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ABSTRACT

The presence of two different chromophores in benzothiazole molecule namely benzothiazole and aromatic rings lead to 
interesting chemical and biological properties that attract more researches on the compounds. Three new benzothiazolyl-
benzoythiourea compounds namely 1-(1,3-benzothiazol-2-yl)-3-(benzoylthiourea) (BBT), 1-(1,3-benzothiazol-2-yl)-3-
(4-chlorobenzoylthiourea) (BBT-4Cl) and 1-(1,3-benzothiazol-2-yl)-3-(4-methoxybenzoylthiourea) (BBT-4OCH3) with 
different electron withdrawing substituents (R) at the para positions on the benzene ring of benzoylthiourea ring have 
been synthesized from the reaction of R-benzoyl isothiocyanate (R= H, Cl, and OCH3) and 2-aminobenzothiazole. The 
compounds were characterized by spectroscopic techniques (infrared, 1H proton NMR and UV-Vis). The IR spectra showed 
the frequency signals of n (C=O), n (C=S), n (N-H) at 1664-1673, 1238-1249 and 3031-3055 cm-1, respectively. The 1H 
proton NMR spectra showed the presence of N-H amine and amide signals in the region of (12.14-12.35) and (14.17-14.43) 
ppm, respectively. The proton signals of the two benzothiazole and benzoylthiourea moieties appear at 7.08-8.16 ppm. 
A theoretical study based on Density Functional Theory (DFT) and Time-Dependent (TD) DFT was conducted to optimize 
the geometrical structure and investigate the electronic properties of title compounds. The highest occupied molecular 
orbital (HOMO) was found on the benzothiazole moiety; while, the lowest-unoccupied molecular orbital (LUMO) was 
located at the benzoylthiourea fragment. The DFT optimized structures possessed an intramolecular hydrogen bonding 
and the types of para substituents used influenced the properties of hydrogen bonding. 

Keywords: Benzothiazolyl-benzoylthiourea; DFT; electron donating groups; electron withdrawing groups; hydrogen 
bonding interactions

ABSTRAK

Kehadiran dua kromofor yang berbeza di dalam molekul benzotiazol iaitu benzotiazol dan gelang aromatik menyebabkan 
molekul ini mempunyai ciri kimia dan biologi yang menarik minat para penyelidik terhadap sebatian tersebut. Tiga 
sebatian benzotiazolil-benzoiltiourea yang baru dengan kumpulan pengganti daripada kumpulan penderma dan 
kumpulan penerima elektron (R) pada kedudukan para pada gelang benzoiltiourea iaitu 1-(1,3-benzotiazol-2-il)-3-
(benzoiltiourea) (BBT), 1-(1,3-benzotiazol-2-il)-3-(4-klorobenzoiltiourea) (BBT-4Cl) dan 1-(1,3-benzotiazol-2-il)-3-(4-
metoksibenzoiltiourea) (BBT-4OCH3) berjaya disintesis daripada tindak balas R- benzoil isotiosianat (R = H, Cl dan 
OCH3) dan 2-aminobenzotiazol. Sebatian tersebut telah diciri dengan teknik spektroskopi (inframerah, 1H proton RMN 
dan UV-Vis). Spektra inframerah sebatian menunjukkan frekuensi bagi jalur n (C=O), n (C=S), n (N-H) masing-masing 
pada 1664-1673, 1238-1249 dan 3031-3055 cm-1. Spektra 1H proton NMR menunjukkan kehadiran proton pada moieti 
N-H amina dan amida masing-masing pada 12.14-12.35 and 14.17-14.43 ppm. Kehadiran dua moieti benzotiazol dan 
benzoiltiourea ditunjukkan oleh isyarat proton pada julat 7.08-8.16 ppm. Kajian teori berdasarkan pengiraan dengan 
kaedah teori fungsi ketumpatan (DFT) dan DFT bersandar masa (TD) telah dijalankan untuk mengoptimumkan struktur 
geometri dan mengkaji sifat elektronik sebatian tersebut. orbital molekul terisi dengan tenaga tertinggi (HOMO) didapati 
pada moieti benzotiazol; manakala orbital molekul tidak terisi dengan tenaga terendah (LUMO) didapati pada moieti 
benzoiltiourea. Ikatan intramolekul hidrogen dapat dioptimumkan melalui DFT dan jenis kumpulan pengganti yang 
digunakan mempengaruhi sifat ikatan hidrogen tersebut.

