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ABSTRAK

As the class of fractional differential equations with changing order has attracted more attention and attention in the 
fields of research and engineering, it is important to study its numerical solutions. Numerical solution algorithm for 
a class of fractional differential equations with transformed arrays based on the proposed symmetry algorithm. The 
symmetry classification is used for the class of values of the boundary problem of the fractional differential equation with 
the order of change. A fully symmetric classification of the boundary value problem for a class of fractional differential 
equations with variable sequences is determined by using a fully symmetric differential sequence sorting algorithm. The 
problem of the boundary value of the fractional differential equation with the transformed order is reduced to the initial 
value of the ordinary differential equation. The Legendre polynomial method is used to solve the numerical solution 
of the starting value of the differential equation. The common differential equation is transformed into a matrix series 
product by a different operator matrix. The matrix products are converted to algebraic equations by discrete variables. 
By solving the equations, the numerical solution of the starting value of the common differential equation is obtained.

Keywords: Boundary value problem; differential equation; numerical solution; operator matrix; symmetric algorithm; 
variable fractional order

ABSTRAK

Oleh kerana kelas persamaan pembezaan pecahan dengan susunan berubah telah menarik banyak perhatian dan perhatian 
dalam bidang penyelidikan dan kejuruteraan, ia amat penting untuk mengkaji penyelesaian berangkanya. Algoritma 
penyelesaian berangka untuk kelas persamaan pembezaan pecahan dengan transformasi tatasusunan berdasarkan 
algoritma simetri yang dicadangkan. Pengelasan simetri digunakan untuk nilai kelas masalah sempadan persamaan 
pembezaan pecahan dengan susunan berubah. Pengelasan simetrik sepenuhnya masalah nilai sempadan untuk kelas 
persamaan pembezaan pecahan dengan jujukan pemboleh ubah ditentukan dengan menggunakan algoritma pengisihan 
jujukan pembezaan simetrik sepenuhnya. Masalah nilai sempadan persamaan pembezaan pecahan dengan peringkat 
berubah dikurangkan kepada masalah nilai awal persamaan pembezaan biasa. Kaedah polinomial Legendre digunakan 
untuk menyelesaikan penyelesaian berangka masalah nilai permulaan persamaan pembezaan. Persamaan pembezaan 
biasa diubah menjadi produk siri matriks oleh pengendali matriks lain. Produk matriks ditukar kepada persamaan 
algebra oleh variat diskret. Dengan menyelesaikan persamaan, penyelesaian berangka nilai permulaan persamaan 
pembezaan biasa diperoleh.

Kata kunci: Algoritma simetri; masalah nilai sempadan; matriks pengendali; penyelesaian berangka; peringkat pecahan 
berubah; persamaan pembezaan

INTRODUCTION

Fractional calculus is a part of the theory of calculus of 
arbitrary real order (Bhrawy & Zaky 2016). Fractional 
calculus equation refers to the equation containing non-
integer derivatives. Its advantage is that this model can 
form a mathematical model with fewer parameters and 
describe the memory and inheritance of materials in a 
larger frequency range (Wang et al. 2017). However, 
classical integer differential equation is difficult to describe 
these properties. The computational theory of fractional 
calculus has not only become an academic hot topic in the 
field of mathematics, but also the research of fractional 
differential equations in various research fields, optical, 

thermal systems and rheology and materials as well as 
mechanical systems, signal processing and even It is the 
system knowledge and other industries that have carried 
out more in-depth exploration of this research (Zúñiga-
Aguilar et al. 2017). The theory of fractional calculus has 
attracted more and more attention from scholars at home 
and abroad. Especially the fractional differential equation 
abstracted from practical problems has become a research 
hotspot for many mathematicians. In recent years, more 
first-line scholars have found that many variables in the 
dynamic process appear fractional order, which can change 
with time and space (Bhrawy & Zaky 2015). More and 
more facts show that variable fractional order computation 
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the mathematical system is constructed for the analysis 
of complex dynamics (Yu et al. 2016). The definition of 
variable order operator has been gradually developed in 
recent years, and its emergence has brought new paradigms 
in the field of fractional order research.
	 In 1873, Lie, a Norwegian mathematician, first put 
forward the symmetry theory of differential equations 
in order to unify and expand various methods of solving 
ordinary differential equations (Zhang et al. 2017). The 
so-called symmetry refers to the continuous transformation 
group of single parameters acting on the Variable space so 
that differential equation does not change (Danca 2015). 
Symmetric classification is one of the challenging problems 
in symmetric algorithms. As a new application of Wu’s 
method in differential field, Temur Chaolu proposed a fully 
symmetrical differential characteristic sequence algorithm 
for differential equation classification (Liu et al. 2015). 
The theory overcomes the shortcomings of traditional Lie 
algorithm, makes the determination and classification of 
symmetry more systematic and direct, thus expanding the 
application scope of symmetrical algorithm.
	 In this paper, a numerical solution algorithm for a 
class of fractional differential equations with variable order 
based on symmetric algorithm is proposed. A symmetric 
algorithm is used to calculate the Boundary Value 
Problem (hereinafter referred to as BVP) of non-variable 
fractional differential equations, so that the complete 
symmetric classification is determined. The reduced value 
of the classified boundary value is obtained to obtain the 
initial value of the ordinary differential equation, and the 
numerical solution of the initial value is obtained.

