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 ABSTRACT

The Cox proportional hazards model is most widely used in survival analysis for modeling censored survival data. In 
this model, the effect of the covariates is assumed to act multiplicatively on the baseline hazard rate and the ratio of the 
hazards is constant over survival time. This is an important assumption and sometimes may not hold in some survival 
studies. The Cox model can lead to biased results when the proportionality assumption is not satisfied. In such a situation, 
the additive hazards regression models have been an alternative to proportional hazards models. The Aalen model 
allows for time-varying covariate effects. In some situations, some covariate effects may be constant but the others may 
not. In such cases, the Cox-Aalen model is a better alternative since it allows to combine both kinds of covariates in 
the same model. In this study the Cox proportional hazards model, Aalen’s additive hazards model and the Cox-Aalen 
model have been considered. These models have been applied to kidney transplant data and the differences in estimates 
of the unknown parameters obtained by the Aalen’s model, the Cox model and the Cox-Aalen model are investigated.

Keywords: Aalen’s additive hazards model; Cox-Aalen model; Cox proportional hazards model; kidney transplant data; 
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ABSTRAK

Model bahaya berkadaran Cox paling meluas digunakan dalam analisis kemandirian untuk pemodelan data tertapis 
kemandirian. Dalam model ini, kesan kovariat diandaikan bertindak secara berdaya darab atas garis dasar kadar bahaya 
dan nisbah bahaya adalah malar dari masa kemandirian. Ini adalah suatu andaian yang penting dan kadang-kala 
tidak benar dalam beberapa kajian kemandirian. Model Cox boleh membawa kepada keputusan yang pincang apabila 
andaian perkadaran tidak dipenuhi. Dalam keadaan sedemikian, model regresi bahaya aditif menjadi alternatif kepada 
model bahaya berkadaran. Model Aalen membenarkan kesan kovariat masa yang berbeza. Dalam sesetengah keadaan, 
beberapa kesan kovariat adalah malar tetapi yang lain tidak. Dalam situasi tersebut, model Cox-Aalen adalah alternatif 
yang lebih baik kerana ia membolehkan penggabungan kedua-dua jenis kovariat dalam model yang sama. Dalam kajian 
ini, model bahaya berkadaran Cox, model bahaya aditif Aalen dan model Cox-Aalen telah diambil kira. Model-model 
ini telah digunakan untuk data pemindahan buah pinggang dan perbezaan dalam anggaran parameter tidak diketahui 
yang diperoleh pada model Aalen, model Cox dan model Cox-Aalen telah dikaji.

Kata kunci: Analisis penakatan; data pemindahan buah pinggang; model bahaya berkadaran Cox; model bahaya aditif 
Aalen; model Cox-Aalen

INTRODUCTION

Life history studies collect information on events and other 
outcomes during people’s lifetimes (Lawless 2013). Thus 
gender, age, family diagnostics, lifestyles typically could 
be important covariates that have an impact on the ssurvival 
time T.  As will be discussed in more detail in example, we 
also observed some covariates have significant impacts on 
the lifetime of the transplanted kidneys. 
	 In analyzing censored survival data it is important 
to ascertain the relationship between the survival time 
T and the covariates by a suitable hazards regression 
models. There are mainly two approaches to the modeling 
of covariate effects on survival time. The first approach 
is the classical linear regression approach. The second 

approach to modeling the effects of covariates on survival 
is to model the conditional hazard rate as a function of 
the covariates. There are two classes of models that are 
used. The first class is known as multiplicative hazards 
regression models and the second is known as additive 
hazards regression models.
	 In the multiplicative hazards regression models, the 
conditional hazard rate of an individual is a product of a 
baseline hazard rate and a non-negative function of the 
covariate. Let the random variable T denote the survival 
time of an individual and X is a vector of covariates. In 
the multiplicative hazards models, the conditional hazard 
function λ(t⏐X) of a survival time T associated with 
covariates is defined as,
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	 λ(t⏐X) = λ0(t)r(XT β),

