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A Distance Measure of Interval-valued Belief Structures
(Suatu Jarak Pengukuran Nilai Selang Struktur Kepercayaan)

JUNQIN CAO, XUEYING ZHANG* & JIAPENG FENG

ABSTRACT

Interval-valued belief structures are generalized from belief function theory, in terms of basic belief assignments from 
crisp to interval numbers. The distance measure has long been an essential tool in belief function theory, such as conflict 
evidence combinations, clustering analysis, belief function and approximation. Researchers have paid much attention 
and proposed many kinds of distance measures. However, few works have addressed distance measures of interval-valued 
belief structures up. In this paper, we propose a method to measure the distance of interval belief functions. The method 
is based on an interval-valued one-dimensional Hausdorff distance and Jaccard similarity coefficient. We show and 
prove its properties of non-negativity, non-degeneracy, symmetry and triangle inequality. Numerical examples illustrate 
the validity of the proposed distance.
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ABSTRAK

Nilai selang struktur kepercayaan digeneralisasi daripada teori fungsi kepercayaan, dari sudut tugasan kepercayaan 
asas nombor krisp kepada selang. Jarak pengukuran telah menjadi alat yang penting dalam teori fungsi kepercayaan, 
seperti gabungan bukti konflik, analisis berkelompok, fungsi kepercayaan dan penganggaran. Penyelidik telah memberi 
banyak perhatian dan mencadangkan pelbagai jenis jarak pengukuran. Walau bagaimanapun, beberapa kajian telah 
membincangkan jarak pengukuran nilai selang struktur kepercayaan. Dalam kertas ini, kami mencadangkan kaedah 
untuk mengukur jarak fungsi selang kepercayaan. Kaedah ini berdasarkan jarak nilai selang satu dimensi Hausdorff dan 
pekali kesamaan Jaccard. Kami tunjuk dan buktikan sifatnya yang tidak negatif, tidak merosot, simetri dan ketidaksamaan 
segitiga. Contoh berangka menunjukkan kesahan jarak yang dicadangkan.

Kata kunci: Jarak; jarak Hausdorff; nilai selang struktur kepercayaan; pekali kesamaan Jaccard

INTRODUCTION

The Dempster-Shafer theory (DST), also called evidence 
theory or belief function theory, was presented by 
Dempster (1967), and extended and refined by his student, 
Glenn Shafer (1976). It has been developed and applied 
in areas such as fault diagnosis (Wu et al. 2010; Yuan et 
al. 2016), decision making (Bauer 1997; Giang 2015), 
pattern classification (Liu et al. 2014; Thierry & Philippe 
2007), and clustering (Hariz et al. 2006). Among the tools 
developed to work with DST, distances have recently 
received increased attention and much work on measuring 
the distance or dissimilarity between two belief functions 
has emerged (Jousselme & Maupin 2012). The distance 
measure can describe the degree of dissimilarity or 
similarity between bodies of evidence (BOE), and that has 
been proposed as a tool in various applications including 
conflict evidence combination (Deng et al. 2004; Martin 
et al. 2008), clustering analysis (Deneux 2000), learning 
models (Zouhal 1998) and belief function approximation 
(Cuzzolin 2011; Klein et al. 2016; Tessem 1993). 
	 However, in practice, incompleteness or lack of 
information causes partial or total ignorance, and assigning 
a crisp number to every focal element is often regarded 

