 𝛥𝛥𝛥𝛥2 ∑ 𝑎̂𝑎𝑖𝑖𝑖𝑖

𝑖𝑖

𝑗𝑗=1
𝑔𝑔(𝑡𝑡𝑛𝑛 + 𝛥𝛥𝛥𝛥𝑐𝑐𝑗𝑗, 𝑄𝑄𝑗𝑗),

(39) 

 

 
∑ 𝛿𝛿𝑗𝑗 = 0,

𝑠𝑠

𝑗𝑗=0
 ∑(𝑗𝑗𝑗𝑗𝑗𝑗 − 𝛾𝛾𝑗𝑗) = 0,

𝑠𝑠

𝑗𝑗=0

𝜙𝜙𝜙𝜙(𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑞𝑞(𝑡𝑡𝑛𝑛), … , 𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑡𝑡𝑛𝑛; 0)
∑ 𝑗𝑗𝑗𝑗𝑗𝑗,𝑠𝑠

𝑗𝑗=0
= 𝑔𝑔(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)).

(40) 

 

 
𝜙𝜙𝜙𝜙(𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑡𝑡𝑛𝑛; 0) = 𝑔𝑔(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) ⇔ ∑ 𝑏̂𝑏𝑖𝑖 = 1

2 
𝑠𝑠

𝑖𝑖=0
. (41) 

 

 𝑇𝑇𝑛𝑛+1 = 𝑞𝑞(𝑡𝑡𝑛𝑛+1) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) − [𝑞𝑞(𝑡𝑡𝑛𝑛) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛+1, 𝑞𝑞(𝑡𝑡𝑛𝑛+1))]

− 𝛥𝛥𝛥𝛥2𝜙𝜙𝜙𝜙(𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑡𝑡𝑛𝑛; 𝛥𝛥𝛥𝛥2),
(42) 

 

 𝑞̃𝑞𝑛𝑛+1 = 𝑞𝑞𝑛𝑛 + 𝛥𝛥𝛥𝛥𝛥𝛥(𝑡𝑡𝑛𝑛, 𝑞𝑞𝑛𝑛) + 𝛥𝛥𝛥𝛥2𝜙𝜙𝜙𝜙(𝑞𝑞𝑛𝑛, 𝑡𝑡𝑛𝑛; 𝛥𝛥𝛥𝛥2). (43) 

 

 𝑞𝑞(𝑡𝑡𝑛𝑛+1) − 𝑞̃𝑞𝑛𝑛+1 = 𝑇𝑇𝑛𝑛+1. (43) 

 

 𝑞𝑞(𝑡𝑡𝑛𝑛+1) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) − [𝑞𝑞(𝑡𝑡𝑛𝑛) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛+1, 𝑞𝑞(𝑡𝑡𝑛𝑛+1))]

= 𝛥𝛥𝛥𝛥2

2 𝑓𝑓′(𝑡𝑡𝑛𝑛) − 𝛥𝛥𝛥𝛥2

2 𝑔𝑔(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) + 𝒪𝒪(Δ𝑡𝑡3)
(44) 

 

 
𝜙𝜙𝜙𝜙(𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑡𝑡𝑛𝑛; 0) = 𝑔𝑔(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) ⇔ ∑ 𝑏̂𝑏𝑖𝑖 = 1

2 
𝑠𝑠

𝑖𝑖=0
. (41) 

 

 𝑇𝑇𝑛𝑛+1 = 𝑞𝑞(𝑡𝑡𝑛𝑛+1) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) − [𝑞𝑞(𝑡𝑡𝑛𝑛) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛+1, 𝑞𝑞(𝑡𝑡𝑛𝑛+1))]

− 𝛥𝛥𝛥𝛥2𝜙𝜙𝜙𝜙(𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑡𝑡𝑛𝑛; 𝛥𝛥𝛥𝛥2),
(42) 

 