Kata kunci: Benzotiazolil-benzoiltiourea; DFT; ikatan hidrogen; kumpulan penarik elektron; kumpulan penderma elektron

INTRODUCTION

Thiourea compounds are unique and have interesting 
properties that lead to the development of various 

applications such as non-linear optical materials that 
makes thioureas as a potential compound especially 
for a laser material (Weiqun et al. 2003). The principal 
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role of panchromatic dyes is to harvest light spectrum 
particularly the visible and near-infrared (Li et al. 2013). In 
addition, thioureas were found to be widely used in several 
applications such as in the development of electronic and 
optoelectronic devices (Yusof et al. 2010; Yutronic et 
al. 2000). Another interesting aspect of thioureas is this 
compound can act as chelating agents (Alkherraz et al. 
2014; Das 1984; Shome et al. 1980) for various metal ions 
with electronic spectrum extended to the visible region 
(Mishra et al. 2009), hence, can be utilized as a molecular 
dye. Meanwhile, compounds based on benzothiazole 
derivative are known to be employed as organic dyes is 
photoelectrochemical (Sayama et al. 2002). The study 
has also shown that benzothiazole derivatives exhibited 
interesting photochemical properties due to the presence 
of two different chromophores in the molecule namely 
benzothiazole and aromatic moiety (Đaković et al. 2009). 
	 Metal complexes of thiourea compounds have shown 
interesting biological activities such as anti-cancer, anti-
microbe, anti-bacterial, anti-fungus, anti-malaria and 
anti-tuberculosis (Yang et al. 2012). Besides, thiourea 
compounds have also been used as building blocks in the 
synthesis of heterocyclic compounds and was claimed 
to be an important organic compound which acts as 
corrosion inhibitors and antioxidant (Alkherraz et al. 
2014; Katritzky & Gordeev 1991). Benzoylthiourea and 
its derivatives are another class of thiourea compounds 
that have attracted tremendous research activities on their 
coordination chemistry, analytical and environmental 
application as well as their biological properties. 
Benzothiazole and its derivatives are also known to have 
biological activities such as anti-tumour, anti-bacterial, 
anti-fungus, anti-inflammatory and anti-allergy (Gao et al. 
2007). In addition, rhenium complexes with benzothiazole 
derivatives were reported to have interesting biological 
activities and have been studied for application in 
technetium radiopharmaceuticals for radiotherapy and 
diagnostic imaging (Schoultz et al. 2016). 
	 The previous study has shown that 1-(benzothiazol-
2-ylidine)-3-methylthiourea, that contained a tertiary 
amide, behaves as a bidentate ligand through S, N 
coordination mode (Sathdeo et al. 2016). Benzoylthiourea 
contains N, O and S donor atoms that make coordination 
chemistry of this molecule more interesting as it can 
behave as a monodentate, bidentate or tridentate ligand 
(Kurt et al. 2009). The presence of intramolecular and 
intermolecular hydrogen bonding interactions that 
influence their coordination chemistry with the main 
group and transition metal elements (Domìnguez et 
al. 2002). The N-carbamothioylbenzamide moiety in 
benzoylthiourea molecules plays an important role in 
determining their coordination modes that saw a ligand 
with secondary N-carbamothioylbenzamide moiety 
to favour a monodentate S coordination mode due to 
the presence of an intramolecular hydrogen bonding 
between the H-amide and the O-carbonyl group to form a 
6-membered ring (NHOCNC) (Selvarakumaran et al. 2009; 
Thompson et al. 1980). On the other hand, benzoylthiourea 

