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ABSTRACT

In this paper, a support vector regression (SVR) using radial basis function (RBF) kernel is proposed using an integrated 
parallel linear-and-nonlinear model framework for empirical modeling of nonlinear chemical process systems. Utilizing 
linear orthonormal basis filters (OBF) model to represent the linear structure, the developed empirical parallel model 
is tested for its performance under open-loop conditions in a nonlinear continuous stirred-tank reactor simulation case 
study as well as a highly nonlinear cascaded tank benchmark system. A comparative study between SVR and the parallel 
OBF-SVR models is then investigated. The results showed that the proposed parallel OBF-SVR model retained the same 
modelling efficiency as that of the SVR, whilst enhancing the generalization properties to out-of-sample data. 
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ABSTRAK

Di dalam kertas ini, sebuah regresi vektor sokongan (SVR) yang menggunakan fungsi asas jejarian (RBF) dicadangkan 
menggunakan sebuah model rangka kerja linear dan tidak linear selari bersepadu untuk pemodelan empirik sistem 
pemprosesan kimia tidak linear. Dengan menggunakan model penapis asas ortonormal (OBF) untuk mewakili struktur 
linear, model selari empirik yang terbentuk seterusnya diuji prestasinya di bawah keadaan kitaran-terbuka dalam sebuah 
kajian kes simulasi reaktor tangki aduk berterusan (CSTR) yang tidak selari dan juga sistem penanda aras tangka sebaran 
tidak linear tertinggi. Sebuah kajian perbandingan antara model SVR dan juga model OBF-SVR selari kemudiannya dikaji 
dengan lebih terperinci. Keputusan menunjukkan bahawa model OBF-SVR selari yang dicadang juga telah mengekalkan 
kecekapan pemodelan yang sama seperti SVR, di samping memperkukuh ciri generalisasi terhadap data luaran sampel.

Kata kunci: Model linear dan tidak linear; OBF; pemodelan empirik; sistem tidak linear; SVR

INTRODUCTION

Empirical modeling, or also referred to as identification, 
of nonlinear systems is one of the active areas in system 
identification in recent years. Over the years, numerous 
nonlinear empirical models have been reported in literature, 
e.g. Volterra models (Ljung 2010; Mahmoodi 2007), 
artificial neural networks (Norgaard 2000), fuzzy-logic 
based models (Beyhan & Alci 2010), nonlinear auto 
regressive with exogenous input (NARX) models (Nelles 
2001), some combinations of them like neuro-fuzzy models 
(Babuška & Verbruggen 2003), support vector machine and 
kernel methods of modeling (Tötterman & Toivonen 2009) 
and wavelet decomposition based methods (Billings 2005).
One modeling technique that has been gaining popularity 
in the recent past is the support vector machine (SVM) 
(Suganyadevi & Babulal 2014; Tötterman & Toivonen 
2009). Based on the structural risk minimization principle, 
SVM, also known as support vector regression (SVR) 
in the field of function approximation and regression 
estimation, has found increasing popularity due to the 
higher generalization capability of the models, guaranteed 
global solution and sparsity (Iplikci 2010; Lu & Sun 
2009; Lu et al. 2009). SVR has distinct advantages in 