where λ0(t) is the baseline hazard and it may have a 
specified parametric form or may be left as an arbitrary 
non-negative function. In the second part of the model, 
r(XT β) characterizes the structure of the hazard function 
and describes how the hazard function changes as a 
function of the covariates. Under these model, the ratio of 
the hazard functions for two individual are called hazard 
ratio and it depends only on the function r(XT β). In the 
multiplicative hazards models, the effect of the covariates 
act multiplicatively on the baseline hazard rate and the 
hazard for each covariate is assumed to be constant over 
time (Klein & Moeschberger 2003). This assumption 
may not be satisfied in some censored survival data set. 
In such situations, the additive hazards regression models 
are alternative to multiplicative hazards models. In the 
additive models, the covariates are assumed to act in an 
additive manner on an unspecified baseline hazard rate and 
conditional hazard function λ(t⏐X) are given by,

	 λ(t⏐X) = β0(t) + X1β1(t) + … + Xpβp(t),

where β(t) is a (p + 1 × 1) vector of regression coefficients 
and X is a (p × 1) vector of covariates. The additive model 
is useful when the main interest is risk difference rather 
than relative risk and the model allows covariate effects 
to vary with time. Additive hazards model specifies a 
different aspect of the association between the survival time 
and covariates and is more appropriate than proportional 
hazards model in some applications. The model provides a 
simple and easy approach for adding flexibility into models 
(Cortese et al. 2010; Martinussen & Vansteelandt 2013). 
	 Although the additive models allow the effects of the 
covariates to change over time, some covariate effects 
can be well described with constant relative risk. In this 
situation, the effects of covariates estimated by either 
additive or multiplicative model are not well and it is the 
best way to combine the additive and multiplicative models. 
These models that are called additive-multiplicative models 
are more flexible and useful models. For these models, 
some covariate effects have been described multiplicative 
manner whereas the other covariates have been described 
additive manner (Martinussen & Scheike 2006). 
	 In this study, the Cox proportional hazards model 
which is the most popular model of multiplicative models, 
Aalen’s additive hazards model which is one of the 
important additive models and Cox-Aalen model which is 
the more flexible model of additive-multiplicative model 
have been considered. 
	 The survival time data are conveniently studied by 
using of counting process. Although the censoring is a 
major characteristic of survival data, censoring structure 
can easily insert into counting process methods. An 
important contribution to the counting processes and 
martingale theory formulation is given by Aalen (1993, 
1989, 1980) and Aalen et al. (2008). The considered 
models are discussed in the context of counting processes 

and martingale theory. In the next section, the counting 
process approach to survival analysis is introduced and 
some definitions are given. After that Cox proportional 
hazards model, Aalen’s additive model and Cox-Aalen 
model are summarized and these models have been applied 
to kidney transplant data, which measured transplanted 
kidney’s lifetime. In last section, the results are discussed 
in connection of related models. The estimates of models 
have been obtained using R package.

COUNTING PROCESS

A counting process [N(t), t ≥ 0] is a stochastic process that 
satisfies N(t = 0) = 0, N(t) < ∞ with probability one N(t)
right-continuous, non-decreasing with jumps of size one. 
N(t), can be decomposed into two parts which is referred 
to as a compensator Λ(t) and a martingale M(t). The 
martingale part is thought of as an error term of the model,

	 N(t) = Λ(t) + M(t). 

	 These two parts are also functions of time and they 
have stochastic structure. Λ(t) is called also cumulative 
intensity process and defined by,

	 Λ(t) = (s)ds,

where intensity process λ(t) is a predictable process and it 
is related to the risk process Y(t). The risk process Y(t) is  a 
stochastic process which Y(t) is a function of the number of 
individuals at risk at a given time. Y(t) is a left-continuous, 
non-increasing step function with step of size one (Fleming 
& Harrington 1991). 
	 The survival time data consist of observing the 
occurrence of events over time. These processes may be 
described by counting processes. Suppose we observed n 
i.i.d. (Ti, δi, Xi), where Ti is the event time of individual; δi 
is the indicator function which determined right censoring 
time (δi = 0) or failure time (δi = 1) of i’th individual; and 
Xi is a vector of covariates of i’th individual.
	 The function Ni(t) is zero until the i’th individual’s 
failure time and then jumps to one,

	 Ni(t) = I [Ti ≤ t, δi = 1].