as too restrictive. Interval-valued data arise in situations 
requiring management of either the uncertainty related to 
measurements or the variability inherent in a group rather 
than an individual. In the literature, Denoeux (1999), 
Lee and Zhu (1992), and Yager (2001) have attempted to 
extend DST to interval-valued belief structures (IBS). Within 
the framework of the transferable belief model (TBM), 
Denoeux extended the main concepts of DST, which include 
credibility, plausibility, combination and normalization 
which lay the theoretical foundations of IBS. Most research 
fields of IBS involve combination rule (Fu & Yang 2012, 
2011; Sevastianov 2012; Song et al. 2014; Wang 2007), 
normalization (Sevastjanov et al. 2010; Xu et al. 2012), 
and uncertainty measure (Jiang 2017; Son 2016). However, 
few are concerned with the distance within the framework 
of IBS. 
	 Among the referenced papers, the distances of DST 
can be roughly divided into direct and indirect distances 
(Loudahi et al. 2016). A type of direct distance, Jousselme’s 
distance  (Jousselme et al. 2001) is essentially a weighted 
Euclidean distance using the Jaccard similarity coefficient 
to measure the similarity of focal elements. It has proven 
highly attractive because it satisfies the mathematical 
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constraints of a metric distance (non-negativity, non-
degeneracy, symmetry and triangle inequality). A variety 
of other distances have since been proposed using different 
similarity functions between focal elements (Diaz et al. 
2006; Sunberg et al. 2013). Sunberg used Hausdorff-based 
measure to account for the distance between focal elements 
which must be orderable sets. Mo et al. (2016) proposed a 
generalized method to measure the evidence distance which 
combines Jousselme’s distance and Sunberg’s distance by 
tunable parameters. Among indirect distances, the pignistic 
probability transform turns a belief function into the least 
committed probability distribution. Tessem’s distance (also 
called the betting commitment distance or the pignistic 
probability distance) is used to compute approximations of 
basic belief assignments. Another kind of indirect distance 
measure is based on belief intervals (Han et al. 2014; Yang 
& Han 2015) which transform the evidential distance to the 
distance of intervals. For a thorough survey of evidential 
distances and their classification, see Jousselme et al. 
(2001).  
	 In view of the importance of interval-valued evidential 
distances, we propose a distance in IBS. We use the 
Jaccard similarity coefficient to measure the similarity of 
focal elements and the Hausdorff distance to measure the 
distance between interval numbers. The proposed interval 
distance can measure both the crisp and the interval-valued 
belief structures (Fallatah et al. 2018; Huh et al. 2018; 
Kaushik & Chatterjee 2018; Li et al. 2018; Yang et al. 
2018).
	 The rest of this paper is organized as follows. Next, 
we briefly review the fundamental notions of evidence 
theory and interval-valued belief structures (Oyekale 2017; 
Pedroza et al. 2017; Sigren 2018; Skibicki 2017; Wahi et 
al. 2018). Some evidential distances in DST literature are 
discussed in subsequent section. A new distance of interval 
evidence is proposed in the following section. Some 
desired properties and related proofs about the distance are 
also provided. Experiments and simulations are described 
in the last section.

BACKGROUND

We review some basic concepts commonly used in DST 
and IBS. 

BASICS OF BELIEF FUNCTIONS

The basic concepts of DST were first introduced by 
Dempster and developed by Shafer. The following 
definitions are central in evidence theory.

Definition 1 Let Θ = {θ1, θ2,…,θn} be a finite set of 
mutually exclusive sets of propositions, referred to as a 
frame of discernment (FOD). A basic belief assignment 
(BBA) m, is defined as a mapping from 2Θ to 1 (m: 2Θ → 
[0, 1]), which satisfies,

	 , m(Ø) = 0.	 (1)

	 A set A is a focal element of m iff m(A) > 0. A BBA is 
also called a mass function. The set of all focal elements 
and their corresponding mass assignments constitutes a 
body of evidence (BOE).

Definition 2 The belief and plausibility commonality 
functions of a set A are respectively defined as,

	 ,	 (2)

	 .	 (3)
	

	 Bel(A) represents how much the event A is implied 
by the actual evidence, i.e. how much the justified specific 
support exits for focal element A. Pl(A) represents how 
consistent the event A is with the actual evidence, i.e. how 
much the potential specific support exists for A. The length 
of the belief interval [Bel(A), Pl(A)] represents the degree 
of imprecision for A.

Definition 3 The pignistic probability corresponding to a 
BBA is defined by,

	 .	 (4)

	 Called the betting commitment to A. BetPm(A) provides 
the total mass value that A can carry.
	 The core of evidence theory is Dempster’s rule of 
combination by which evidence from different sources is 
combined. 