 𝑞̃𝑞𝑛𝑛+1 = 𝑞𝑞𝑛𝑛 + 𝛥𝛥𝛥𝛥𝛥𝛥(𝑡𝑡𝑛𝑛, 𝑞𝑞𝑛𝑛) + 𝛥𝛥𝛥𝛥2𝜙𝜙𝜙𝜙(𝑞𝑞𝑛𝑛, 𝑡𝑡𝑛𝑛; 𝛥𝛥𝛥𝛥2). (43) 

 

 𝑞𝑞(𝑡𝑡𝑛𝑛+1) − 𝑞̃𝑞𝑛𝑛+1 = 𝑇𝑇𝑛𝑛+1. (43) 

 

 𝑞𝑞(𝑡𝑡𝑛𝑛+1) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) − [𝑞𝑞(𝑡𝑡𝑛𝑛) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛+1, 𝑞𝑞(𝑡𝑡𝑛𝑛+1))]

= 𝛥𝛥𝛥𝛥2

2 𝑓𝑓′(𝑡𝑡𝑛𝑛) − 𝛥𝛥𝛥𝛥2

2 𝑔𝑔(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) + 𝒪𝒪(Δ𝑡𝑡3)
(44) 

 

 
𝜙𝜙𝜙𝜙(𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑡𝑡𝑛𝑛; 0) = 𝑔𝑔(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) ⇔ ∑ 𝑏̂𝑏𝑖𝑖 = 1

2 
𝑠𝑠

𝑖𝑖=0
. (41) 

 

 𝑇𝑇𝑛𝑛+1 = 𝑞𝑞(𝑡𝑡𝑛𝑛+1) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) − [𝑞𝑞(𝑡𝑡𝑛𝑛) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛+1, 𝑞𝑞(𝑡𝑡𝑛𝑛+1))]

− 𝛥𝛥𝛥𝛥2𝜙𝜙𝜙𝜙(𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑡𝑡𝑛𝑛; 𝛥𝛥𝛥𝛥2),
(42) 

 

 𝑞̃𝑞𝑛𝑛+1 = 𝑞𝑞𝑛𝑛 + 𝛥𝛥𝛥𝛥𝛥𝛥(𝑡𝑡𝑛𝑛, 𝑞𝑞𝑛𝑛) + 𝛥𝛥𝛥𝛥2𝜙𝜙𝜙𝜙(𝑞𝑞𝑛𝑛, 𝑡𝑡𝑛𝑛; 𝛥𝛥𝛥𝛥2). (43) 

 

 𝑞𝑞(𝑡𝑡𝑛𝑛+1) − 𝑞̃𝑞𝑛𝑛+1 = 𝑇𝑇𝑛𝑛+1. (43) 

 

 𝑞𝑞(𝑡𝑡𝑛𝑛+1) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) − [𝑞𝑞(𝑡𝑡𝑛𝑛) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛+1, 𝑞𝑞(𝑡𝑡𝑛𝑛+1))]

= 𝛥𝛥𝛥𝛥2

2 𝑓𝑓′(𝑡𝑡𝑛𝑛) − 𝛥𝛥𝛥𝛥2

2 𝑔𝑔(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) + 𝒪𝒪(Δ𝑡𝑡3)
(44) 

 

 
𝜙𝜙𝜙𝜙(𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑡𝑡𝑛𝑛; 0) = 𝑔𝑔(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) ⇔ ∑ 𝑏̂𝑏𝑖𝑖 = 1

2 
𝑠𝑠

𝑖𝑖=0
. (41) 

 

 𝑇𝑇𝑛𝑛+1 = 𝑞𝑞(𝑡𝑡𝑛𝑛+1) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛, 𝑞𝑞(𝑡𝑡𝑛𝑛)) − [𝑞𝑞(𝑡𝑡𝑛𝑛) + 𝛥𝛥𝛥𝛥𝑓𝑓(𝑡𝑡𝑛𝑛+1, 𝑞𝑞(𝑡𝑡𝑛𝑛+1))]