solving practical problems that involve nonlinearity, small 
training sample, and high dimension (Wang et al. 2013). 
One of the attractive properties of SVR for nonlinear 
system identification is the use of kernels which perform 
nonlinear mapping to a high-dimensional feature space 
implicitly (Cheng & Hu 2012). The selection of the kernel 
functions is one of the major tasks in SVR approach as 
different kernels result in different performances. Several 
nonlinear kernel functions satisfying Mercer conditions 
have been proposed and the commonly employed kernel 
functions include linear, polynomial, radial basis function 
and sigmoid kernels (Cheng & Hu 2012; Iplikci 2010; Liu 
et al. 2010; Lu & Sun 2009; Lu et al. 2009; Shirzad et al. 
2014). In particular, SVR using radial basis function (RBF) 
kernel is widely used for regression purposes due to its 
effectiveness and speed in training process (Cherkassky 
& Ma 2004; Wang et al. 2013; Yao et al. 2004). 
	 Linear and nonlinear models in a parallel structure, 
whereby residuals from the linear model are used to 
develop the nonlinear model to pick up the nonlinearities, 
provides an interesting alternative in nonlinear system 
identification structure (Zabiri et al. 2013). This structure 
relies on the fact that a nonlinear model may perform worse 
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than the linear one if it is not chosen appropriately (Nelles 
2001). By developing a linear model (either using input/
output data or applying first principles) in parallel with 
the nonlinear model such that the overall model output 
is determined by the sum of the linear and the nonlinear 
parts, the performance of the overall nonlinear model is 
then ensured to be either equivalent to or superior than 
the linear model. One such example is the parallel OBF-NN 
model (Zabiri et al. 2013).
	 This paper proposes an SVR model to represent the 
nonlinear part in the linear-and-nonlinear (hereafter named 
L-NL) models in parallel. In this paper, the state-of-the-art 
SVR model performance is investigated and compared in 
both the conventional as well as in the parallel structure 
for identification of a simulated nonlinear system and a 
real plant with small data sets, as well as generalization 
capability to out-of-sample data. Orthonormal basis filters 
(OBF) (Zabiri et al. 2013) model will be developed and used 
in this study to represent the linear part in the parallel L-NL 
models. Section II outlines the SVR formulation and the 
corresponding hyper-parameters selection using a hybrid 
algorithm. In Section III, the proposed parallel L-NL model 
will be developed. The results of simulation case study 
using a nonlinear CSTR will be presented in Section IV and 
the development of the model for a benchmark data from a 
highly nonlinear cascaded tanks laboratory system will be 
covered in Section V. Finally conclusions are drawn and 
future works will be discussed.

MATERIALS AND METHODS

SUPPORT VECTOR REGRESSION AND THEIR 
PARAMETERS SELECTION

Given the training data:

	 {(x1, y1), …, (xn, yn)} ⊂ Rd × R	 (1)

where xi false is d-dimension vector and Rd denotes the 
space of the input data and y is the scalar output. The first 
step in SVR is to map the input x onto an m-dimensional 
feature space using some fixed (nonlinear) mapping and 
then a linear model is constructed in this feature space 
(Cherkassky & Ma 2004).
	 Assume the linear model f in the feature space is in 
the form of,

	 	 (2)

parameterized by a set of parameters w, with gj(×), j = 1, 
…, m represents a set of nonlinear transformations and b 
is the ‘bias’ term. Vapnik’s ε-insensitive loss function is 
defined as (Cherkassky & Ma 2004; Smola & Schölkopf 
2003; Tötterman & Toivonen 2009): 

	 Lε(y,f(×,w)) 	 (3)

	

The empirical risk is:

	 	  (4)

	 The goal of ε-SVR is to perform linear regression in 
the high-dimensional feature space using ε-insensitive loss 
function and at the same time reduce the model complexity 
by minimizing  (Cherkassky & Ma 2004; Lin et al. 
2008; Smola & Schölkopf 2003). This can be formulated 
as a convex optimization problem:

	 Minimize    	 (5)

	 subject to     			   

	
	 To allow for some errors as well as to ensure feasibility 
of the optimization problem, slack variables  are 
introduced. Hence, the SVR formulation is the minimization 
of the following functional:

	 Minimize   	 (6) 

	

	 subject to    	  		
				     

where C is a positive constant (regularization parameter). 
This optimization problem can be transformed into the dual 
problem (Cherkassky & Ma 2004; Lin et al. 2008; Smola 
& Schölkopf 2003), and its solution is given by: 

	 	 (7)

where the dual variables are subject to constraints:

	 0 ≤ αi, 	 (8)