Definition 4 With two belief structures m1 and m2, 
Dempster’s rule of combination is defined as,

			    	
	 ,

(5)

where ⊕ represents the combination operator, also 
called the orthogonal sum; A and B are focal elements; 

 is the conflict coefficient, which 
measures the conflict between the pieces of evidence; and 
division by (1-K) is called normalization. 

BASICS OF INTERVAL-VALUED BELIEF FUNCTIONS

In an IBS, belief masses are no longer described by precise 
numbers, but lie within certain intervals. It is constrained 
as follows (Smets & Kennes 1994).

Definition 5 Let Θ be the frame of discernment, F1, F2,…, 
FN be N subsets of Θ and [ai, bi] be N intervals with 0 ≤ ai 
≤ bi ≤ 1 (i=1,2,…,N). An interval-valued belief structure 
(IBS) is a belief structure on Θ such that, 
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(1)	 ai ≤ m(Fi) ≤ bi , where 0 ≤ ai ≤ bi ≤ 1 for i=1,2,…,N;

(2)	  and ;

(3)	 m(H)=0, ∀H∉ {F1, F2,…, FN}.

If an IBS satisfies the above, we can say it is valid. 

Definition 6 Let m be a valid IBS such that ai ≤ m(Fi) ≤ bi . 
If ai and bi satisfy

	  and , i=1,2,…,N

then m is said to be normalized.
	 A normalized IBS is valid, but the converse is not 
always true.
	 If an IBS is valid, but not normalized, then it can be 
normalized by (6) and (7).

	 , i =1, 2,…, N 		  (6)

	 , i =1, 2,…, N . 	 (7)

	

	 Any IBSs in this paper is assumed to be valid and 
normalized.

Definition 7 Let m1 and m2 be two interval-valued 
belief structures with interval-valued probability 
masses   for i=1 to n1 and 

 for j=1 to n2, respectively. Their 
combination, denoted by m1⊕m2, is also an interval-valued 
belief structure defined by,

, 

(8)

where (m1⊕m2)
-(C) and (m1⊕m2)

+(C) are respectively 
the minimum and maximum of the following pair of 
optimization problems:

	 . 

	 (9)

	 Wang’s combination rule is a quadratic optimization 
with constraint conditions and the combination and 
normalization of two pieces of interval evidence produces 
occur at the same time rather than separately.

DISTANCE IN THE THEORY OF BELIEF FUNCTIONS

A distance or dissimilarity between two BBAs can represent 
the degree of dissimilarity between BOEs. Much work on 
measuring the distance has emerged recently, but there 
is no distance measure for IBSs. The following common 
distances in DST can be roughly classified as either direct 
or indirect distances.
	 In view of the geometric interpretation (Cuzzolin 
2008), basic belief assignments can be seen as vectors 
belonging to the simplex of a vector space E, which 
spanned by the elements of the power set 2Θ and has the 
dimension |2Θ|. For two belief functions, the direct distance 
is defined directly on the space E × E.
	 Jousselme’s distance is a type of direct distance. Let m1 
and m2 be two BBAs defined on the same FOD Θ, containing 
n mutually exclusive and exhaustive hypotheses. A and B 
are any focal elements of BBAs m1 and m2. Jousselme’s 
distance, denoted by dJ, is given by, 

	 ,	 (10) 

where Jac is a matrix whose elements are Jaccard indices 
for any pair of subsets of Θ

	 , for Ai, Aj ∈2Θ \Ø, i,j=1,2,…,2n-1, 

(11)

where |A| is the cardinality of A. Bouchard et al. (2008) 
gave a proof for the positive definiteness of the Jaccard 
index matrix that guarantees that Jousselme’s distance is 
a full metric. The proof is based on the decomposition of 
the matrix into an infinite sum of positive semidefinite 
matrices. In fact, Jousselme’s distance is an L2 Euclidean 
distance with weighting matrix Jac.
	 However, when the frame of discernment Θ is 
orderable sets, the Jaccard index which uses the cardinality 
of unions and intersections between focal elements is 
not suitable for judging similarity. Sunberg et al. (2013) 
proposed a Hausdorff-based measure to account for the 
distance between focal elements. The distance maintains 
the quadratic form structure of Jousselme but replaces the 
similarity function with, 