with a tertiary N-carbamothioylbenzamide fragment tends 
to coordinate in a bidentate manner through OS donor atoms 
since the formation of intramolecular hydrogen bonding 
was eliminated from the structural feature (Mohammad 
Halim et al. 2012).
	 In this study, we report the synthesis of benzothiazole-
benzoylthiourea molecules with chloro and methoxy 
substituent at the para position on the benzene ring of the 
benzoyl moiety. Chloro and methoxy have been chosen 
as the substituents since both are electron withdrawing 
and donating group, respectively, that may influence 
the formation of the intramolecular hydrogen bonding 
interactions. The findings from this work can facilitate a 
better understanding of the structural and intramolecular 
hydrogen bonding behaviour of these molecules. 

EXPERIMENTAL DETAILS

SYNTHESIS OF 1-(1,3-BENZOTHIAZOL-2-YL)-3-(R-BENZOYL)
THIOUREA (R = H, CL AND OCH3)

All the compounds were synthesized according to the 
previous literature methods (Al-abbasi et al. 2011; Perez 
et al. 2011; Raj et al. 1999; Tan et al. 2014) with some 
modification. The solution of R-benzoyl chloride (0.01 
mol) in acetone (25 mL) was added drop-wise to a solution 
of potassium thiocyanate, KSCN (0.01 mol) in acetone (25 
mL). The mixture was stirred for 30 min and the byproduct, 
potassium chloride, was removed by filtration to give 
R-benzoyl isothiocyanate as an intermediate product. 
Then, 2-aminobenzothiazole (0.01 mol) in acetone (25 mL) 
was added to the R-benzoyl isothiocyanate solution and 
left stirring for 2 h 30 min (Figure 1). Lastly, the product 
was precipitated by addition of 500 mL cold water and 
the mixture was left in an ice bath for 2 h. The precipitate 
was washed with a small volume of cold ethanol to give 
the desired product.

FIGURE 1. The a two-stage chemical reactions for the synthesis 
of the 1-(1,3-benzothiazol-2-yl)-3-(R-benzoyl)thiourea (R = H, 

Cl and OCH3) molecules

INSTRUMENTATION

The IR spectra were obtained using ATR-FTIR Cary 630 
FTIR spectrophotometer from Agilent Technologies. The 



	 	 925

1H NMR spectra were recorded by Bruker AVANCE 400 III 
HD. The analysis on UV-Vis absorption was conducted with 
AvaSpec-2048L (AVANTES).

COMPUTATIONAL METHODS

The structural geometry of the molecule was optimised 
with density functional theory (DFT) and their electronic 
and absorption properties were calculated with time-
dependent (TD) DFT. The hybrid function of Lee–Yang–Parr 
(B3LYP) exchange-correlation functional and 6-311++G 
(d, p) basis-set with polarization and diffuse function was 
used in combination for the calculation (Becke 1993, 1988; 
Davidson & Feller 1986; Hehre et al. 1986; Lee et al. 1988). 
The vibrational frequencies were verified to ascertain 
that the optimized structure represents local minima. 
Acetonitrile (e = 35.688) was considered for the geometry 
optimization with Tomasi’s polarizable continuum model 
(PCM) (Cossi et al. 2003; Miertuš et al. 1981). It is known 
that calculations based on the hybrid function (B3LYP) 
tend to over-estimate the optical energies compared to 
experimentally obtained results (Fui et al. 2016; Mark-
Lee et al. 2017).

RESULTS AND DISCUSSION

All the three compounds, BBT, BBT-4Cl, and BBT-4OCH3 
were synthesized via a condensation reaction with benzoyl 
isothiocyanate and 2-aminobenzothiazole. The IR spectra 
of all molecules showed a band at 3303-3304 cm-1, which 
is more intense than a normal N-H signal from amine 
group. This observation is attributed to the formation of 
hydrogen bonding between the N−H…O. Thus, the band 
was assigned as the n(N-H) signal for the amide group. The 
strong stretching vibration signal ascribed to be n(C=O) 
was recorded at 1664-1673 cm-1 and the n(C=S) signal from 
the thiocyanide group was observed at 1238-1249 cm-1 with 
a medium-weak intensity. In addition, stretching vibration 
for C=N from the benzoyl ring can be found at 1510-1525 
cm-1 and the band at 2912-3003 cm-1 indicates the presence 
of C-H from the benzoyl ring. The stretching frequencies 
of C=O were relatively lower than a free C=O (< 1730 
cm-1) due to the formation of hydrogen bond (Saeed et al. 
2010; Yusof et al. 2010). The functional groups and their 
vibration frequencies for BBT, BBT-4Cl, and BBT-4OCH3 
are collected in Table 1.