	 The kernel function, K(×i, ×), is asymmetric function 
satisfying Mercer’s conditions (Cherkassky & Ma 2004). 
Since the SVR using radial basis function (RBF) kernel is 
widely used for regression purposes due to its effectiveness 
and speed in training process (Cherkassky & Ma 2004; 
Wang et al. 2013; Yao et al. 2004), RBF kernel function 
is considered in this paper. This kernel function, which 
is an SV admissible kernel (Smola & Schölkopf 2003), is 
represented as: 
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	 	 (9)

where σ is the kernel parameter.
	 The estimation accuracy of an SVR model depends 
substantially on the proper selection of hyper-parameters 
C, ε, and kernel parameter σ (Cherkassky & Ma 2004; 
Lin et al. 2008; Smola & Schölkopf 2003). As reviewed 
in Cherkassky and Ma (2004), there are various methods 
proposed in the literature for selecting the three parameters. 
Cross-validation is one such method, however, the 
approach is very computational and data-intensive. Other 
methods include prior knowledge and/or user expertise or 
selection based on output data range. 
	 For the work in this paper, a hybrid approach is 
proposed. The hyper-parameters are selected by combining 
the analytical prescriptions proposed in Cherkassky and Ma 
(2004) and the conventional cross-validation method. The 
analytical prescriptions serve to provide initial guesses and 
cross-validation is used to fine tune the final optimal values. 
It was found that the combined approach significantly 
reduced the computational demand in the cross-validation 
stage, and is highly effective for our modelling purposes.
In summary, the hyper-parameters are selected using a 
new algorithm as proposed in Figure 1. The parameters C 
and ε at the initial stage in Figure 1 are calculated using 
the analytical expressions in (10) and (11) (Cherkassky 
and Ma, 2004):

	 	 (10)

	  	 (11)

where  and τy are the mean and standard deviation of the 
y values of training data, and ρ is the input noise level. 
Note that the algorithm in Figure 1 does not include 
the determination of the kernel parameter σ. For RBF 
kernel functions σ, it is also directly calculated using 
the recommendation by (Cherkassky & Ma 2004). For 
univariate problems, RBF width parameter is set to  ρd ~ 
(0.1 – 0.5) * range(x). For multivariate d-dimensional 
problems, RBF width parameter is set to ρd ~ (0.1 – 0.5) 
where d input parameters are pre-scaled to [0, 1] range. 
The model errors in Figure 1 is defined as the root mean 
squared error (RMSE) between SVR estimates and the true 
values of the output variable for test/validation input data.

PARALLEL OBF-SVR MODEL DEVELOPMENT

MODEL STRUCTURE

To evaluate the efficacy of the proposed L-NL models in 
parallel using SVR, OBF model is selected as the linear part 
(Zabiri et al. 2013). In developing the proposed parallel 
OBF-SVR model, a model structure similar to OBF-NN 
(Zabiri et al. 2013) is adopted. In the parallel structure, the 
SVR model is developed using residuals generated from 
training data of the linear OBF. The sequential identification 
structure for the parallel OBF-SVR model is illustrated in 
Figure 2 (Zabiri et al. 2013). 
	 The linear OBF model is identified first, and the 
nonlinear SVR model is then developed using training 
data with the predicted residuals. The overall output is 
then expressed as the sum of the outputs of the linear and 
nonlinear models. A general linear model structure may 
be represented as:

FIGURE 1. The proposed SVR hyper-parameters selection algorithm
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	 yl(k) = G(q)u(k) + e(k)	 (12)

where yl(k) is the output of the linear model, G(q) is the 
transfer function of the system, q is the forward shift 
operator, u(k) is the input, and refers to the system white 
noise. A nonlinear output error (NOE) model structure, on 
the other hand, is generally expressed as (Nelles 2001):

	 	 (13)

	 y(k) = yl(k) + ynl(k)	 (14)

	 Using (12) and (13) to represent the linear and 
nonlinear components, respectively, (14) can be rewritten 
as:

	 	 (15)

where yr refers to the predicted residuals of the linear 
model, . It may be emphasized here that the linear 
model is identified first from the input-output data and the 
residuals of the linear model together with the input data 
are used to develop the nonlinear component of the model. 