	 , 	 (12)

where SHaus is a similarity matrix. Each corresponding 
element is,
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	 , 	 (13)

where H(Ai, Aj) is the Hausdorff distance between 
focal elements Ai and Aj. K > 0 is a user-defined tuning 
parameter that adjusts metric responses with respect to 
the orderable space discretization. In this paper, K is set 
to 1. The Hausdorff distance between focal elements may 
be defined as,

	 , 
	
	 (14)

	 Because uses the Hausdorff distance, the metric does 
not reach a saturated value when the two BBAs have no 
overlap. Moreover, it is a metric distance.
	 Mo et al. (2016) proposed a generalized evidence 
distance that combines Jousselme’s distance and Sunberg’s 
distance,

	 , 	 (15)

where D = αJac + βSHaus.The parameters α and β are 
user-defined weighted normalized coefficients, α, β∈[0,1], 
α+β=1. When BBAs are un-orderable sets, α should be 
given a bigger weight than β. When BBAs are orderable 
sets, the parameter β should be given a bigger weight than 
α. For simplicity, both α and β are set to be 0.5. However, 
the metric properties are not provided.
	 The indirect distance is  computed in a new 
representation space F × F. The space F is generated by 
some new vectors that are transformed from BBAs, such 
as pignistic transforms and belief interval transforms.
	 Tessem’s distance is also called the betting commitment 
distance or the pignistic probability distance. It is computed 
by,

	 , 	 (16)

where BetP1 and BetP2 are the pignistic probabilities of m1 
and m2, respectively, according to (4). Tessem’s distance 
belongs to the L∞ family of Chebyshev distance and it is 
actually not a strict distance metric.
	 Han et al. (2014) proposed two distances based on 
the belief intervals [Bel(A), Pl(A)], here we only make 
mention of the Euclidean-family belief interval-based 
distance denoted by dBI. For a BBA, the belief intervals of 
different focal elements are first calculated, and these can 
be considered as interval numbers. Given two interval 
numbers [a1,b1] and [a2, b2], a strict distance (Wasserstein-
based distance) (Verde & Irpino 2008) is defined as,

.

	 (17)

	 Therefore, the distance between belief intervals BI1(Ai) 
(calculated from m1) and BI2(Ai) (calculated from m2) can 
be measured according to . Thus dBI can be defined as

	
, 

(18)

where Nc = 1/2n-1 is the normalization factor, i=1,2,…, 
2n−1, and the superscript T denotes the transpose. dI is a 
(1×2n−1)-dimensional row vector is given by,

	 . 

	 (19)

	 Han et al. (2014) also proved that the belief interval-
based distance is a strict metric distance. 
	 The conflict coefficient defined by Dempster in (5) is 
probably the first quantification of the interaction between 
two belief functions. Hereafter denoted by dC is redefine 
as, 

	 .	 (20)

	 However, in some cases it cannot truly reflect the 
degree of dissimilarity between two BBAs (Liu 2006). 
Furthermore, dC is not a metric distance.
	 For a thorough survey of evidential distances and their 
classification and properties, see Jousselme and Maupin 
(2012). 

THE PROPOSED DISTANCE OF INTERVAL-VALUED BELIEF 
STRUCTURE AND ITS PROPERTIES

We now present the interval distance between two IBSs 
based on the Hausdorff distance and Jaccard index.

A DISTANCE OF INTERVAL-VALUED BELIEF STRUCTURE

Definition 8 Given a frame of discernment Θ with n 
elements and its related interval-valued belief structures 
space S, a real function d: IBS×IBS→R+ is called the metric 
distance between two interval mass functions m1 and m2 
defined on Θ if d satisfies the following properties:

(d1) Nonnegativity: d (m1, m2) ≥ 0; (d2) Nondegeneracy: 
d (m1, m2) = 0 �  m1 = m2; (d3) Symmetry: d (m1, m2) = d 
(m2, m1); and (d4) Triangle inequality: d (m1, m2) +d (m1, 
m3) ≥d (m2, m3), ∀ m3 of IBS.