	 Similarly the risk process fall down at both failure and 
censoring times, and is defined as,

	 Yi(t) = I [Ti ≥ t].

	 The process N(t) =  Ni(t) and Y(t) =  Yi(t) are 
also a counting process. The chance of an event at time t, 
given history just prior t, is given by,

	 Pr[t ≤ Ti < t + dt, δi = 1⏐Ti ≥ t] = λ(t)dt,
 
where λ(t) is the hazard function. For a given counting 
process, dN(t) is defined as the change in process N(t) 
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over a short time interval [t, t + dt). The expected number 
of failure in the time interval [t, t + dt), given history just 
prior t, is given by, 

	 E[dN(t)⏐Ti ≥ t] = Y(t)λ(t)dt,

where Y(t) is the at risk indicator and λ(t) is the hazard 
function. The cumulative intensity process can be defined 
as,

	 Λ(t) = (s)λ(s)ds.

COX PROPORTIONAL HAZARDS REGRESSION MODELS

The Cox proportional hazards model proposed by Cox 
(1972) is the most popular semi-parametric regression 
model and by far the most used statistical tool for censored 
survival data. The model is an extremely useful and 
powerful model, simple to fit and the results are easy to 
explain. The Cox model has great flexibility because of 
two reasons. Firstly, the exponential form of function 
of covariates assures non-negative rates and secondly, 
no assumptions are made for the baseline hazard, which 
makes it a generally applicable model. The Cox model is 
popular especially in settings where the covariates effects 
are estimated (Oakes 2013). 
	 Andersen and Gill (1982) extended the Cox model to 
the counting processes framework. The model assumes 
that the intensity is of the form,

	 λ(t⏐X) = Y(t)λ0(t)exp(XTβ),

where λ0(t) is a nonparametric baseline hazard function; 
β is a (p×1) vector of regression coefficients; X is a (p×1) 
vector of covariates and Y(t) is an at risk indicator. The 
covariates are organized into a design matrix (n×p), X(t) 
= (Y1(t)X1, …, Yn(t)Xn)

T, and the model can be written in 
differential form, 

	 dN(t) = λ(t)dt + dM(t).

	 Statistical inference in the Cox model is based on 
maximum partial likelihood (Andersen & Gill 1982; Cox 
1975). Let T1 < T2 < … denote the event time and Ri = 
{l⏐Yl(Ti) = 1} denote the risk set at time Ti. The partial 
likelihood is written in the form

		  L(β) = 

and maximum likelihood estimator  is the value of β that 
maximizes L(β).
	 The proportionality assumption of the model 
corresponds to assuming that the hazard functions are 
multiplicatively related to each other and their ratio is 
constant over time. This is an important assumption and 
it may not hold in some survival data where the impact 

of a covariate on hazards may change over time. When 
the proportional hazards assumption is violated there are 
several methods to overcome this problem (Champbell & 
Dean 2014). In some cases, it may be more convenient 
to use the model in which the effect of covariates has an 
additive measure rather than a relative measure. 

THE AALEN’S ADDITIVE HAZARDS REGRESSION MODELS

Aalen’s additive hazards model is a useful alternative to the 
Cox model. The model was first suggested by Aalen (1980). 
Aalen’s model is non-parametric and values of regression 
coefficients are allowed to vary over time. The advantage 
of this model is that, being linear in covariates and changes 
in coefficient can easily be detected at each distinct survival 
time (Henderson & Milner 1991). In Aalen’s additive 
hazards model, the conditional hazard function λ(t⏐X) of 
a survival time T associated with covariates is defined as,

	 λ(t⏐X) = Y(t)X(t)Tα(t),

where Y(t) is the at risk indicator; α(t) is a (p×1) vector of 
regression coefficients; X(t) is a (p×1) vector of covariates. 
The cumulative regression coefficients are easier to 
estimate than the regression coefficients themselves. 
Sometimes it is called cumulative risk function and is 
defined by, 

	 A(t) = (s)ds.

	 The covariates are organized into a design matrix 
(n×p), X(t) = (Y1(t)X1(t), …, Yn(t)Xn(t))

T, and it can be 
written, 

	 dN(t) = λ(t)dt + dM(t) = X(t)dA(t) + dM(t).

