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Outlier Detection in 2 × 2 Crossover Design using Bayesian Framework
(Pengesanan Titik Terpencil dalam 2 × 2 Reka Bentuk Pindah Silang Menggunakan Rangka Kerja Bayesian)
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ABSTRACT

We consider the problem of outlier detection method in 2×2 crossover design via Bayesian framework. We study the problem 
of outlier detection in bivariate data fitted using generalized linear model in Bayesian framework used by Nawama. We 
adapt their work into a 2×2 crossover design. In Bayesian framework, we assume that the random subject effect and 
the errors to be generated from normal distributions. However, the outlying subjects come from normal distribution 
with different variance. Due to the complexity of the resulting joint posterior distribution, we obtain the information 
on the posterior distribution from samples by using Markov Chain Monte Carlo sampling. We use two real data sets to 
illustrate the implementation of the method. 
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ABSTRAK

Kami mengambil kira masalah kaedah pengesanan nilai terpencil dalam kajian pindah silang 2×2 melalui rangka 
kerja Bayesian. Kami mengkaji masalah pengesanan titik tersisih bagi data bivariat yang disuaikan dengan model 
linear teritlak dalam rangka kerja Bayesian yang digunakan oleh Nawama. Kami menyesuaikan kerja-kerja tersebut 
ke dalam 2×2 kajian pindah silang. Dalam rangka kerja Bayesian, kami menganggap bahawa kesan subjek rawak dan 
ralat akan dijana daripada taburan normal. Walau bagaimanapun, nilai terpencil pula tertabur normal dengan varians 
yang berbeza. Disebabkan taburan posterior tercantum yang kompleks, kami mendapatkan maklumat mengenai taburan 
posterior daripada sampel yang dijana melalui pensampelan Markov Chain Monte Carlo (MCMC). Kami menggunakan 
dua set data sebenar untuk menggambarkan pelaksanaan kaedah tersebut.

Kata kunci: Bayesian; Markov Chain Monte Carlo; reka bentuk pindah silang; titik terpencil

INTRODUCTION

In a standard 2×2 crossover design, we assume that there 
are two different groups of subjects. Each group receives 
two treatments in a different order and the trial is to last for 
two treatment periods, with the order of treatments reversed 
in the second period. A common problem in crossover trials 
is the occurrence of extremely large or small observations. 
These extraordinary observations are called outliers and 
they may influence the conclusion drawn from the data set. 
An outlier is a data point which is significantly different 
from the remaining data (Aggarwal 2013). Hawkins (1980) 
formally defined the concept of outlier as an observation 
which deviates so much from the other observations as 
to arouse suspicions that it was generated by a different 
mechanism.
	 Chow and Tse (1990) proposed two procedures based 
on Cook’s likelihood distance and the estimated distance 
for the detection of outliers in crossover studies. Liu and 
Weng (1991) carried out procedures based on Hotelling 
T2 statistics and residuals for the same purpose. Wang and 
Chow (2003) presented a general test procedure based on a 
mean-shift model. Furthermore, Ramsay and Elkum (2005) 
compared different outlier detection methods proposed 
by Chow and Tse (1990) and Liu and Weng (1991) via 

simulation study. They concluded that the estimated 
distance test performs better than other tests. Most recently, 
Karasoy and Daghan (2012) applied these existing methods 
to a real data set in order to investigate outliers. In crossover 
studies, Enachescu and Enachescu (2009) initially used 
principal components for the identification of outliers. 
Meanwhile, Singh et al. (2014) provided details regarding a 
studentized residual test and the Lund test for identification 
of outlier subjects. It is therefore important that methods of 
identifying outliers in 2×2 crossover design are developed 
for proper handling of the data in studies. 
	 Lim et al. (2016) carried out two outlier detection 
procedures based on residuals in non-Bayesian framework. 
Under a simplified model of 2×2 crossover design, we 
present a classical calculation of studentized residual and 
propose a new studentized residual using median absolute 
deviation to identify possible outliers. The performances 
of both procedures are compared via simulation. With 
the availability of data set provided by the University of 
Malaya Medical Centre (UMMC), the results showed that 
the procedure using performs better in detecting outliers. 
In this study, we extend our previous works and consider 
the problem of outlier detection method in 2×2 crossover 
design via Bayesian framework. We study the problem of 
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outlier detection in bivariate data fitted using generalized 
linear model (GLM) in Bayesian framework presented by 
Nawama et al. (2015) and Unnikrishnan (2010). We follow 
closely their works but adapt them into a 2×2 crossover 
design. In Bayesian framework, we assume that the random 
subject effect and the errors to be generated from normal 
distributions. However, the outlying subjects come from 
normal distribution with different variance. Due to the 
complexity of the resulting joint posterior distribution, we 
obtain the information on the posterior distribution from 
samples by using Markov Chain Monte Carlo (MCMC) 
sampling. The paper is organized as follows: The concept 
of standard 2×2 crossover design is described in the 
next section; two real data sets and the application and 
implementation of the outlier detection using Bayesian 
approach to these data set are discussed in detail in the 
following sections where we consider the case of single 
outlier; the conclusions are given in the final section. 