The OBF linear model is expressed as:

	 	 (16)

where N is the number of orthonormal basis filters, cj are the 
optimal OBF model parameters, Lj(q) are the orthonormal 
basis filters, and q is the forward shift operator. For the 
nonlinear model fnl(∙), SVR as described by (7) in previous 
section is used. 

OBF-SVR NONLINEAR IDENTIFICATION ALGORITHM

Given a set of nonlinear data to be identified [u(k), ym(k)], 
the algorithm can be described as follows:

Develop a parsimonious OBF model using methods 
described by (Tufa et al. 2011) to get yl; Calculate the 
predicted residuals using  = ym – yl ; Develop the SVR 
model with x(k) = [u(k – 1), …, u(k – m), (k – 1),…, 
(k – m)] as inputs and  as outputs of the model. 

RESULTS AND DISCUSSION

SIMULATION CASE STUDY: A NONLINEAR CSTR

Continuous stirred tank reactors (CSTR) are often 
encountered in industrial applications and one of the 
operating units widely considered in the control literature. 
A highly nonlinear dynamics makes CSTR a popular choice 
in nonlinear systems studies, and the ease of manipulating 
the flow of reactant or cooling liquid makes it amenable 
for control design purposes.
	 The CSTR plant considered is a demo model in the 
Neural Network Control System Toolbox in MATLAB 
(MATLAB, Release 2008b) shown in Figure 3. The model 
equations are:

	 	 (17)

	

FIGURE 2. The proposed sequential identification of residual-
based parallel OBF-SVR model (I: simulation configuration, 

II: prediction configuration)

FIGURE 3. A catalytic continuous stirred stank reactor (CSTR)

	 In the equations, h(t) is the liquid level, Cb(t) is the 
product concentration at the output of the process, w1(t) 
is the flow rate of concentrated feed, and w2(t) is the flow 
rate of the diluted feed, Cb2. The input concentrations are 
set to Cb1 = 24.9 and Cb2 = 0.1. The constants associated 
with the rate of consumptions are kr1 = kr2 = 1.
	 To generate the data for the identification of the 
nonlinear CSTR plant, Level change at random instances 
input signal (Norgaard 2000) is adopted. The resulting 
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input excitation signal has varying amplitudes and the 
levels are held constant at random sampling times. The 
nonlinear system identification is carried out for the SISO 
system by considering the dynamic characteristics from the 
changes in the flow rate of the concentrated feed, w1 and 
the product outlet concentration, Cb. The corresponding 
input-output data is as shown in Figure 4. 

	 The identification of the parallel OBF-SVR model is 
as described in Section III. Table 3, on the other hand, 
summarizes the optimal model parameters for the linear 
OBF subsystem. The performance comparisons are done 
on the validation data set. Figure 5 provides the output 
comparisons for the SVR and the proposed parallel OBF-
SVR models for the CSTR case study. It is observed that 
the performances of both models are fairly similar with 
each other, indicating the capability of the parallel OBF-
SVR model in achieving almost comparable accuracy in 
identifying the nonlinear system as the SVR model. 
	 The summary of the parallel OBF-SVR model 
performance in terms of modelling errors against the SVR 
models is given in Table 4. From the results obtained in 
this section, it has been shown that the simple nonlinear 
system identification algorithm adopted to develop the 
parallel OBF-SVR model results in efficient development 
of the proposed model. The identification analysis showed 
the capability of the parallel OBF-SVR model to identify 
nonlinear systems, and the performance has been shown 
to be at par with the other model. 
	 As an additional analysis, the performance of both 
models is also evaluated under extrapolating conditions. 
Extrapolation is a term that is used to describe the scenario 
when a model is forced to perform prediction in regions 
beyond the space of the original training data set. Due 
to the varying nature of processes in industry, empirical 
models tend to suffer from reduced robustness performance 
due to the models’ incapability to maintain their original 
accuracy for data outside the original training range 
(Castillo 2003; Himmelblau 2008; Kordon 2004; Lennox et 
al. 2001; Nelles 2001). In process industries, extrapolation 
is completely unavoidable because plants often operate 
outside the range of the original identification data used 
to develop the model (Castillo 2003; Kordon 2004). 
The variations in processes are actually a dominant and 
frequently encountered event. Many factors dictate such 