	 The problem of estimation, testing and model fitting 
were discussed in Aalen (1993, 1989). Aalen introduced 
ordinary least square estimation of integrated coefficient 
and it is given by,

	 d (t) = (X(t)TX(t))–1X(t)TdN(t),
	
where X(t) has full rank. Accumulating the increments 
over the event times, it is obtained the estimator (t) for 
the vector of cumulative regression function. Huffer and 
McKeague (1991) and McKeague (1988) have developed 
weighted least square estimator. Vansteelandt et al. (2014) 
showed that Aalen’s least square estimator is unbiased 
when treatment is randomized.
	 The cumulative regression functions are plotted against 
time give a description of how the covariates influence the 
survival over time. The Aalen’s plots are obtained by 
estimating the instantaneous contributions of covariates 
to the hazard function at each distinct survival time and 
estimates are obtained by summing up these contribution. 
The slope of plots indicates whether a specific covariate 
has a constant effect or a time-dependent effect. Positive 
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slopes occur when increasing the covariate increases 
the hazard; negative slopes occur when increasing the 
covariate decreases the hazard during periods. The Aalen 
model provides a graphical method to check the time 
dependence of covariate effect and also used to provide 
an informal assessment of the adequacy of proportional 
hazards assumption in the Cox model (Aalen 1993; Lim 
& Zhang 2009).

COX-AALEN HAZARDS REGRESSION MODELS

The additive and multiplicative models discussed above 
represent different relationships between the hazard 
function and the covariates and sometimes it will not be 
clear which model is suitable for a specific application. 
In this situation it is the best way to combine the models. 
These models may be combined several ways. Lin and Ying 
(1995, 1994), Martinussen and Scheike (2002), Scheike 
and Zhang (2003, 2002) suggested different models. 
	 Cox-Aalen regression model proposed by Scheike 
and Zhang (2002) is more flexible model than the other 
additive-multiplicative models. This model based on an 
additive structure on the basis of multiplication model. In 
the Cox-Aalen model, the covariates are partitioned into 
two parts, some covariate effects work additively on the 
intensity and other covariate effects to act multiplicatively. 
It is a more flexible and potentially useful model which is 
defined by,

	 λ(t⏐x) = Y(t)[X(t)T α(t)]exp(Z(t)Tβ)

where Y(t) is the at risk indicator; (X(t), Z(t)) is a (p + q×1)
vector of covariates; α(t) is a (p×1) vector of time-varying 
regression coefficients and β is a (q×1)vector of relative 
risk regression coefficients. The model allows some 
covariate effects to be additive nonparametric and time-
varying (X(t)) and other covariates (Z(t)) to have constant 
multiplicative effects. The model provides a simple way 
of including time-varying covariate effects.
	 For this model estimation procedure consist of two 
steps and the key quantities are A(t) = (s)ds and β. 
Estimation is based on solving the score equations of the 
model to obtain . Estimate dA(t) by weighted least squares 
principle by,

	 d (t) = Y–( , t)dN(t).

	 The weights depend on β and are equivalent to 
maximum likelihood weights. One advantage of these 
weights is reduced to the score for the partial likelihood 
in the case of the Cox model. The derived estimator is 
efficient and has large sample properties. For a detailed 
description of the estimation procedures is given Scheike 
and Zhang (2002).