THE 2 × 2 CROSSOVER DESIGN

Let Yijk be the response of the th subject in sequence i during 
period j under the d[i, j]th treatment, where i, j = 1,2; mi is 
the size of group with treatment d[i, j] and k = 1,2,…, mi. 
From Jones and Kenward (1989), the full model is 

	 Yijk = μ + pj + τd[i,j] + λd[i, j–1] + Sik + eijk	  	 (1)

where μ is the overall mean; pj the fixed effect of the jth 
period; τd[i, j] the fixed effect of the treatment administered 
in period j of sequence i; λd[i, j–1] is the fixed effect of the 
carryover of the treatment administered in period j – 1 
of sequence i where λ[i,0] = 0, Sik is the random effect of 
the th subject; and eijk the random error. The variance 
components  {Sik} and {eijk} are assumed to be independent 
and normally distributed with mean 0 and variances  and 

, respectively. 

DATA DESCRIPTION

There are two data sets considered for this study: Clayton 
and Leslie’s data (1981) and kinesiology data. For the 
first data set, Clayton and Leslie (1981) considered the 
blood concentration-time curve (AUC) data from two 
erythromycin formulations in a bioavailability study. 
In their study, a standard 2×2 crossover experiment 
was conducted with 18 subjects to compare a new 
erythromycin formulation (erythromycin stearate) with a 
reference formulation (erythromycin base). As no sequence 
identification of each subject was provided in Clayton 
and Leslie (1981), we adapt the order of periods given in 
Weiner (1989) and assign subject 1 through 9 to sequence 
1 and the remaining subjects to sequence 2.
	 For the second data set, kinesiology comes from the 
Greek word kinesis, which means motion. In the medical 
sciences, it is the name given to the study of muscles and the 
movement of the body, the mechanics of body movements. 
Kinesiology data for this study are obtained from UMMC 
Sport Medicine Clinic. The UMMC is a government-funded 

medical institution located in Petaling Jaya, southwest 
corner of Kuala Lumpur, which was established in 1962. 
A two period crossover and randomized placebo-controlled 
trial of AB (treatment followed by sham taping)/BA (placebo 
followed by treatment taping) design is conducted. There 
are 77 subjects, from eighty-one subjects volunteered, 
completed the study (AB = 37, BA = 40) which observed 
a minimum washout period of one week. Pre and post 
measurements of peak oxygen consumption or peak 
(in mL/kg/min) recorded from a six-minute A strand 
submaximal cycling exercise test conducted at least one 
week apart. peak is mainly used to gauge cardiorespiratory 
fitness of an individual.
	 Since there is none of the musculoskeletal outcome 
measures demonstrated convincing association with 
kinesiotape (KT) use, we therefore propose to investigate 
the effect of KT on the VO2 peak. Thus far, no study has 
explored the effect of KT on measurements of VO2 peak.

THE MODEL

Under the full model (1), for case without outliers, the 
expected value of yijk is

	 E(yijk) = E(μ + pj + τd[i, j] + λd[i, j–1] + Sik + eijk)

		  = μ + pj + τd[i, j] + λd[i, j–1] 

while the variance of yijk is

	 Var(yijk) = Var(μ + pj + λd[i, j–1] + Sik + eijk)

		  = Var (Sik) + Var(eijk) =    + .

Hence,

	 yijk ~ N (μ + pj + τd[i, j] + λd[i, j–1],  + ).

	 On the other hand, for the case with outliers, the 
variance component {Sik} is assumed to be independent 
and normally distributed with mean 0 and variances δ2 . 
Therefore, 

	 yijk ~ N (μ + pj + τd[i, j] + λd[i, j–1], δ
2  + ).