Properties (d1) and (d2) together define positive 
definiteness.
	 We then propose to look for a distance measure 
between two IBSs m1 and m2 in the form

	 , 	 (21)
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where  is the distance measure between the 
intervals of Ai for m1 and m2. S is the similarity measure 
between the focal elements. 
	 For any two subsets U and W of a Babach space Z the 
Hausdorff metric is simplified to de Carvalho and Pimentel 
(2012), 

	 . 	 (22)

	 If Z=R, U=[u1, u2], and W=[w1, w2] are intervals, using 
the L1 norm (city block distance), the Hausdorff distance 
dH between U and W is 

	 . 	 (23)

	 The matrix S must be defined to describe the 
‘similarity’ between the subsets of Θ. Jaccard index 
or Jaccard similarity coefficient defined in (11) was 
introduced by the botanist Paul Jaccard in 1901, and is 
now a classical and commonly used measure of similarity 
between sets in many applications. In this paper we also 
use the Jaccard index despite its ignorance of the frame of 
discernment Θ. 

Definition 9 Let m1 and m2 be two IBSs defined on the same 
FOD Θ, containing n mutually exclusive and exhaustive 
hypotheses. The distance between m1 and m2 is defined by,

	 . 		  (24)

Here Nf is the normalization factor. 

	 Jac is a (2n −1)×(2n −1) matrix whose elements are 
Jaccard indexes for all pairs of subsets Ai of Θ with n 
elements (n = |Θ|), not including the empty set. The rows 
and columns of Jac are indexed by the elements Ai of 2Θ\Ø 
and Jac(Ai, Aj) denotes the element of row Ai and column 
Aj of Jac in accordance with (11).
	 dH is a column vector of 2n −1 dimensions, indexed 
by the sets in 2Θ\Ø and  denotes the transpose vector of 
dH. The vector dH is defined by

.

(25)

	 Every element of dH is a Hausdorff distance between 
two interval-valued BBAs according to (23), and the ith 
element is

	 , for i=1, 2, … , 2n-1, 	 (26)

where Ai is all subsets of Θ (excluding Ø). 

PROPERTIES

The proposed distance measure between two IBSs has the 
following properties, for which we show the proofs.

Property 1. The normalizatio n factor .

We first recall some useful theorems for the proof.

Theorem 1 Given that A is n×n real symmetric positive 
definite, for any n×1 column vector x, there exits the 

quadratic form . If and only if for 

x=0, xTAx = 0.
	 Early in 1986, Gower (1971) proved that the Jaccard 
index matrix Jac is a positive semidefinite similarity 
matrix, and Bouchard et al. recently provided a proof for 
the positive definiteness. Here, we provide the conclusion 
as the following theorem. 

Theorem 2 (Positive definiteness of Jac). The Jaccard 
index matrix formed by N arbitrary subsets of Θ a frame 
of reference of size n, is positive definite.

Proof of the normalization factor Suppose that Θ= {θ1, 
θ2,...,θn}, m1 and m2 are two IBSs, and the Hausdorff 
distance between two elements Ai is dH = [d1  K   d2n–1]

T, 
according to (25) and (26).
	 Obviously, Jac is a real symmetric and positive 
definite matrix. By Theorem 1 and Theorem 2, Jac and 
dH can be translated into the quadratic form, 

	
.

(27)

Hence, can be rewritten as,

	 .

(28)

	 For the sake of the validity and normalization 
of the interval-valued belief function, the maximum 
of distance value is reached when d2n–1 = 1, only one 
of the distances d2n–1 , d2n–(n–1), …, d2n–2 equals 1, and 
the others are 0. Therefore, the maximum distance is 

, and the normalization factor is 

. 
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For example, when n=3, then Θ= {θ1, θ2, θ3} and

	 .

Let 

	 .	 (29)

	 The maximum distance is reached when d7=1 and 
(d4=1 or d5=1 or d6=1), and the others are 0, therefore, the 
maximum distance is d =3/10 and the normalization factor 
is Nf=1/ d=10/3.