EXAMPLE

The data have been collected from register of patients at 
Başkent University Hospital between January 1, 1990 and 
November 30, 1992 (Başar 1993). In this period of time, 
156 patients were operated with kidney transplantation 
and the lifetimes of the transplanted kidney are measured 
in days, until the kidney’s death or censoring occurs. 
Thirty-four failures had been observed in the period of 
that study. Several covariates which have impact on the 
kidney’s lifetime have been collected and six of them are 
included in this study. These are gender, patient age, donor 
age, verapamil, donor type and cold ischemic time. Fifty 
four patients were given verapamil after the operation 
and the others were not given; and have been observed 
4 and 30 failure, respectively. Donor type of 43 patients 
has been cadaveric and the others have been live and have 
been observed 16 and 18 failure, respectively. 
	 Firstly the Cox model is applied to the data and the 
results are given in Table 1. Three covariates turned to 
be significant. These are donor age, verapamil (0=not 
given, 1=given) and donor type (0=live, 1=cadaver). 
The exponential coefficients or the relative risks are 
interpretable as multiplicative effects on the hazard 
function. The risk for a patient with cadaver donor is 3.99 
times greater than the risk for a patient with live donor 
while the other covariates are constant. The risk for a 
patient that is given verapamil is 0.204 times smaller 
than the risk for a patient that is not given. The overall 
fit of the Cox model is investigated by the likelihood-
ratio, Wald and score tests. These tests are statistically 
very highly significant with p-values 0.0002, 0.0004, 
0.0002, respectively. When three significant covariates 
are included in the model, the relative risks for three 
covariates are almost same. The overall test of the model is 
also statistically very highly significant for the likelihood-
ratio, Wald and score tests. 
	 When the proportional hazards assumption is 
investigated by examining scaled Schoenfeld residuals 

TABLE 1. Estimation of regression coefficient, relative risk, 
 standard error, z and p-value from the Cox model 

Covariate Coeff. R.Risk SE z p-value
Gender
Patient age
Donor age
Verapamil
Donor type
Cold I. time

 0.35391
-0.00404
 0.03294
-1.58763
 1.38404
 0.01608

1.425
0.996
1.033
0.204
3.991
1.016

0.4079
0.0154
0.0124
0.5492
0.3645
0.0118

 0.868
-0.262
 2.654
-2.891
 3.797
 1.362

0.3856
0.7933
0.0079
0.0038
0.0001
0.1732
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and Grambsch and Therneau test (Therneau & Grambsch 
2000), proportionality of covariate effects is satisfied for 
donor age and verapamil but there is a little evidence for 
donor type, resulting in p-value 0.095. The global test 
indicated that there is a little evidence departure from the 
standard Cox model (p-value = 0.104). The test results 
are given in Table 2. The Cox-Snell residuals are used for 
assessing the fit of the Cox model. If a model fits well to 
the data, the plot of the residuals should follow the straight 
line with an intercept zero and slope one. Figure 1 shows 
a plot of the Cox-Snell residual versus the estimated 
cumulative hazards of residuals. The plot is suggested 
that the model is not fit exactly.

on hazard is non-proportional for the first 200 days. A case 
like this has not been observed for the verapamil.
	 The plot of the scaled Schoenfeld residuals is useful 
diagnostic tools. A non-zero slope is an indication of a 
violation of the proportional hazard assumption. The 
proportional hazards assumption is satisfied for donor age 
and verapamil but it seems there is not exactly satisfied 
for donor type. The graphs of the Schoenfeld residuals are 
presented in Figure 3. 
	 Secondly, the Aalen’s additive model is fitted to 
the data and with the same covariates, namely donor 
age, verapamil and donor type, turned to be statistically 
significant at the level of α = 0.05. The other covariates 
have no effects on the kidney’s lifetime. The overall test 
of Aalen’s additive model has p-value = 0.013. The plots 
of estimated cumulative regression functions are obtained 
to see the effect of covariate over time. The estimated 
cumulative regression coefficients for covariates with 95% 
pointwise confidence intervals are shown in Figure 4. 
	 The slope of an estimated cumulative regression 
function is positive when covariate increases and this fact 
correspond to an increasing hazard rate. On the other hand, 
if the slope is negative while the covariate increases, then 
this fact points to a decreasing hazard rate. If the slope of 
cumulative sums approaches zero then a covariate has no 
effect on the hazard. Figure 4 indicates that the estimates 
of cumulative regression function for gender patient age 
and cold ischemic time are constant at a level of zero 
and hence omitted. The estimated cumulative regression 

FIGURE 1. Cox-Snell residual plot

FIGURE 2. Cumulative hazard functions for donor 
type for only the first 200 days

FIGURE 3. Smoothed scaled Schoenfeld residual plots with 95% pointwise 
confidence intervals for donor age, verapamil and donor type