NUMERICAL SOLUTION OF A CLASS OF FRACTIONAL 
DIFFERENTIAL EQUATION WITH VARIABLE ORDER 

BASED ON SYMMETRIC ALGORITHMS

DEFINITION OF VARIABLE ORDER FRACTIONAL CALCULUS

Definition of Variable Fractional Integral of Riemann-
Liouville Type

	
	

 	 (1)

Definition of Riemann-Liouville Type of Fractional 
Differential with Variable Order

	

(2)

where t > 0, m is a positive integer and u(t) is a continuous 
differentiable function. If the α(t) = c(constant), then the 
definition becomes the definition of Riemann-Liouville 
type of fractional integral and reciprocal, which have 
properties for any differentiable function u(t):

	 	 (3)

Definition of Fractional Differential with Variable Order 
of Captuo Type

 (4)

where 0 < α(t) ≤ 1. If α(t) = c(constant), the definition edge 
becomes the Captuo definition of fractional reciprocal. 
If the initial conditions are good enough, the following 
definitions can be obtained:

	
(5)

The property is:

	 Dα(t)c = 0	 (6)

	

	 	 (7)

SYMMETRIC CLASSIFICATION

A fractional differential equation with variable order and 
parameter θ is referred to:

	 Δ(θ; x, u) = 0	 (8)

whereas x ∈ Rn(n ≥ 1) is an independent variable and  is a 
dependent variable, let Gθ be all the symmetries allowed 
by (8) when θ goes through its definition domain, which 
is called the global symmetry of (8). The problem of 
determining all parameters θ and the corresponding global 
matrix Gθ is called the symmetric classification problem 
of the fractional differential equation with variable order 
of the function. If the classification is exhaustive, it is 
called the complete symmetric classification problem 
(El-Sayed & Agarwal 2019; Rossi & Topp 2016). For all 
parameters θ, the symmetry of (8) is called the principal 
symmetry of (8) (Bauer et al. 2015), which is denoted as 
Gθ. Therefore, for a parameter value , there is G0 ⊆ Gθ  
as a set of symmetric transformations. When there is  
≠ G0 for a parameter value , we call  an extended 
symmetry of G0.
	 The problem of symmetric classification not only has 
its theoretical significance, but also has strong practical 
significance. Many differential equations describing 
mathematical and physical problems contain parameters 
that are difficult to determine experimentally and 
experientially. However, practical problems require that the 
solutions of these parameters and equations be determined 



	 	 2809

under certain conditions, such as symmetry. Generally, 
these parameters appear in tables and graphics (Baeumer 
et al. 2015). They play the role of arbitrary parameters in 
the continuous equation describing the problem, so when 
solving BVP of a class of fractional differential equation 
with variable order by using symmetric classification 
algorithm, it can determine different symmetries according 
to different parameters, and use these symmetries to make 
different reductions to the studied BVP.

APPLICATION OF SYMMETRIC CLASSIFICATION TO BVP 
OF A CLASS OF FRACTIONAL DIFFERENTIAL EQUATION              

WITH VARIABLE ORDER

The governing equation considering the BVP is:
	
	 ux + vy = 0	 (9)

	 uux + vuy = uyy + S(x)w	 (10)

	 	 (11)

The boundary adjustment is as follows:

v(x, 0) = B1(x), u(x,0) = B1(x), 

u(x,0) = B3(x), u(x, ∞) = 0	 (12)

	 w(x, 0) = B4(x), wy(x, 0) = B5(x), w(x, ∞) = 0	 (13)

where the function Bi(x)(i = 1, 2, 3, 4, 5) is then determined 
by the invariance of the boundary conditions under 
symmetry (Shao & Chen 2015).

