Sains Malaysiana 52(5)(2023): 1345-1358

http://doi.org/10.17576/jsm-2023-5205-02

 

Keupayaan Aplikasi Indeks Spektrum dalam Penentuan Perubahan Pantai

(Applicability of Spectral Indices in Determination of Coastal Changes)

 

SARAVANAKKUMAR NACHIMUTHU & MUZZNEENA AHMAD MUSTAPHA*

 

Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 17 Jun 2022/Diterima: 5 Mei 2023

 

 Abstrak

Pantai penting dalam menyediakan pelbagai perkhidmatan ekosistem. Garis pantai berubah secara dinamik dan analisis perubahan garis pantai berupaya dilakukan oleh teknologi penderiaan jauh dan GIS. Tujuan kajian ini adalah mengukur keupayaan indeks spektrum seperti Modified Normalized Difference Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI) dan Soil Adjusted Vegetation Index (SAVI) dalam membezakan litupan tanah serta penentuan perubahan garis pantai di pantai barat, Johor antara tahun 2000 dan 2020. Penyelidikan ini dijalankan dengan analisis data imej satelit Landsat 7 ETM+ (2000) dan Landsat 8 OLI/TIRS (2020) menggunakan perisian ERDAS dan ArcGIS. Imej indeks spektrum dijana bagi penentuan garis pantai melalui pengelasan OTSU. Tindan lapis imej dibuat bagi menentukan perubahan garis pantai. Penggunaan indeks spektrum dalam kajian ini menunjukkan bahawa ketiga-tiga indeks spektrum tersebut mampu membezakan air dan darat dengan berkesan di sepanjang pantai barat Johor. MNDWI didapati mempunyai ketepatan keseluruhan 99.00% (2000) dan 97.50% (2020) dan nilai Kappa yang paling tinggi bagi kedua-dua imej satelit Landsat, 0.98 (2000) dan 0.95 (2020).  Indeks NDVI dan SAVI mempunyai ketepatan yang sama iaitu 95.00% (2000) dan 96.50% (2020) dan nilai Kappa sama sebanyak 0.90 (2000) dan 0.93 (2020).  Pantai barat, Johor telah mengalami pengurangan pantai sebanyak 583.48 hektar dan penambahan 846.85 hektar. Pengurangan yang lebih tinggi diperhatikan di sepanjang pantai Batu Pahat dan Pontian manakala garis pantai di pantai utara Pontian menunjukkan jumlah penambahan yang sangat tinggi. Kajian ini dapat memanfaatkan pihak berkepentingan dengan memberi status perubahan garis pantai terkini untuk mengambil langkah yang berkesan bagi pembangunan dan pengurusan pantai.

 

Kata kunci: Indeks spektrum; Landsat; pantai barat Johor; perubahan garis pantai

 

Abstract

Coast is essential in providing wide range of ecosystem services. Shorelines change dynamically, and analysing shoreline changes can be conducted with Remote sensing and GIS technologies. This study aims to measure applicability of spectral indices of Modified Normalized Difference Water Index (MNDWI), Normalised Difference Vegetation Index (NDVI), and Soil Adjusted Vegetation Index (SAVI) to distinguish land cover classes and determine coastline changes on west coast of Johor between 2000 and 2020. This study analysed satellite image data obtained from Landsat 7 ETM+ (2000) and Landsat 8 OLI/TIRS (2020) using ERDAS and ArcGIS software. Spectral index images were generated for shoreline determination through OTSU classification. Image overlays are created to determine shoreline changes. The use of spectral indices showed that the three spectral indexes could effectively distinguish water and land along west coast of Johor. MNDWI had an overall accuracy of 99.00% (2000) and 97.50% (2020) and highest Kappa value for both Landsat satellite images, 0.98 (2000) and 0.95 (2020). The NDVI and SAVI indices have the same accuracy of 95.00% (2000) and 96.50% (2020) and Kappa value of 0.90 (2000) and 0.93 (2020). The west coast of Johor has experienced a reduction of 583.48 hectares of coastline and accretion of 846.85 hectares. Higher reduction was observed along Batu Pahat and Pontian coasts, while the shoreline on the north shore of Pontian showed a very high amount of accretion. This study can benefit stakeholders by giving the status of the latest coastline changes in implementing effective coastal development and management measures.