TABLE 2. Test of proportional hazards assumption

Rho Chisq p-value
Donor age
Verapamil
Donor type
GLOBAL

-0.125
 0.201
 0.285

–

0.632
1.430
2.784
6.161

0.4266
0.2318
0.0952
0.1040

	 A simple graphical test of the proportionality 
assumption can be made by looking at the hazard functions 
curves. When the hazard functions for the levels of 
covariate are crossed, the proportionality assumption is 
violated. The hazard function curves for donor type are 
given in Figure 2. It is clear that the impact of donor type 
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function plot for donor age is increased rapidly only over 
the first few days and after this it is increased very slowly 
and linearly. The regression function plot for verapamil 
has a significant and fairly constant decreasing effect 
during about the first 400 days and after this point its 
effect was reduced. Few failures were observed when 
patients receiving verapamil and therefore this plot 
should be interpreted with caution. The slope of estimated 
cumulative coefficient for donor type is almost zero during 
the first 200 days and then it was increased. It seems that 
the donor type has a time-varying effect and the risk 
increases as the time goes on. 
	 Thirdly the Cox-Aalen model is fitted to the data. 
The Cox and Aalen model show that the effects of donor 
age and verapamil were well described by constant 
coefficients. Therefore, these effects have been included 
in the multiplicative part of the Cox-Aalen model. When 
donor type known to have time-varying effect, it was 
included in the additive part of the model, thus allowing it 
to be time-varying. The results of multiplicative part of the 

Cox-Aalen model are given in Table 3. The multiplicative 
part of the model suggested that the relative risk of donor 
age is 1.037 and the relative risk of verapamil is 0.219. 
These results are similar to the Cox model. In order to 
evaluate the goodness of fit of the covariates included 
in the multiplicative part of the Cox-Aalen model, it is 
considered cumulative score processes (Scheike & Zhang 
2003). The score processes to test proportionality for 
donor age and verapamil are given in Figure 5 with 100 
random realizations under the null hypothesis of constant 
multiplicative effects. Figure 5 indicates that constant 
multiplicative effect is satisfied for these covariates. In 
the additive part of the Cox-Aalen model, the estimated 
cumulative regression coefficient of donor type with 
95% pointwise confidence intervals is shown in Figure 6. 
The donor type seems to be an insignificant factor in the 
initial stage of 200 days. However in the following days 
there appear to be a strong positive effect on the kidney 
lifetime. We therefore concluded that the Cox-Aalen 
model captured better data characteristic.

TABLE 3. Estimation of regression coefficient, relative risk, standard error, z and 
p-value for multiplicative part of Cox-Aalen model

Covariate Coeff. R.Risk SE z p-value

Donor age  0.0359 1.037 0.0138  2.61 0.0091
Verapamil -1.5200 0.219 0.5300 -2.87 0.0041

FIGURE 4. Estimated cumulative regression functions with 95% pointwise 
confidence intervals based on Aalen’s additive model
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CONCLUSION

In this study the Cox proportional hazards model and the 
Aalen’s additive model and Cox-Aalen model were applied 
to a kidney transplant data. The Cox and the Aalen’s model 
resulted in the same covariates which have significant effect 
on the hazard function. However, although they agree on 
which covariates are effective, it is not obvious to distinguish 
whether they are additively or multiplicatively effective. The 
covariates of the Cox model have multiplicative effects on 
unknown baseline hazard, but the covariates of the Aalen’s 
model have additive effects. In other words, the relationship 
between the covariates and survival time is different at the 
models above. The Aalen model allows for time-varying 
covariate effects, while the Cox model allows only a 
common time-dependence through the baseline. 
	 The Aalen’s model provides a graphical method to 
check on a time dependence of covariate effects and it may 
be used for the significance test of Cox’s model. Although the 
Aalen’s model provides more details in terms of all covariate 
effects over time, the simple interpretation of effects is not 
possible. The Cox and the Aalen’s model provide different 
aspects of the relationship between risk factors and time to 
failure and may be used to complement each other. In this 
sense, two models are not alternatives to each other and 
together provide different summary measures and a better 
understanding of data. The combined Cox-Aalen model can 
handle the time-varying effects more easily. This model has 
an advantage that allows to include both the additive and 
multiplicative covariate effects in the same model. Thus 
the Cox-Aalen model would provide a better prediction for 
the cumulative incidence probabilities. The model is more 
flexible and has a wider application for survival data. 
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