Sains Malaysiana 51(4)(2022): 1005-1015

http://doi.org/10.17576/jsm-2022-5104-05

 

Wackestones and Grainstones Geochemistry from Baturaja Formation, South Sumatra Province, Indonesia: Origin and Depositional Environment

(Geokimia Batu Wak dan Batu Butir dari Formasi Baturaja, Wilayah Selatan Sumatera, Indonesia: Asal Usul dan Persekitaran Pengendapan)

 

RONALDO IRZON1,*, SIGIT MARYANTO1, ILDREM SYAFRI2, KURNIA1, HERI HERMIANTO JAZULI1 & PRIYO HARTANTO3

 

1Center for Geological Survey, Jl. Diponegoro 57, Bandung 40122, Indonesia

2Faculty of Technical Geology, Padjadjaran University, Jalan Raya Bandung-Sumedang Jatinangor, Sumedang 45363, Indonesia

3Indonesian Institute of Science, Jl. Ganesha No.10, Bandung 40132, Indonesia

 

Diserahkan: 25 Februari 2021/Diterima: 15 Ogos 2021

 

Abstract

Limestone members of the Baturaja Formation at Rambangnia Traverse in Sumatra are classified into wackestones, packstones, grainstones, and floatstones based on microfacies discrimination. This study compared the geochemistry characteristics of the wackestones and the grainstones at the traverse to define their material origins and sedimentation environment. A total of ten samples were analyzed using XRF for 11 oxides and 12 trace elements composition. The samples are carbonates with a minimum fraction of dolomite or magnesite. Clastic material of eroded Kikim Formation is the major impurity origin in the limestone without considerable sulfate content. The wackstones signify a higher detrital input rate and contain more clay which increased during CaO separation than the grainstones. Iron in the wackstones was lost through diagenesis while sodium in the grainstones was precipitated directly from seawater.  According to V/Cr and Cu/Zn ratios, the wackestones were deposited in more oxic condition than the grainstones. The studied carbonates have not been affected by a considerable post-depositional alteration based on their geochemistry characteristics.

 

Keywords: Baturaja Formation; geochemistry; grainstones; limestone; wackestones

 

Abstrak

Ahli batu kapur Formasi Baturaja di rentas Rambangnia di Sumatera dikelaskan kepada batu wak, batu padat, batu butir dan batu terapung berdasarkan diskriminasi mikrofasies. Kajian ini membandingkan ciri-ciri geokimia batu wak dan batu butir pada rentas untuk menentukan asal bahan dan persekitaran pemendapan. Sebanyak sepuluh sampel telah dianalisis menggunakan XRF untuk 11 oksida dan 12 komposisi unsur surih. Sampel adalah karbonat dengan pecahan minimum dolomit atau magnesit. Bahan klastik Formasi Kikim yang terhakis adalah asal kekotoran utama dalam batu kapur tanpa kandungan sulfat yang banyak. Batu wak menandakan kadar input detrital yang lebih tinggi dan mengandungi lebih banyak tanah liat yang meningkat semasa pemisahan CaO daripada batu butir. Besi dalam batu wak telah hilang melalui diagenesis manakala natrium dalam batu kikir daripada air laut secara terus. Menurut nisbah V/Cr dan Cu/Zn, batu wak telah dimendapkan dalam keadaan oksik yang lebih banyak daripada batu butir. Karbonat yang dikaji tidak terjejas oleh perubahan pasca pemendapan yang besar berdasarkan ciri geokimia mereka.

 

Kata kunci: Batu butir; batu kapur; batu wak; geokimia; Formasi Baturaja

 

RUJUKAN

Abedini, A. & Calagari, A.A. 2015. Rare earth element geochemistry of the Upper Permian limestone: The Kanigorgeh mining district, NW Iran. Turkish Journal of Earth Sciences 24(4): 365-382.

Abedini, A., Azizi, M.R. & Dill, H.G. 2020. Formation mechanisms of lanthanide tetrad effect in limestones: An example from Arbanos district, NW Iran. Carbonates and Evaporites 35(1): 1.

Adenan, N.B., Ali, C.A. & Mohamed, K.R. 2017. Diagenetic history of the Chuping limestone at Bukit Tungku Lembu, Perlis, Malaysia. Sains Malaysiana 46(6): 887-895.

Al-Dabbas, M.A., Awadh, S.M. & Zaid, A.A. 2014. Facies analysis and geochemistry of the Euphrates Formation in Central Iraq. Arabian Journal of Geosciences 7(5): 1799-1810.

Asis, J. & Jasin, B. 2015. Miocene larger benthic foraminifera from the Kalumpang Formation in Tawau, Sabah. Sains Malaysiana 44(10): 1397-1405.