Firstly, it needs to define a stream function ψ:
 				  
	 u = ψy,  v = –ψx	 (14)

	 Then, (9) satisfies naturally, therefore, the governing 
equation can be written as follows:

	 ψyψxy – ψxψyy = ψyyy + S(x)w	 (15)

	 	 (16)

The corresponding boundary conditions become:

	 ψx(x,0) = –B1(x), ψy(x,0) = β2(x), 

	 ψyy(x,0) = B3(x), ψy(x,∞) = 0	 (17)

	 w(x, 0) = B4(x), wy(x, 0) = B5(x), w(x, ∞) = 0	 (18)

Fully Symmetric Classification of BVP for Determining 
Fractional Differential Equation with Variable Order
Assuming that the infinitesimal vectors corresponding to 
the symmetry of fractional differential (15) and (16) with 
variable order are:

	

		  	 (19)

where, ξ(x, y, ψ w), τ(x, y, ψ, w), η(x, y, ψ, w) and φ(x, y, 
ψ,w) are called infinitesimal generating functions of the 
symmetry.

Generation of Deterministic Equation with Parameter S(x) 
According to LIE algorithm, the symmetrical deterministic 
(15) and (16) can be obtained by using the arithmetic of 
generating deterministic equations, that is, the system DPS 
composed of DPS = 0 of differential polynomial system:

	

	 (20)

Determination of the Principal Symmetry
If S(x) is an arbitrary function, the deterministic system
DPS = 0 is further decomposed into DPS0 = 0, where:

	

	 (21)

	 By solving the system of (21), it can get zero set 
(DCS0), that is to say, the principal symmetric infinitesimal 
generating function.

	 ξ = 0, τ = τ(x), η = c, ϕ = 0	 (22)

where c is an arbitrary constant and τ(x) is an arbitrary 
function of x. By introducing (22) into (19), the principal 
symmetry is obtained.

	 	 (23)

Determination of Extended Symmetry
Under the basic order x p y p ψ p w, the following zero 
decomposition is obtained according to the differential 
characteristic set algorithm of fully symmetric classification 
for determining the differential equations with parameters.

	 zero(DPS) = zero(DCS1/I) U zero(DCS2, I)	 (24)
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where:

DCS1 = {ηw, ηψ, ηy, ηx, ϕ, ξ, τw, τψ, τy},

	

	 It can easily get zero(DCS0) = zero(DCS1/I). By solving 
the classification equation I = 0, it can get:

	 zero(I) = {S(x) = ex, xn(n ≠ 0)}	 (25)

	 The feature column set corresponding to parameter 
S(x) is shown in Table 1.

Reduced BVP

The first extended symmetry (26) is used to reduce the BVP 
(15) - (18). The characteristic equation of symmetry (26) is:

	 	 (28)

Invariants can be obtained from the equation :

	 	 (29)

where F(x) is a function expressed by f(x). The same 
principle can be obtained from the characteristic equation:

	 	 (30)

	 By introducing (30) into (15) and (16), ordinary 
differential equation can be obtained.

	 	 (31)

	 According to the invariance theorem of BVP for 
fractional differential equations with variable order, it can 
be seen that (Harko & Liang 2016), boundary condition 
(17) and (18) are invariant under the extension of symmetry 
(26). Therefore, there are:

	 	 (32)

 

	
	 (33)

	 	 (34)

	 	 (35)

where  and  are infinitesimal vectors of the first and 
second order continuations of symmetric X1, respectively, 
and can be deduced from the invariance theorem of BVP 
for fractional differential equation with variable order:

	
(36)

TABLE 1. Characteristic set

S(x) Characteristic set
ex DCS2

xn DCS2

TABLE 2. Infinitesimal vector

S(x) Infinitesimal vector

∀

ex

xn

	 Therefore, according to the different parameters of 
S(x), zero(DCS2, I) is solved and the following classification 
results are obtained (Cozzi & Passalacqua 2016):

When S(x) = ex, there is  

	 	 (26)

When S(x) = xn, n ≠ 0, there are

	
	

(27)

where a and b are arbitrary constants and f (x) is arbitrary 
function. The final classification results are shown in 
Table 2.
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	 	 (37)

 does not appear because  is in the expression 

of second-order continuation  (Pan et al. 2017). Thus, 
the functions B1(x), B2(x), B3(x),  B4(x) and B5(x) can be 
determined by the relation (32) - (34), that is:

	 , , , 

	 , 		  (38)

where b1, b2, b3,  b4 and b5 are arbitrary constants.