Property 2 The distance dIBS is a metric distance.

Proof: Nonnegativity. The Hausdorff distance is in the 
form of an absolute value, and the Jaccard index matrix 
is positive definite, therefore, the distance obviously dIBS 
(m1, m2) ≥ 0.
	 Nondegeneracy. Given two interval BBAs with 
mass distributions , the vector , and thus 
dIBS(m1,m2)=0. Conversely, suppose dIBS(m1,m2)=0. Since 
Jac is positive definite and is not a null matrix, it must be 
true that , i.e.,  .
	 Symmetry. Because the Hausdorff distance is 
symmetric, we can obtain dH(m1,m2)=dH(m2,m1), and then 
dIBS (m1, m2)= dIBS (m2, m1).
	 Triangle inequality. Suppose that m1, m2 and m3 are 
three IBSs defined on the same FOD Θ with size of n. Since 
the Hausdorff distance dH defined in is a metric distance, 
the triangle inequality is naturally satisfied. That means 
for each Ai (i=1, ... , 2n−1), there exists,

dH(m1(Ai), m2(Ai)) + dH(m1(Ai), 

m3(Ai)) ≥ dH (m2(Ai), m3(Ai)). 	 (29)

	 Denote that xi = dH(m1(Ai), m2(Ai)), yi = dH(m1(Ai),  
m3(Ai), and zi = dH(m2(Ai), m3(Ai)), therefore,

	 . 	 (30)

According to the Mikowski inequality, 

	 , 		  (31)

there exists . 	 (32)

Square both sides of inequality to obtain

	 . 	 (33)

	 Then, add some items on both sides of the inequality 
(33). Comparing this with the left side of (30), we have

	

	 	
(34)

 
Hence, 

	
(35)

Then we obtain 

	 . 	 (36)

	 Therefore, the property of triangle inequality of dIBS 
is satisfied. 
	 Through the mentioned analysis, it can be proved that 
conditions (d1) to (d4) are satisfied, i.e., the distance dIBS 
is a metric distance.

NUMERICAL EXAMPLES

EXAMPLES FOR THE CASE OF CRISP BELIEF STRUCTURES

Example 1 This example was proposed in Han et al. (2011) 
and reused in Han et al. (2014). In this example, m1, m2,..., 
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m7 are seven crisp belief structures defined on the same 
FOD Θ={θ1, θ2, θ3}, as shown in Table 1. 
	 The referenced BBA m1 has a relatively large mass 
assignment value for the focal element {θ2}. Intuitively, 
for mi (i=2,…,7), the larger the mass assignment value of 
{θ2}, the smaller the relative distance value. Furthermore, 
the minimum distance occurs at i=3, because m3 has the 
maximum similarity to m1. Seven different distances, 
dJ, dT, dC, dBI, dHaus, dG and the proposed distance dIBS in 
this paper, are employed. As shown in Figure 1, most 
of the change trends of the seven curves obtained by 
these distances are identical except for dHaus. The result 
demonstrates that the proposed distance is effective for 
crisp belief structures.

Example 2 This example was proposed in Han et al. 
(2011) and reused in Han et al. (2014). Let Θ={θ1, θ2,…, 
θn} be a fame of discernment. Three BBAs are defined 
as follows:

m1(θ1) = m1(θ2) = … = m1(θn) =1/n; 

m2(Θ) =1; m3(θk) =1, for some k∈{1, 2,…, n}.
	
	 For a given number n, it is clear that m1 is a Bayesian 
BBA, m2 is a vacuous BBA and m3 is a categorical BBA. 
The results of this experiment are displayed in Figure 2.
	 It can be noted that, dJ(m1,m2) and dJ(m1,m3) are 
superimposed for Jousselme distance dJ. This means 