FIGURE 4. Input (wl) – Output (Cb) data of the nonlinear 
CSTR case study

	 For the identification analysis, 1502 (1998 ≤ k ≤ 3500) 
data points are used with approximately 65% of the data 
used as the training data set, and the balance 35% as the 
validation data set. This data range is selected to represent 
the normal operating conditions with smaller upper and 
lower limits in comparison to the testing data set. Two 
models are developed for comparison purposes, namely 
SVR model, and SVR model in parallel with linear OBF 
model (parallel OBF-SVR).
	 Using the methods described in Section II, the optimal 
hyper-parameters obtained for the SVR and parallel OBF-SVR 
models for the CSTR case study are as shown in Tables 1 
and 2, respectively. 

TABLE 1. Optimal values for SVR hyper-parameters

Case study C ε σ
CSTR

Cascaded tank
2.03653
9.5589

0.002093
0.002493

0.04
0.2368

TABLE 3. Linear OBF model subsystem

Case studies No. of OBF parameters Estimated pole,  OBF parameters, C
CSTR

Cascaded tanks
6
4

0.9771
0.9546

[2.1080 -0.17 0.5583 0.0452 0.1908 -0.2161]
[0.4501 0.07350.01650.0590]

TABLE 2. Optimal values for parallel OBF-SVR hyper-parameters

Case study C ε σ
CSTR

Cascaded tank
9.137
209.38

0.002094
0.002812

0.08
1
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variations, however the major contributing causes include 
the different operating regimes, equipment upgrades, or 
product demand fluctuations.
	 Figure 6 shows the performance of the models when 
subjected to range extrapolation. The figure shows the 
measured and predicted values of the product outlet 
concentration, Cb for an average increase/decrease in 
input w1 that forces the output concentration to go lower 
than the original minimum of 15.1, and above the original 
maximum of 18.7. It can be seen that the SVR model is 
unable to predict correctly whenever the output goes 
beyond the original training range. Improved prediction 
performance, however, is visible for the parallel OBF-SVR 
model. The RMSE calculated for the OBF-SVR model is 
0.0636, far smaller than 0.4596 for the SVR, indicating 
higher generalization property of the SVR model when 
integrated in the parallel L-NL structure. Note that in this 
study, we assume that the minimum and maximum of the 
extrapolated test set are unknown. 

REAL-PLANT CASE STUDY: CASCADED TANK 
LABORATORY PROCESS

Validation is an essential step in analyzing the performance 
of any new models. As a second step, the performance 
of both models are compared for the identification of 
benchmark data from a laboratory scale cascaded tanks 
(Wigren 2006; Wigren & Schoukens 2013). The process 
is a fluid level control system consisting of two cascaded 
tanks with free outlets fed by a pump. The water is 
transported by the pump to the upper of the two tanks. 
The input signal to the process is the voltage applied to the 

pump and the two output signals consist of measurements 
of the water levels of the tanks. Since the outlets are open, 
and since the tanks are deep with large vertical extension, 
the result is a significantly non-linear dynamics that varies 
with the level of water. The process is controlled from 
a PC equipped with MATLAB interfaces to A/D and D/A 
converters attached to the water level sensors and the 
actuator pump. The sensors are linear with a much higher 
bandwidth than the process. 
	 In this real plant benchmark case study, the data that 
was recorded from the cascaded tanks used an input signal 