− 𝛥𝛥𝛥𝛥2𝜙𝜙𝜙𝜙(𝑞𝑞(𝑡𝑡𝑛𝑛), 𝑡𝑡𝑛𝑛; 𝛥𝛥𝛥𝛥2),
(42) 
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2 
𝑠𝑠

𝑖𝑖=0
. (41) 
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𝑞𝑞1
′(𝑡𝑡) = 𝑞𝑞2(𝑡𝑡), 𝑞𝑞1(0) = 𝑞𝑞01, 𝑡𝑡 ∈ [0, 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒],

𝑞𝑞2
′(𝑡𝑡) = −𝜔𝜔2𝑞𝑞1(𝑡𝑡), 𝑞𝑞2(0) = 𝑞𝑞02. 

Exact solution is  

𝑞𝑞1(𝑡𝑡) = 𝑐̄𝑐1 sin ( 𝜔𝜔𝜔𝜔) + 𝑐̄𝑐2 cos ( 𝜔𝜔𝜔𝜔), 𝑞𝑞2(𝑡𝑡) = 𝑐̄𝑐3𝜔𝜔 cos ( 𝜔𝜔𝜔𝜔) − 𝑐̄𝑐4𝜔𝜔 sin ( 𝜔𝜔𝜔𝜔). 
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Total energy as given in Pokorny (2009) 

𝐸𝐸(𝑞𝑞1, 𝑞𝑞2) = 𝑞𝑞1
2

2 + 𝑞𝑞2
2

2 = 𝛹𝛹2
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𝑞𝑞1
′(𝑡𝑡) = 𝑞𝑞2(𝑡𝑡), 𝑞𝑞1(0) = 𝑞𝑞01, 𝑡𝑡 ∈ [0, 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒],

𝑞𝑞2
′(𝑡𝑡) = −𝜔𝜔2𝑞𝑞1(𝑡𝑡), 𝑞𝑞2(0) = 𝑞𝑞02. 
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Problem 2 (Inhomogeneous problem (Van de Vyver 2007)) 

𝑞𝑞1
′ = 𝑞𝑞2, 𝑞𝑞1(0) = 1, 𝑡𝑡 ∈ [0,1000],

𝑞𝑞2
′ = −100𝑞𝑞1 + 99 sin ( 𝑡𝑡), 𝑞𝑞2(0) = 11. 

Exact solution is  

𝑞𝑞1(𝑡𝑡) = cos ( 10𝑡𝑡) + sin ( 10𝑡𝑡) + sin ( 𝑡𝑡), 

𝑞𝑞2(𝑡𝑡) = −10 sin ( 10𝑡𝑡) + 10 cos ( 10𝑡𝑡) + cos ( 𝑡𝑡). 

 

Problem 2 (Inhomogeneous problem (Van de Vyver 2007)) 

𝑞𝑞1
′ = 𝑞𝑞2, 𝑞𝑞1(0) = 1, 𝑡𝑡 ∈ [0,1000],

𝑞𝑞2
′ = −100𝑞𝑞1 + 99 sin ( 𝑡𝑡), 𝑞𝑞2(0) = 11. 

Exact solution is  

𝑞𝑞1(𝑡𝑡) = cos ( 10𝑡𝑡) + sin ( 10𝑡𝑡) + sin ( 𝑡𝑡), 

𝑞𝑞2(𝑡𝑡) = −10 sin ( 10𝑡𝑡) + 10 cos ( 10𝑡𝑡) + cos ( 𝑡𝑡). 
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Exact solution is 

q1(t) = cos (t) + 0.0005t sin (t), q2(t) = - sin (t) + 0.0005t  
cos (t) + 0.0005t sin (t),
q3(t) = sin  (t) - 0.0005t  cos  (t), q4(t) = cos t) + 0.0005t  
sin (t)-0.0005 cos (t).