	 Assume that a random sample size n = ∑ mi of is 
obtained with a number of suspected outliers. Define 
yijk = (y111, y112, …, y11n). Let vh be the set of all outlying 
observations, where h denotes the number of outliers. We 
consider the model with/without outliers such that

	 f (yijk|μ, pj, τd[i, j], λd[i, j–1], δ)

	

	
	 (2) 
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	 Using the Bayesian approach, we consider normal 
prior distributions for the overall mean, μ, the period 
effect, pj, the treatment effect, τd[i, j], and the carryover 
effect, λd[i, j–1], as suggested by Chen and Huang (2015). 
For the parameter δ, Unnikrishnan (2010) assume that this 
extra variance component of the outlying observations is 
bounded above by a known constant δmax, so that 1 < δ < 
δmax < ∞ and therefore Uniform(1, δmax) prior is assigned 
to it. According to the suggestions in Unnikrishnan (2010), 
we shall assume that any distinct -tuples are equally likely 
to be outliers and prior for vh assigns equal probability of 

 In other words, we assume that 

	 µ ~ N(µ0, )

	 pj ~ N(µp, ),    = 1, 2

	 τd[i, j] ~ N(µτ, ),    i = 1, 2;   j = 1, 2

	 λd[i, j–1] ~ N(µλ, )

	 δ ~ Uni form (1, δmax)

	 p(vh|h) =  	  (3) 

where the hyperparameters μ0, , μp, , uτ, , uλ, , 
δmax, N, h are all pre-specified. Then, the joint likelihood 
function is given by 

	 L(y|μ, p, τ, λ, δ, vh)

	

		   

(4) 

	 Consequently, from the result obtain in (3) and (4), 
the full joint posterior distribution for the parameters μ, p, 
τ, λ, δ, vh is given by 

	 f (μ, p, τ, λ, δ, vh|y)

	

		
		

	

	

 		
 
 	

		

 (5) 

	 Since this posterior distribution is intractable, 
sampling is carried out using the MCMC sampling method, 
in particular using Metropolis-Hastings (MH) algorithm 
(Tierney 1994). 

SAMPLING METHODS OF THE PARAMETERS

Note that model (2) involves multiple parameters that are 
structured hierarchically such that the dependency of the 
parameters is reflected in the joint probability distribution. 
The conditional posterior distributions of the parameters 
are intractable and therefore we use the MH algorithm for 
sampling purposes. The sampling methods for each of the 
parameters μ, p, τ, λ, δ, vh are given in detail as below.

PARAMETER δ 

Based on the full joint posterior distribution (5), the 
conditional posterior distribution for parameter given is 
given by

	 f (δ|μ, p, τ, λ, vh)

	

Here we propose to use a proposal density for δprop as

	 g(δ) =  

so that δprop has a uniform (1, δmax) distribution. Using 
the MH algorithm, candidate point δprop is accepted with 
probability
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	 α(δ, δprop) = min 
p, τ, λ,

p, τ, λ,
	  	

	 (6)

	 The full formula of the acceptance probability above 
is easily obtained by substituting the relevant functions 
into this equation.

PARAMETER μ

Based on the full joint posterior distribution (5), the 
conditional posterior distribution for parameter μ given  
p, τ, λ, δ, vh is given by

	 f (μ | p, τ, λ, δ, vh)

	
 

 

Here, we introduce a function ωk where

	 	 (7)

so that 

	 f (μ|p, τ, λ, δ, vh)

	
)

)

	
 
 
 

	 Here we choose the proposal density for µprop as 

g(µ) =   so that µprop has a N(µ0, ) 

distribution. Using the MH algorithm, the acceptance 
probability for candidate point µprop then can be obtained 
by replacing the corresponding functions in (6).

PARAMETER p 

Based on the full joint posterior distribution (5), the 
conditional posterior distribution for parameter pj, j = 1, 
2, given µ, τ, λ, δ, vh is given by

	 fj(pj | µ, τ, λ, δ, vh, p)

	

	

 
 
 

We use the function ωk as defined in equation (7) so that

	 fj(pj | µ, τ, λ, δ, vh, p)

 
 

	

	 Here we propose to use a proposal density for pj as 

gj(pj) =  Therefore, by using MH 

algorithm, for parameter p, we update p1 first and followed 
by p2, where for each pj, the acceptance probability for 
candidate point pjprop can be obtained by replacing the 
corresponding functions in (6).

PARAMETER τ

Based on the full joint posterior distribution (5), the 
conditional posterior distribution for parameter τd[i,j], i, j, 
= 1, 2, given μ, p, λ, δ, vh is given by

	 fd[i,j](τd[i,j] | μ, p, λ, δ, vh, τ)
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	 )

)

)

 	
	
 
 
 

We use the function ωt as defined in equation (7) so that

	 fd[i,j](τd[i,j] | μ, p, λ, δ, vh, τ)

	

	 Here we propose to use a proposal density for as 
Therefore, by using MH algorithm, for parameter , we 
update and one by one, where for each , the acceptance 
probability for candidate point can be obtained by replacing 
the corresponding functions in (6).