	 The optimized structures of these compounds led to 
the lowest energy molecular structure with the presence of 
an intramolecular hydrogen bond. The optimized structure 
of BBT is shown in Figure 2. The geometrical parameters of 
selected bond lengths (Å) and angles (o) of the optimised 
BBT, BBT-4Cl and BBT-4OCH3 structures are listed in Table 
2. The structures of the compounds are almost planar due 
to the intramolecular hydrogen bonding interaction. In 
Figure 2, the intramolecular hydrogen bonding interaction 
is expected to occur in the N2−H7…O1 moiety. Table 
2 shows the selected geometrical data of DFT for BBT, 
BBT-4Cl, and BBT-4OCH3. The data shows that the length 
of hydrogen bonding for BBT-4Cl is longer than that of 
BBT-4OCH3 because of the electron donating OCH3 group 
which induced a better electron delocalization through 
resonance involving the two lone pairs of electrons on 
the oxygen (OCH3) and hence, the C=O bond becomes 
slightly elongated compared to that of BBT (D = 0.002 
Å). Subsequently, the intramolecular hydrogen bonding 
involving O1 atom (C=O) with H7 became stronger (O1…
H7; shorter by 0.011 Å) and form a pseudo six-membered 
ring as shown in Figure 2. The intramolecular hydrogen 
bonding (N2−H7…O1) essentially improves the planarity 
of the two moieties (benzothiazole and benzoylthiourea). 

TABLE 1. Vibrational frequencies for BBT, BBT-4Cl 
and BBT-4OCH3 ligands

Functional 
group

Frequency (cm-1)
BBT BBT-4Cl BBT-4OCH3

C=O
N-H (amide)
N-H (amine)
C=S
C=N

1672
3052
3327
1238
1510

1664
3031
3303
1239
1519

1673
3055
3304
1249
1525

FIGURE 2. The optimised molecular structure of BBT in vacuo 
showing the intramolecular H-bond (dotted line); B3LYP/6-

311++G (d, p)

TABLE 2. Selected geometrical data of DFT optimised 
(in vacuo) BBT, BBT-4Cl and BBT-4OCH3

BBT BBT-4Cl BBT-4OCH3

Bond (Å)
S1-C8 1.665 1.665 1.667
O1-C7 1.225 1.225 1.227
N1-C7 1.387 1.386 1.390
N1-C8 1.402 1.403 1.400
N2-H7 1.027 1.027 1.028
H7-O1 1.833 1.837 1.822

Angle (o)
O1-C7-N1 122.3 122.4 121.8
N1-C8-S1 118.5 118.4 118.5
N2-C8-S1 127.1 127.2 127.0
C8-N2-C9 130.0 130.0 130.0
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	 Further insight into the structures of the product 
molecules was obtained from 1H NMR spectroscopy. 
The 1H NMR of BBT-4Cl ligand shows the proton signal 
belonging to aromatic rings at 7.34-8.16 ppm. The N-H 
signals appeared at the 12.35 ppm and 14.17 ppm which 
indicates the presence of N-H benzamine [(N-H)1] and the 
N-H thioamide [(N-H)2] moieties, respectively. Similarly, 
the BBT-4OCH3 shows the signal of the corresponding 
benzothiazole and benzoylthiourea protons at 7.08-8.06. 
Whereas, the corresponding benzamide and thioamide 
proton resonances were detected at 12.14 and 14.43 
ppm. The chemical shifts for all protons are collected 
in Table 3. The (N-H)2 chemical shift of BBT-4OCH3 
was further downshifted compared to BBT and BBT-4Cl. 
This observation is influenced by the presence of greater 
hydrogen bonding effect (Arslan et al. 2006; Kurt et al. 
2009; Zhou et al. 2005).