In order to take  F(x) = 0 for corresponding boundary 
condition (17), (18), there are:

	 When y = 0, ξ = 0; when y → ∞, ξ → ∞ 	 (39)

	 According to the boundary conditions (17), (18) and 
the relation (30), the initial conditions are obtained.

s(0)= –6b1, s´(0) = b2, s˝(0) = b3, g(0) = b3, 

g(0) = b4, g´(0) = b5, s´(∞) = 0, g(∞) = 0	 (40)

LEGENDRE POLYNOMIAL METHOD FOR SOLVING 
INITIAL VALUE PROBLEMS OF A CLASS OF FRACTIONAL 

DIFFERENTIAL EQUATION WITH VARIABLE ORDER

Definition and Properties of Legendre Polynomials

Definition 1 The Legendre polynomial defined on [0,1] is:

	 	 (41)

where P0(t) = 1, P1(t) = 2t – 1, the analytical form of 
Legendre polynomial  Pi(t) of order i can be expressed as:

	 	 (42)

Define:

	 Φ(t) = [P0(t), P1(t), L, Pn(t)]
T	 (43)

Then Φ(t) can be expressed as follows:

	 Φ(t) = ATn(t)	 (44)

where

(45)

A–1 is reversible, therefore:

	 Tn(t) = A–1Φ(t)	 (46)

	 The square integrable function f(t) defined on interval   
[0,1] can be expanded by Legendre polynomial, usually 
only the first n + 1 term is considered:

	 	 (47)

	 The coefficient is c = [c0, c1, L, cn]
T, and the coefficient 

can be determined by inner product (Carrillo et al. 2015), 
that is:
 
	 c = Q–1(f, Φ(t))	 (48)

where Q is a matrix of (n+1) ×(n+1) orders. Q is called 
the inner product matrix of Φ(t), and Q can be calculated 
by the following equation:

	

	 	 (49)

where H is a Hilbert matrix, that is:

	 	 (50)

	

	 For the second-order function u(x,t)∈L2([0,1]×[0,1]), 
the Legendre polynomial approximation is still used.

	 	 (51)

where



2812	

	

		  (52)

U can be determined by the inner product, i.e.

	 U = Q–1(Φ(x), (Φ(t), u(x, t)))Q–1	 (53)

Operator Matrix of Legendre Polynomial
Let , the first derivative of can be obtained as 
follows:

	 Φ´(t) = DΦ(t)	 (54)

where D is the (n+1)×(n+1) - order matrix, which is called 
the first-order differential operator matrix of Legendre 
polynomial. It can be obtained from (46):

	 	 (55)

	 The following forms of (n+1)×n-order matrix V(n+1)×n 
and n×1-dimensional vector   are defined as:

		

	 	 (56)

By expanding  in the form of Φ(t), it can get:

	  = B*Φ(t)	 (57)

where

	 	 (58)

Here  represents the k th row of A–1, therefore:

	 Φ´(t) = AV(n+1)×nB
*Φ(t)	 (59)

	 In this way, the first order differential operator matrix 
of Legendre polynomials can be expressed as:

	 D = AV(n+1)×nB
*	 (60)

Therefore, we can get 

	 	 (61)

	 According to Captuo definition and properties of 
fractional derivatives, it can get:

	

	 (62)

	
	

		  (63)

N is called the fractional differential operator matrix of 
Legendre polynomials. Therefore, there are:

	 	 (64)

Let , and c2 be calculated by (50). By using 
Caputo definition (Zhang et al. 2015) of variable order 
differential, it can get:

	

(65)



	 	 2813

	
	

(66)

M is called fractional operator matrix of Dα(t)(u(t)g(t)) part, 
therefore, it can be obtained:

	 	 (67)

	 Equations (61), (64), (67) are introduced drag-in the 
initial equation, in the original equation can be transformed 
into:

	 	 (68)

	 The unknown coefficient c1 can be obtained by discrete 
variable t, and then the approximate numerical solution of 
the initial value problem for a class of fractional differential 
equation with variable order can be obtained.

	 	 (69)

RESULTS

In order to verify the performance advantages of the 
proposed numerical solution algorithm for a class of 
fractional differential equation with variable order 
based on symmetric algorithm, the experiment is carried 
out to solve the variable order fractional differential 
equation   .