 

Keywords: Landsat; shoreline change; spectral index; west coast Johor

 

RUJUKAN

Acharya, T.D., Subedi, A. & Lee, D.H. 2018. Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors 18(8): 1-15.

Adamu, B., Tansey, K. & Ogutu, B. 2018. Remote sensing for detection and monitoring of vegetation affected by oil spills. International Journal of Remote Sensing 39(11): 3628-3645.

Azlan, N.I. & Othman, R. 2009. Monitoring of mangrove area using remote sensing toward shoreline protection. GIS Ostrava 1: 25-28. http://gisak.vsb.cz/GIS_Ostrava/GIS_Ova_2009/sbornik/Lists/Papers/102.pdf

Duru, U. 2017. Shoreline change assessment using multi-temporal satellite images: A case study of Lake Sapanca, Nw Turkey. Environmental Monitoring and Assessment 189(8): 1-14.

Ehsan, S., Ara Begum, R., Ghani Md Nor, N. & Nizam Abdul Maulud, K. 2019. Current and potential impacts of sea level rise in the coastal areas of Malaysia. IOP Conference Series: Earth and Environmental Science. hlm. 1-11.

Hamdi, A.E., Maryati, M. & Shafiq Hamdin, M. 2019. The potential of nature tourism at Muar and Tangkak Districts, Johor, Malaysia. IOP Conference Series: Earth and Environmental Science. hlm. 1-12.

Hamzah, M.L., Amir, A.A., Maulud, K.N.A., Sharma, S., Mohd, F.A., Selamat, S.N., Karim, O., Ariffin, E.H. & Begum, R.A. 2020. Assessment of the mangrove forest changes along the Pahang Coast using remote sensing and GIS technology. Journal of Sustainability Science and Management 15(5): 43-58.

Hassan, M.I. & Rahmat, N.H. 2016. The effect of coastline changes to local community’s social-economic. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W1. pp. 25-36.

Huete, A.R. 1988. A soil-adjusted vegetation index (Savi). Remote Sensing of Environment 25(3): 295-309.

Kumar, M. 1988. World Geodetic System 1984: A modern and accurate global reference frame. Marine Geodesy 12(2): 117-126.

Lechner, A.M., Foody, G.M. & Boyd, D.S. 2020. Applications in remote sensing to forest ecology and management. One Earth 2(5): 405-412.

Li, W., El-Askary, H., Qurban, M.A., Li, J., ManiKandan, K.P. & Piechota, T. 2019. Using multi-indices approach to quantify mangrove changes over the western Arabian Gulf along Saudi Arabia coast. Ecological Indicators 102: 734-745.

Lynch, P., Blesius, L. & Hines, E. 2020. Classification of urban area using multispectral indices for urban planning. Remote Sensing 12(15): 2503.

Malaysia, S.A. 2020. Impacts of Coastal Reclamation in Malaysia. Pulau Pinang: SAM’s Publication.

Maulud, K.N.A. & Rafar, R.M. 2015. Determination the impact of sea level rise to shoreline changes using GIS. International Conference on Space Science and Communication, IconSpace. hlm. 352-357.

McFeeters, S.K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17(7): 1425-1432.

McHugh, M.L. 2012. Interrater reliability: The Kappa statistic. Biochemia Medica 22(3): 276-282.

Mohd Razali, S., Nuruddin, A.A. & Kamarudin, N. 2020. Mapping mangrove density for conservation of the Ramsar Site in Peninsular Malaysia. International Journal of Conservation Science 11(1): 153-164.