UV-VIS ABSORPTION STUDY

The experimental UV-Vis spectrum of BBT showed three 
prominent absorption bands labelled as I, II and III. A 
shoulder peak was also observed in the region, 230-250 
nm. The TDDFT simulation of the electronic excitation 
bands has demonstrated a similar spectral profile. The 
TDDFT simulated band III is relatively broad compared to 
the experimental one, as a result, the apparent shoulder 
peak may not be observed due to overlapping absorption 
bands. A total of one hundred vertical excitation states 
were considered for the TDDFT calculation. The data 
obtained was subsequently interpolated with a Gaussian-
type distribution curve in Figure 3(A). The UV-Vis 
absorption information i.e. maxima wavelength (lmax), 
optical bandgap (Eg), extinction coefficient (ε), oscillator 
strengths (f), predominant transitions and orbitals 
involved are shown in Table 4. 
	 Figure 4 illustrates the frontier molecular orbitals, 
HOMO and LUMO of the three titled compounds. The 
UV-Vis spectral description will focus on BBT since all 
three compounds have similar UV-Vis spectral profile 
in terms of the number of absorption bands. The most 
intense absorption peak with the highest extinction 
coefficient belongs to band III (lmax = 223 nm, ε = 3.064 

FIGURE 3. (A) Experimental (solid line) and DFT simulated (dashed line) UV-Vis spectra of BBT in acetonitrile 
with three dominant absorption bands: I, II and III. (B) Comparison of the first two absorption bands obtained 

experimentally for BBT (I, II), BBT-4Cl (I’, II’) and BBT-4OCH3 (I’’, II’’)

TABLE 3. Chemical shift for BBT, BBT-4Cl and BBT-4OCH3

Compound δ (N-H)1 δ (N-H)2 δ H (benzene ring)

BBT
BBT-4Cl

BBT-4OCH3

12.30
12.35
12.14

14.29
14.17
14.43

7.38-8.07
7.34 - 8.16
7.08 - 8.06

TABLE 4. UV-Vis absorption data measured experimentally and theoretically in acetonitrile for BBT

Band Expt. TDDFT/B3LYP
lmax

a

(nm)
Eg

a

(eV)
εa lmax

a

(nm)
Eg

a

(eV)
Osc.a

(f)

Key transitions and characterb

I 329 3.77 1.137 353 3.51 0.3470 (98%) HOMO(btz)→LUMO(btu)

II 277 4.47 2.049 291 4.26 0.4758 (91%) HOMO-3(*)→LUMO(btu)

III 223 5.56 3.064 217 5.74 0.4446 (24%) HOMO-1(n)→LUMO+5(btz)

a lmax/nm, (ε (× 104 M-1cm-1)); 1.0 × 10-4 M; Eg = 1239.5/lmax; Osc. = Oscillator strength (Fui et al. 2012; Mark-Lee et al. 2013).
b n = non-bonding electron pair, btz = benzothiazolyl, btu = benzoylthiourea, * = spread across btz and btu with higher participation from S atom of thioamide
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× 104 M-1cm-1; Calc: 217 nm, f = 0.4446). Based on 
TDDFT calculations, band III is assigned to the, n → π* 
electronic transition where the free non-bonding electron 
pairs (n) of electron rich atoms i.e. S, N and O of the 
molecule populates the empty molecular orbitals found 
on the benzothiazole fragment. Moving towards the 
longer wavelengths, band II involves the photoexcitation 
of electrons from the lower occupied molecular orbital 
(HOMO-3) to LUMO. The HOMO-3 is located throughout 
the molecule which involves the filled-π molecular 
orbitals in the z-plane. While the LUMO is predominantly 
located at the benzoylthiourea moiety involving the 
empty π* orbital in the same direction. The calculated 
probability of involvement for HOMO-3→LUMO was 91% 
since their molecular orbitals are congruent in terms of 
orientation. The electron excitation recorded at lmax = 
329 nm, Eg = 3.77 is ascribed to band I. This electronic 
absorption is identified as the HOMO→LUMO transition 
(98% probability). The HOMO is mainly found on the 
benzothiazolyl fragment and the photoexcited electrons 
move to the opposite end of the molecule towards the 
benzoylthiourea fragment where the LUMO, empty π* 
molecular orbitals are located.	
	 Among the three compounds, two of which are 
substituted with either an electron-donating (OCH3) or 
withdrawing (Cl) group, situated at the para position of 
the benzoyl moiety. Concurrently, the substituent is also 
located where the mass accumulation of empty molecular 
orbitals, LUMO is found. Therefore, we would expect 
that the substituent would affect the LUMO energy level 
and shift the optical bandgap. The LUMO is basically 
involved in electronic transitions for the band I and 