 

is taken. Exact solution is u(t) = t. When n = 2 is taken, 

the discrete variable  ki = 1,2right), and  c1 = 

[0 – 1.25×10–16 1]T is obtained. Therefore, the numerical 
solution is u(t) = Φ(t), where Φ(t) = [(1–t)2 (1–t)t t2]T, 
and the algebraic expression of the numerical solution 
is u(t) = –1.25×10–16(1–t)t+t2. Absolute errors between 
numerical solutions and exact solutions are obtained when 
n = 2, n = 3 and n = 4, respectively, in Figures 1 - 3.
	 Analysis of Figures 1 - 3 show that when n is 2, 3, 
and 4, respectively, the numerical solution obtained by the 
proposed algorithm is basically consistent with the exact 
solution. It is shown that the algorithm presented in this 
paper is very effective in solving numerical solutions of 
fractional differential equation with variable order. At the 
same time, the algorithm is compared with the numerical 
solution algorithm of a class of fractional differential 
equation with variable order based on wavelet method 
and a class of fractional differential equation with variable 
order based on non-linear term variable sign. The accuracy 

FIGURE 1. Absolute error between numerical solution 
and exact solution when n=2

FIGURE 2. Absolute error between numerical solution 
and exact solution when n=3

FIGURE 3. Absolute error between numerical solution 
and exact solution when n=3
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of different algorithms is compared and the results are 
shown in Table 3.
	 As can be seen from Table 3, the mean count value 
error obtained by the proposed algorithm is 0.00004425.25, 
the mean count value error obtained by the algorithm based 
on wavelet method is 0.002494168, and the mean count 
value error obtained by the algorithm based on non-linear 
term variable is 0.00012633. The mean count value error 
obtained by the proposed algorithm is significantly lower 
than that of the other two algorithms. It can be seen that the 
mean count value error obtained by the proposed algorithm 
is lower than that of the other two algorithms. The accuracy 
of the solution is higher than that of other algorithms.

DISCUSSION

In the previous section, the numerical solution’s accuracy 
of a class of fractional differential equations with variable 
order is obtained by using the proposed algorithm. The 
experimental results show that the mean count value 
error of the numerical solution obtained by the proposed 
algorithm is lower than that of the comparative algorithms 
by 0.002405663 and 0.00008208, respectively. The main 
reason for the high accuracy of this algorithm is that the 
symmetric algorithm is applied to a class of boundary value 
study of fractional differential equation with variable order. 
The complete symmetric classification for BVP of a given 
class of fractional differential equation and variable order is 
determined by using the differential characteristic sequence 
algorithm of fully symmetric classification of differential 

equation. By using an extended symmetry, the BVP of 
a class of fractional differential equation with variable 
order is reduced to the initial value problem of ordinary 
differential equation, which improves the accuracy of 
numerical solution.

CONCLUSION

In this paper, the application of differential equation 
and symmetric classification in solving boundary value 
numerical solutions of a class of differential equation 
with fractional order is studied. Firstly, a fully symmetric 
classification of boundary value count of fractional 
differential equation with parameters is analyzed and 
determined by using the differential characteristic sequence 
algorithm of fully symmetric classification of differential 
equation, and the equation is classified according to the 
different values of equation parameter S[x]. Secondly, 
by using the first extended symmetry, the BVP of a class 
of fractional differential equation with variable order is 
reduced to the initial value problem of ordinary differential 
equation system. Finally, combined with Legendre 
polynomial, the system of ordinary differential equation 
is transformed into the product of a series of matrices by 
differential operator matrix, and the product of matrix is 
transformed into algebraic equation by discrete variables. 
By solving the equations, the numerical solutions of 
the initial values of ordinary differential equations are 
obtained. Experiments show that the numerical solution 
of a class of fractional differential equations with variable 

TABLE 3. Accuracy comparison results of different algorithms

An algorithm for solving a class of fractional differential equations with 
variable order based on wavelet method

X position Numerical 
solution Exact solution Error

2.4
4.8
6.4
7.2

0.80430000
1.83840001
1.63413334
1.03410000

0.80339167
1.83575041
1.63079520
1.03101940

0.00090833
0.00264960
0.00333814
0.00308060

A numerical solution algorithm for a class of fractional differential equations 
with variable order based on non-linear term variable sign

X position Numerical 
solution Exact solution Error

0.4000
0.5000
0.6000
0.7000

3.84011251
5.00012981
5.76013595
5.88012705

3.84000000
5.00000000
5.76000000
5.88000000

0.00011251
0.00012981
0.00013595
0.00012705

Text algorithm

X position Numerical 
solution Exact solution Error

0.3333
0.5000
0.7500
0.8330

2.96319736
5.00028449
5.62520916
4.62977787

2.96316224
5.00020000
5.62520000
4.62972963

0.00003512
0.00008449
0.00000916
0.00004824
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order obtained by the proposed algorithm is of high 
accuracy.
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