Aswan, Abdurrachman, M., Fitriana, B.S., Mustofa, M.F., Santoso, W.D., Rudyawan, A., Rahayu, W.D., Hamdani, A., Rohiman, Y. & Oo, T.Z. 2017. Paleoenvironmental study of miocene sediments from JTB-1 and NRM-1 wells, in West Ogan Komering block, Meraksa area, South Sumatra Basin. In IOP Conference Series: Earth and Environmental Science 71(1): 012033.

Babu, K., Prabhakaran, R., Subramanian, P. & Selvaraj, B. 2014. Geochemical characterization of Garudamangalam limestone cretaceous of Ariyalur Tamilnadu, India. International Journal of Geology, Agriculture and Environmental Sciences 2: 17-22.

Bamrah, R.K., Vijayan, P., Karunakaran, C., Muir, D., Hallin, E., Stobbs, J., Goetz, B., Nickerson, M., Tanino, K. & Warkentin, T.D. 2019. Evaluation of x-ray fluorescence spectroscopy as a tool for nutrient analysis of pea seeds. Crop Science 59(6): 2689-2700.

Coimbra, R. & Olóriz, F. 2012. Geochemical evidence for sediment provenance in mudstones and fossilpoor wackestones (upper Jurassic, Majorca Island). Terra Nova 24(6): 437-445.

Devi, K.R. & Duarah, B.P. 2015. Geochemistry of Ukhrul limestone of Assam-Arakan subduction basin, Manipur, Northeast India. Journal of the Geological Society of India 85(3): 367-376.

El-Sorogy, A.S., Almadani, S.A. & Al-Dabbagh, M.E. 2016. Microfacies and diagenesis of the reefal limestone, callovian Tuwaiq mountain limestone formation, central Saudi Arabia. Journal of African Earth Sciences 115: 63-70.

Elmagd, A.K., Emam, A., Ali-Bik, M.W. & Hazem, M. 2018. Geochemical assessment of Paleocene limestones of Sinn El-Kaddab Plateau, South Western Desert of Egypt, for industrial uses. Arabian Journal of Geosciences 11(13): 355.

Gafoer, S., Amin, T.C. & Pardede, R. 1993. Geological Map of the Baturaja Quadrangle, Sumatera (1: 250,000). Indonesia: Geological Research and Development Centre.

Ganai, J.A., Rashid, S.A. & Romshoo, S.A. 2018. Evaluation of terrigenous input, diagenetic alteration and depositional conditions of Lower Carboniferous carbonates of Tethys Himalaya, India. Solid Earth Sciences 3(2): 33-49.

Hood, A.S., Planavsky, N.J., Wallace, M.W. & Wang, X. 2018. The effects of diagenesis on geochemical paleoredox proxies in sedimentary carbonates. Geochimica et Cosmochimica Acta 232: 265-287.

Hussain, H.S., Fayaz, M., Haneef, M., Hanif, M., Jan, I.U. & Gul, B. 2013. Microfacies and diagenetic-fabric of the Samana Suk Formation at Harnoi Section, Abbottabad, Khyber Pakhtunkhwa, Pakistan. Journal of Himalayan Earth Science 46(2): 79-91.

Irzon, R. 2018. Comagmatic andesite and dacite in Mount Ijo, Kulonprogo: A geochemistry perspective. Jurnal Geologi dan Sumberdaya Mineral 19(4): 221-231.

Irzon, R. 2017. Geochemistry of late triassic weak peraluminous a-type Karimun granite, Karimun regency, Riau Islands Province. Indonesian Journal on Geoscience 4(1): 21-37.

Irzon, R. & Maryanto, S. 2016. Geokimia batugamping Formasi Gumai dan Formasi Baturaja di Wilayah Muaradua, Ogan Komring Ulu Selatan, Wilayah Sumatera Selatan. Jurnal Geologi dan Sumberdaya Mineral 17(3): 125-138.

Irzon, R., Syafri, I., Suwarna, N., Hutabarat, J., Sendjaja, P. & Setiawan, V.E. 2021. Geochemistry of granitoids in Central Sumatra: An identification of plate extension during triassic. Geologica Acta 19(9): 1-14.

Irzon, R., Kurnia, K. & Haryanto, A.D. 2020. Presisi pengukuran produk samping tambang timah nudur menggunakan analisis XRF dan peluang ekonomi produknya. Jurnal Teknologi Mineral dan Batubara 16(2): 69-79.

Jones, B. & Manning, D.A. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111(1-4): 111-129.