that the Bayesian BBA m1 is equidistant to the vacuous 
BBA m2 and the categorical BBA m3, because. It can also 
be seen that dT(m1,m2)=0 because m1 and m2 have the 
same pignistic probabilities instead of BBAs. The conflict 
coefficient cannot be used as the distance metric since 
dC(m1,m2)= dC(m2,m3)=0. These examples illustrate that 
dJ, dT and dC are poor at discriminating the difference of 
the three BBAs. By contrast, the curves of dBI, dHaus, dG 
and dIBS are not superimposed. For a fixed number n, m1 
and m3 are probability distributions which insist one focal 
element, as well as m2 is ambiguous. Therefore, there is 
the reason to believe that m1 is closer to m3 than to m2. 
However, dBI accounts for the fact that dBI(m1,m3) is bigger 
than dBI(m1,m2), which is unreasonable. It is difficult how 
to select the tuning parameter K and α for the distances 
dHaus and dG. By comparison, the distance dIBS show the 
better performance.

EXAMPLE FOR THE CASE OF INTERVAL-BASED                 
BELIEF STRUCTURES

Example 3 Let Θ={θ1, θ2, θ3} be a frame of discernment. 
The IVBs are all valid and normalized, and are defined 
in Table 2.
	 Intuitively, it can be seen from Table 2 that m1, m2 
and m3 give the biggest interval belief values to support 
θ1, θ2 and θ3, respectively. In contrast, m4 has the same 
interval values on θ1, θ2 and θ3. m5 supports the uncertain 
situation. The results of this experiment are displayed in 
Figure 3.

TABLE 1. BBAs of Example 1

Focal 
element

θ1 θ2 θ3 θ1∪θ2 θ2∪θ3 θ1∪θ3 θ1∪θ2∪θ3

m1

m2

m3

m4

m5

m6

m7

0.1
0.8
0
0
0
0
0

0.8
0

0.8
0
0
0
0

0.1
0
0

0.8
0
0
0

0
0
0
0

0.8
0
0

0
0
0
0
0

0.8
0

0
0
0
0
0
0

0.8

0
0.2
0.2
0.2
0.2
0.2
0.2

FIGURE 1. Distances between m1 and mi, i=2,…,7
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FIGURE 2. Distances between m1, m2 and m3

FIGURE 3. Distances between m1 and mi, i=1,…,5

TABLE 2. IVBs of Example 3
Focal 

element θ1 θ2 θ3 θ1∪θ2∪θ3

m1

m2

m3

m4

m5

[0.75, 0.8]
[0.05, 0.1]
[0.05, 0.1]
[0.3, 0.4]
[0.1, 0.2]

[0.05, 0.1]
[0.75, 0.8]
[0.05, 0.1]
[0.3, 0.4]

[0, 0]

[0.05, 0.1]
[0.05, 0.1]
[0.75, 0.8]
[0.3, 0.4]

[0, 0]

[0.1, 0.15]
[0.1, 0.15]
[0.1, 0.15]

[0, 0]
[0.8, 0.9]

	 In Figure 3, the shadow region is the range of conflict 
degree which can indirectly reflect the distance values 
between IVBs. When the conflict degree is bigger, it 
can be considered that the distance value is bigger, and 
vice versa. From 1 to 4, the curves are going in the same 
direction. It is equidistant at i=2 and 3. At i=4, m4 has 

relative larger value on θ1, therefore, the distance becomes 
closer. Meanwhile, at i=5 the conflict degree becomes 
smaller, which is unreasonable obviously. By contrast, the 
distance dIBS also show the better performance.

CONCLUSION

In this paper, we have investigated the distance measurement 
problem in interval-valued belief structures. The proposed 
distance maintains the quadratic form structure using the 
Jaccard similarity index to compare the focal elements 
and the Hausdorff distance to measure the distance of 
interval numbers. Theoretical studies have shown it to 
be a full metric distance that satisfies the properties of 
non-negativity, non-degeneracy, symmetry and triangle 
inequality. Numerical experimental results showed that the 
proposed distance can be used in both crisp and interval-
valued belief structures. None of the distance measures 
can be said to be superior to the others in the absolute and 
the choice of such a measure should always be guided by 
practical considerations relative to a specific application. 
Future work will include the following: Further detailing 
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the formal properties of the surveyed measures; using real 
data for experimental comparisons; and using the distance 
in applications, such as conflict evidence combination, 
uncertainty measures, and belief function approximation.
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