II (Table 4) and these absorption bands are illustrated 
in Figure 4(B) for BBT, BBT-4Cl and BBT-4OCH3. It 
is observed that band I, I’ and I” have no significant 
changes in terms of band position despite the presence 
of substituents on the benzene ring of a benzoylthiourea 
fragment. Nevertheless, the position of band II is 
drastically affected with increasing bathochromic shift 
in the following order: II < II’ < II”. In the unsubstituted 
compound, BBT, band II involves HOMO-3 where the 
filled-π molecular orbitals are distributed across the entire 
molecule with a slightly higher participation from the 
S atom of thioamide linkage. In comparison with band 
II, a band I encompass the filled-π molecular orbitals of 
benzothiazole moiety (HOMO), which are situated away 
from the benzoyl moiety (benzoylthiourea) with para-
substituents (Cl and OCH3). Therefore, the electron 
withdrawing and donating substituent of Cl and OCH3, 
respectively, have a greater influence on the HOMO-3. 
As such, the electron-donating resonance effect induced 
by the methoxy group outweighed the inductive effect 
caused by the electron-withdrawing chlorine atom. The 
ease of electron delocalization within the BBT-4OCH3 
molecule has lowered the required energy for electronic 
photo-excitation of band II and hence, a blue-shift was 
observed. As per discussion, the reduction of optical 
bandgap which involves the lowest energy electronic 
absorption band (I) can essentially be achieved with the 
utilization of electron donors at the benzothiazole moiety, 
while, the benzoylthiourea moiety should be infused with 
electron acceptors. Hence, electrons will have a higher 
affinity to delocalized from the HOMO (benzothiazole) to 
the LUMO (benzoylthiourea). 

FIGURE 4. Isosurface illustration (contour value = 0.052) of HOMO and LUMO of (A) BBT-4OCH3, 
(B) BBT and (C) BBT-4Cl with their ground state energy bandgaps
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CONCLUSION

Three new compounds namely 1-(1,3-benzothiazol-2-yl)-
3-(benzoylthiourea) (BBT), 1-(1,3-benzothiazol-2-yl)-3-(4-
chlorobenzoylthiourea) (BBT-4Cl) and 1-(1,3-benzothiazol-
2-yl)-3-(4-methoxybenzoylthiourea) (BBT-4OCH3) were 
successfully synthesized and showed the presence of 
intramolecular hydrogen bonding interaction which 
enhanced the overall geometrical stability in the observed 
structural conformation. The Cl and OCH3 substituents 
influenced the electron density of the benzene ring. The 
electron delocalization within the molecule was improved 
via the resonance effect of OCH3 and hence, greatly 
strengthen the hydrogen bonding. On the contrary, the Cl 
substituent weakened the hydrogen bonding by inductively 
attracting the electron density away from the hydrogen 
bond. Essentially, the presence of intramolecular hydrogen 
bond induced structural planarity of the molecule. Tuning 
of the optical properties can be systematically accessed via 
the HOMO (benzothiazole) and LUMO (benzoylthiourea) by 
incorporating proper substituent groups.
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