TABLE 4. Identification RMSE: Comparison on the validation set

Case studies SVR OBF-SVR

CSTR
Cascaded tanks laboratory

0.038
0.0831

0.0118
0.1132

FIGURE 5. Output comparison for CSTR case study on validation data set

FIGURE 6. Output comparison for the CSTR extrapolation study 
(horizontal lines denote limits on training data)
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that was generated as the uniformly distributed input signal 
above. The set of data was collected with a sampling period 
of 5.0 s and provide 2500 samples of input-output data for 
both the upper and lower tank as shown in Figure 7. 

beyond the original training range of 6.357, whereas SVR 
model prediction tend to truncate when these limits are 
reached. It is interesting to note however that the RMSE 
value for the parallel OBF-SVR model is slightly higher than 
the SVR model as indicated in Table 5. This is contributed 
by the slight leading of the predicted values as observed 
in Figure 9 each time the model goes beyond the original 
training range. 

TABLE 5. Extrapolation RMSE

Case studies
RMSE

SVR OBF-SVR

CSTR
 Cascaded tanks laboratory

0.4596
0.5405

0.0636
0.6636

FIGURE 7. Input (u) – Output (hl) data from the benchmark 
cascaded tanks (horizontal lines denote limits on training data

	 To enable the comparison between both models 
in terms of their identification as well as extrapolation 
capabilities, the cascaded tanks data are segregated in two 
parts. Identification data consists of 1 ≤ k ≤ 476 and 723 
≤ k ≤ 1000. Once the models are developed, trained and 
validated using the training set, they are then subjected 
to the whole 2500 data to evaluate the extrapolation 
capability. Figure 8 and the RMSE values in Table 4 indicate 
similar performance as shown in the simulation case study. 
The parallel OBF-SVR model is able to satisfactorily identify 
the highly nonlinear cascaded tanks system.
	 Both the models are then subjected to the full 
benchmark data set which includes points that are beyond 
the original training range. Figure 9 shows that the parallel 
OBF-SVR model is able to predict accurately the peaks 

FIGURE 8. Output comparison for the benchmark cascaded 
tanks case study on validation data set

FIGURE 9. Output comparison for the benchmark cascaded 
tanks extrapolation study (horizontal lines denote 

limits on training data)

	 As mentioned earlier, both the SVR models are 
utilizing the RBF kernels. As noted in Crone et al. 
(2006), SVR models with RBF kernels have problems in 
extrapolating trends which can be clearly observed from 
the results obtained in Figures 6 and 9. What greatly 
differentiates between the two SVR models studied in 
this paper is the nature of the data that the models work 
upon. In the conventional SVR, the model deals with actual 
values of the process variables. In contrast, the SVR model 
in the parallel structure handles only residuals values of 
the process variables. The linear OBF model in (16) acts as 
an excellent base for the residuals SVR, provided that the 
parameters are chosen adequately. Linear model usually 
captures the average dynamics of the nonlinear process, 
and more importantly, its extrapolation behavior is linear 
which is preferable for dynamic systems. The linear OBF 
model ensures that the inputs to the residuals SVR are 
always, to a certain (reasonable) extent, not too far off 
from the original training range. Therefore, by combining a 
linear, grey box model (OBF) and a nonlinear model (SVR), 
the dynamics of a nonlinear system can be effectively 
captured with a good potential for extrapolation.
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CONCLUSION

In this paper, parallel OBF-SVR model has been developed 
as an alternative of support vector machine model. A 
comparative study has been performed for two different 
models, namely SVR model and SVR model in parallel 
with linear OBF (parallel OBF-SVR) model. Identification 
results show that even though all models are able to 
identify nonlinear systems efficiently, the proposed parallel 
OBF-SVR has better performance than SVR model when 
subjected to out-of-sample test data beyond the original 
training range with unknown minimum and maximum 
values. It may be concluded that not all nonlinear models 
may perform well in range extrapolated regions even 
though they may be very accurate in the range of training 
data. Future work is to extend the study for other type of 
kernel functions as well as for closed-loop conditions using 
nonlinear model predictive control.
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