Problem 4 (Duffing problem (Kosti et al. 2012b)

q1’ = q2, q1 (0) = 0.200426728067,
q2’ = - q1 - q1

3 + 0.002 cos (1.01t), q2 (0) = 0, t∈ [0,1000].

Exact solution is 

q1(t) = 0.200179477536 cos (1.01t) + 2.46946143 × 10-4  
cos (3.03t) + 3.04014 × 10-7 cos (5.05t) + 3.74 × 10-10 cos 
( 7.07t),

q2(t) = - 0.2021812723 sin (1.01t) - 7.482468133 × 10-4 
sin (3.03t) -1.53527070 × 10-6 sin (5.05t) - 2.64418 × 10-9 
sin (7.07t).

Problem 5 (Prothero-Robinson problem Chan & Tsai 2010) 

q’ = λ (q-φ) + φ’, q (0) = φ (0), Re (λ) < 0, t∈[0,1000], 

where φ(t) is a smooth function and taking λ = - 1, φ(t) 
= sin (t). 
Exact solution is q (t) = φ(t). 

Figures 3-18 used the following abbreviations. 
PFAFDITDRK(2,4): Fourth-order two stages phase-fitted 
and amplification-fitted DITDRK method proposed in 
this paper. TFDIRKK(3,4): Fourth-order three stages 
trigonometrically-fitted DIRK method developed in 
Kalogiratou (2013). PFAFDIRKA(3,4): Fourth-order 
three stages phase-fitted and amplification-fitted DIRK 
method given by Ahmad et al. (2016). EFDIRKE(3,4): 
Fourth-order three stages exponentially-fitted DIRK 
method given in Ehigie et al. (2018). 
Figures 3-18 represents the behaviour of these numerical 
results in graphics form.  

𝑞𝑞1
′ = 𝑞𝑞2, 𝑞𝑞1(0) = 1, 𝑡𝑡 ∈ [0,1000],

𝑞𝑞2
′ = −𝑞𝑞1 + 0.001 cos ( 𝑡𝑡), 𝑞𝑞2(0) = 0,

𝑞𝑞3
′ = 𝑞𝑞4, 𝑞𝑞3(0) = 0,

𝑞𝑞4
′ = −𝑞𝑞3 + 0.001 sin ( 𝑡𝑡), 𝑞𝑞4(0) = 0.9995. 

 

Figure 3. (Conservation of Energy). The logarithm error of energy 
(Global Error) when solving the harmonic oscillator (Problem 1) at 

each integration point for ω = 8, q01 = 1, q02 = -2 and Δt = 1/20
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Figure 4. The error when solving the harmonic oscillator (Problem 
1) at each integration point where ω = 8, q01 = 1, q02 = -2 and Δt = 1/20

Figure 5. The global error when solving the inhomogeneous 
problem (Problem 2) at each integration point where Δt = 1/20

Figure 6. The global error when solving the almost periodic 
problem (Problem 3) at each integration point where Δt=1/2
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Figure 8.  The global error when solving the Prothero-Robinson 
problem (Problem 5) at each integration point where Δt = 1/20

Figure 9. The curve for the harmonic oscillator (Problem 1) with 
λ = 8, Δt = 1.0/2i, i = 5,…, 9 with tend = 1000

Figure 7. The global error when solving the Duffing problem 
(Problem 4) at each integration point where Δt = 1/2 
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Figure 10. The curve for the harmonic oscillator (Problem 1) with 
λ = 8, Δt = 1.0/2i, i  = 5,…, 9 with tend = 1000

Figure 11. The curve for the inhomogeneous problem (Problem 2) 
with time step Δt = 1.0/2i, i  = 7, …,11

Figure 12.The curve for the inhomogeneous problem (Problem 2) 
with time step  Δt = 1.0/2i, i  = 7, …,11
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Figure 15. The curve for the Duffing problem (Problem 4) with 
time step Δt = 1.0/2i, i  = 3, …, 7