Mustafa, M.T., Hassoon, K.I., Hussain, H.M. & Abd, M.H. 2017. Using water indices (NDWI, MNDWI, NDMI, WRI and AWEI) to detect physical and chemical parameters by apply remote sensing and GIS techniques. International Journal of Research-Granthaalayah 5(10): 117-128.

Omar, H., Misman, M.A. & Musa, S. 2019. GIS and remote sensing for mangroves mapping and monitoring. In Geographic Information Systems and Science,disunting oleh Rocha, J. & Abrantes, P. IntechOpen. https://doi.org/10.5772/intechopen.75243

Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1): 62-66.

Patel, A.K., Ghosh, J.K. & Sayyad, S.U. 2020. Fractional abundances study of macronutrients in soil using hyperspectral remote sensing. Geocarto International 37(2): 474-493.

Paul, E.A. 2016. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry 98: 109-126.

Rhyma, P.P., Norizah, K., Hamdan, O., Faridah-Hanum, I. & Zulfa, A.W. 2020. Integration of normalised different vegetation index and soil-adjusted vegetation index for mangrove vegetation delineation. Remote Sensing Applications: Society and Environment 17: 1-14.

Rondeaux, G., Steven, M. & Baret, F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment 55(2): 95-107.

Samanta, S. & Paul, S.K. 2016. Geospatial analysis of shoreline and land use/land cover changes through remote sensing and GIS techniques. Modeling Earth Systems and Environment 2(3): 1-8.

Sany, S.B.T., Tajfard, M., Rezayi, M., Rahman, M.A. & Hashim, R. 2019. The west coast of Peninsular Malaysia. Dlm. World Seas: An Environmental Evaluation, disunting oleh Sheppard, C. United Kingdom: Elsevier. hlm. 437-458.

Sarmin, N., Hasmadi, I.M., Pakhriazad, H. & Khairil, W. 2016. The DPSIR framework for causes analysis of mangrove deforestation in Johor, Malaysia. Environmental Nanotechnology, Monitoring & Management 6: 214-218.

Sun, F., Sun, W., Chen, J. & Gong, P. 2012. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International Journal of Remote Sensing 33(21): 6854-6875.

Szabó, S., Gácsi, Z. & Balázs, B. 2016. Specific features of NDVI, NDWI AND MNDWI as reflected in land cover categories. Landscape & Environment 10(3-4): 194-202.

Toure, S., Diop, O., Kpalma, K. & Maiga, A.S. 2019. Shoreline detection using optical remote sensing: A review. ISPRS International Journal of Geo-Information 8(2): 1-21.

U.S. Geological Survey. 2021. URL https://waterdata.usgs.gov/nwis/.

Wicaksono, A. & Wicaksono, P. 2019. Geometric accuracy assessment for shoreline derived from NDWI, MNDWI, and AWEI transformation on various coastal physical typology in jepara regency using Landsat 8 OLI imagery in 2018. Geo-planning Journal of Geomatics and Planning 6(1): 55-72.

Xu, H. 2006. Modification of Normalised Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27(14): 3025-3033.

Xu, N. 2018. Detecting coastline change with all available landsat data over 1986-2015: A case study for the state of Texas, USA. Atmosphere 9(3): 1-20.

Yatim, M.H., Norazlimi, N.A. & Abdul-Latiff, M.A.B. 2019. Avifauna study of Tanjung Piai, Johor, Malaysia. IOP Conference Series: Earth and Environmental Science, hlm. 1-7.

Yunus, M.Z.M., Omar, C.M. & Ismail, Z. 2016. GIS-based assessment of mangrove response to shoreline change along the coast of Kukup Island, Johor. ARPN Journal of Engineering and Applied Sciences 11(6): 3747-3754.

 

*Pengarang untuk surat-menyurat; email: muzz@ukm.edu.my

   

sebelumnya