PARAMETER λ

Based on the full joint posterior distribution (5), the 
conditional posterior distribution for parameter λd[i, j–1],  
i, j = 1, 2, given μ, p, τ, δ, vh is given by

	 fd[i, j–1](λd[i, j–1] | μ, p, τ, δ, vh, λ)

	
	

)

)

) 

 
 

We use the function ωt as defined in equation (7) so that

	 fd[i, j–1](λd[i, j–1] | μ, p, τ, δ, vh, λ)

 

 

	

	 Here we propose to use a proposal density for λd[i,j–1] 

as gd[i, j–1](λd[i, j–1]) =  Therefore, 

by using MH algorithm, for parameter λ, we have λ10 = λ20 
= 0 and update λ11 and λ21 one by one, where for each λd[i, 

j–1], the acceptance probability for candidate point λd[i, j–1]prop 
can be obtained by replacing the corresponding functions 
in (6).

PARAMETER vh

Based on the full joint posterior distribution (5), the 
conditional posterior distribution for parameter vh given 
µ, p, τ, λ, δ is given by

	 f (vh | µ, p, τ, λ, δ)

	

 
 

	 For the case of h = 1, we let v1 = v = {v1}. To find a 
new value of v1, we select a unit at random from vc, say 
vprop. If the proposal is accepted, then v1 goes out and vprop  
replace the value v1 as the current outlier. Then, using MH 
algorithm, this state is accepted with probability

	

	 (8)

RESULTS AND DISCUSSION

The method as described in the previous section is now 
applied to Clayton and Leslie’s data (1981) and kinesiology 
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data. The values of μ0, μπ, μτ and μλ equal to 0 while the 
values of  and  equal to 1000; these 
values are suggested by Chen and Huang (2015), and δmax 

equals to 10.
	 Using Clayton and Leslie’s data (1981), we run the 
method for 1000 iterations, with a burn-in of 500. We 
are especially interested in estimating the probability of 
a subject being an outlier. The probability of subject 𝑖 
being an outlier in this model can be estimated using the 
proportion of iterations that v = {i}. Figure 1 shows the 
estimated probability of being an outlier for subjects 1 
to 18. Given that there is one outlier, subject 11 (blood 
concentration are 7.14 μg.h/mL and 9.83 μg.h/mL, 
respectively, in period 1 and period 2) has the highest 
probability of being an outlier with the probability of 
approximately 0.30. As can be seen, subject 11 (that 
is, subject 2 from group 2) have high value of blood 
concentration in period 2 compared to their means (3.51 
μg.h/mL in group 1 and 4.72 μg.h/mL in group 2) indicating 
the subject 11 is candidate to be outliers. Note that subject 
11 is one of the outlier, identified by the procedure using 
SR2 as described in Lim et al. (2016) with non-Bayesian 
framework.
	 The kinesiology data of peak oxygen consumption 
or VO2 peak also is used as illustration in this section. 
However, only 74 subjects who completed the study (AB = 

37, BA = 37) are included for analyses. We run the method 
for 10000 iterations, with a burn-in of 5000. With the same 
interest as in the previous section, Figure 2 shows the 
estimated probability of being an outlier for subjects 1 to 
74 using the proportion of iterations that v = {i}. Given that 
there is one outlier, subject 50 has the highest probability 
of being an outlier with the probability of approximately 
0.32. This is likely because for subject 50 (that is, subject 
13 from group 2), the VO2 is unusually large in the data set 
for period 1. Therefore, we may conclude that subject 13 
from group 2 is likely an outlier. Note that subject 50 is one 
of the outliers identified by the procedures using SR1 and 
SR2 as described in Lim et al. (2016) with non-Bayesian 
framework.

CONCLUSION

In this chapter, we have considered the problem of detecting 
outlier using Bayesian approach in 2 × 2 crossover design. 
We have shown that with the chosen prior distributions for 
the parameter, we can obtain the information from samples 
generated by MCMC sampling, in particular using the MH 
algorithm. When applied to both Clayton and Leslie’s data 
(1981) and kinesiology data, this method is able to detect 
an unusual large observation as being an outlier with the 
highest probability as compared to the other observations. 

FIGURE 2. Kinesiology data: Probability for an observation being outlier

FIGURE 1. Clayton and Leslie’s data: Probability for an observation being outlier
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