Figure 14. The curve for the almost periodic problem (Problem 3) 
with time step Δt = 1.0/2i, i  = 5, …, 9

Figure 13. The curve for the almost periodic problem (Problem 3) 
with time step Δt = 1.0/2i, i  = 5, …, 9
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Figure 16. The curve for the Duffing problem (Problem 4) with 
time step Δt = 1.0/2i, i  = 3, …, 7

Figure 17. The curve for the Prothero-Robinson problem 
(Problem 5) with time step Δt = 1.0/2i, i  = 1, …, 5

Figure 18. The curve for the Prothero-Robinson problem 
(Problem 5) with time step Δt = 1.0/2i, i  = 1, …, 5
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Discussion

The numerical results has shown the standard properties 
of the proposed phase-fitted and amplification-fitted 
DITDRK method, PFAFDITDRK(2,4) which was obtained 
earlier. Several well-known existing RK methods are 
chosen as the comparison with the proposed method. The 
energy error at every integration point can be seen in Figure 
3. Conservation of energy is succeeded by the phase-
fitted and amplification-fitted DITDRK method when it 
experienced smaller amount of energy error compared to 
TFDIRKK(3,4), PFAFDIRKA(3,4) and EFDIRKE(3,4). The 
log number of global error against the time of integration 
for different time step,  are plotted for distinct problems as 
shown in Figures 4-8. From Figures 4-7, it is identified that 
global error developed by the PFAFDITDRK(2,4) method 
is smaller compared to TFDIRKK(3,4), PFAFDIRKA(3,4) 
and EFDIRKE(3,4). Meanwhile in Figure 8, the global 
error between PFAFDITDRK(2,4) and PFAFDIRKA(3,4) 
are rather close between one another but still the proposed 
method has the smallest global error. 

Next, a long period of integration of the global error 
and the efficiency of the method are plotted. The log of 
the maximum global error versus the logarithm number 
of function evaluations and CPU time is plotted as given 
in Figures 9-18 to show the accuracy of the designed 
method. From Figures 9-18, the global error produced 
by PFAFDITDRK(2,4) method is smaller compared to the 
same order existing RK methods. In Figures 12, 14 and 
16, PFAFDITDRK(2,4) takes longer CPU time compared to 
other existing RK methods due to its method complexity 
which is caused by the existence of the extra g to be 
evaluated at every step. In Figure 17, at the beginning of 
the graph, PFAFDITDRK(2,4) has slightly bigger maximum 
global error compared to PFAFDIRKA(3,4). As the value 
of Δt decreases, PFAFDITDRK(2,4) has smaller maximum 
global error compared to PFAFDIRKA(3,4). From Figures 
9-18, it can be seen that PFAFDITDRK(2,4) method has 
the smallest maximum global error and the least amount 
of function evaluations per step. 

One of the disadvantages of the derived method is 
that it is not suitable for solving stiff oscillatory or highly 
oscillatory problems which required the need of P-stable 
or strongly stable method. Therefore, we suggested that in 
the future work, the derivation of P-stable PFAFDITDRK 
is considered when one tries to solve stiff oscillatory or 
highly oscillatory problems.

Based on the phase-fitted and amplification-fitted 
property, the fitted property works well in solving linear 
problems but is not suitable in solving non-linear problems. 

Hence, we did not include non-linear problem in the 
problems tested.

Conclusion

In this area of study, a fourth-order phase-fitted and 
amplification-fitted DITDRK method of has been proposed. 
Based on the numerical experiments, we can simplified 
that the proposed PFAFDITDRK(2,4) method is more 
promising than any of the other well-known existing 
DIRK methods with trigonometrically-fitted and phase-
fitted and amplification-fitted property in terms of 
efficiency and accuracy as well as the number of function 
evaluations per step. 
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