Kabir, M.H., Islam, M.S., Tusher, T.R., Hoq, M.E. & Al Mamun, S. 2020. Changes of heavy metal concentrations in Shitalakhya River water of Bangladesh with seasons. Indonesian Journal of Science and Technology 5(3): 395-409.

Kuznetsov, A.B., Ovchinnikova, G.V., Semikhatov, M.A., Gorokhov, I.M., Kaurova, O.K., Trupenin, M.T., Vasil'eva, I.M., Gorokhovskii, B.M. & Maslov, A.V. 2008. The Sr isotope characterization and Pb–Pb ages of carbonates rocks from the Satka Formation, the lower Riphean Burzyan Group of the Southern Urals. Stratigr. Geol. Correl. 16: 120-137.  

Ma, L., Dang, D.H., Wang, W., Evans, R.D. & Wang, W.X. 2019. Rare earth elements in the Pearl River Delta of China: Potential impacts of the REE industry on water, suspended particles and oysters. Environmental Pollution 244: 190-201.

Madhavaraju, J., Löser, H., Lee, Y.I., Santacruz, R.L. & Pi-Puig, T. 2016. Geochemistry of lower cretaceous limestones of the Alisitos Formation, Baja California, Mexico: Implications for REE source and paleo-redox conditions. Journal of South American Earth Sciences 66: 149-165.

Maryanto, S. 2014. Limestone Microfacies of Baturaja Formation along Air Rambangnia Traverse, South OKU, South Sumatra. Indonesian Journal on Geoscience 1(1): 21-34.

Maryanto, S. 2007. Petrografi dan proses diagenesis batugamping Formasi Baturaja di lintasan Air Saka, OKU Selatan, Sumatera Selatan. Jurnal Sumber Daya Geologi 17(1): 13-31.

Mir, A.R. 2015. Rare earth element geochemistry of Post-to Neo-archean shales from Singhbhum mobile belt, Eastern India: Implications for tectonic setting and paleo-oxidation conditions. Chinese Journal of Geochemistry 34(3): 401-409.

Okuyucu, C., Vachard, D. & Göncüoğlu, M.C. 2013. Refinements in biostratigraphy of the foraminiferal zone MFZ11 (late early Viséan, Mississippian) in the Cebeciköy Limestone (Istanbul Terrane, NW Turkey) and palaeogeographic implications. Bulletin of Geosciences 88(3): 621-645.

Palomares, R.M., Hernández, R.L. & Frías, J.M. 2012. Mechanisms of trace metal enrichment in submarine, methane-derived carbonate chimneys from the Gulf of Cadiz. Journal of Geochemical Exploration 112: 297-305.

Phewnil, O.A., Tungkananurak, N., Panichsakpatana, S., Pitiyont, B., Siripat, N. & Watanabe, H. 2012. The residues of atrazine herbicide in stream water and stream sediment in Huay Kapo Watershed, Phetchabun Province, Thailand. Environment and Natural Resources Journal 10(1): 42-52.

Romero, J.A.S., Lafon, J.M., Nogueira, A.C.R. & Soares, J.L. 2013. Sr isotope geochemistry and Pb–Pb geochronology of the Neoproterozoic cap carbonates, Tangará da Serra, Brazil. International Geology Review 55(2): 185-203.

Todd, T.W. 1966. Petrogenetic classification of carbonate rocks. Journal of Sedimentary Research 36(2): 317-340.

Usman, U.A., Abdulkadir, A.B., El-Nafaty, J.M., Bukar, M. & Baba, S. 2018. Lithostratigraphy and geochemical characterization of limestone deposits around Kushimaga Area in Yobe of North-Eastern Nigeria. Nigerian Journal of Technology 37(4): 885-897.

Veizer, J. 1983. Trace elements and isotopes in sedimentary carbonates. Reviews in Mineralogy and Geochemistry 11(1): 265e299.

Vishnevskaya, I.A., Kochnev, B.B., Letnikova, E.F., Kuznetsov, A.B. & Proshenkin, A.I. 2012. Sr isotopic characteristic of neoproterozoic carbonate sediments from the southern Yenisei Ridge. Doklady Earth Sciences 443(2): 431-435.

Yousefi, M., Kamkar-Rouhani, A. & Carranza, E.J.M. 2012. Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration 115: 24-35.

Zhang, K.J., Li, Q.H., Yan, L.L., Zeng, L., Lu, L., Zhang, Y.X., Hui, J., Jin, X. & Tang, X.C. 2017. Geochemistry of limestones deposited in various plate tectonic settings. Earth-Science Reviews 167: 27-46.

 

*Pengarang untuk surat-menyurat; email: ronaldoirzon18@gmail.com

 

 

   

sebelumnya