Sains
Malaysiana 51(4)(2022): 1005-1015
http://doi.org/10.17576/jsm-2022-5104-05
Wackestones
and Grainstones Geochemistry from Baturaja Formation, South Sumatra Province,
Indonesia: Origin and Depositional Environment
(Geokimia
Batu Wak dan Batu Butir dari Formasi Baturaja, Wilayah Selatan Sumatera,
Indonesia: Asal Usul dan Persekitaran Pengendapan)
RONALDO IRZON1,*,
SIGIT MARYANTO1, ILDREM SYAFRI2, KURNIA1, HERI
HERMIANTO JAZULI1 & PRIYO HARTANTO3
1Center for Geological Survey, Jl.
Diponegoro 57, Bandung 40122, Indonesia
2Faculty of Technical Geology,
Padjadjaran University, Jalan Raya Bandung-Sumedang Jatinangor, Sumedang 45363,
Indonesia
3Indonesian Institute of Science, Jl.
Ganesha No.10, Bandung 40132, Indonesia
Diserahkan: 25 Februari 2021/Diterima: 15 Ogos 2021
Abstract
Limestone members of the Baturaja Formation at Rambangnia
Traverse in Sumatra are classified into wackestones, packstones, grainstones,
and floatstones based on microfacies discrimination. This study compared the
geochemistry characteristics of the wackestones and the grainstones at the
traverse to define their material origins and sedimentation environment. A
total of ten samples were analyzed using XRF for 11 oxides and 12 trace
elements composition. The samples are carbonates with a minimum fraction of
dolomite or magnesite. Clastic material of eroded Kikim Formation is the major
impurity origin in the limestone without considerable sulfate content. The
wackstones signify a higher detrital input rate and contain more clay which
increased during CaO separation than the grainstones. Iron in the wackstones
was lost through diagenesis while sodium in the grainstones was precipitated
directly from seawater. According to
V/Cr and Cu/Zn ratios, the wackestones were deposited in more oxic condition
than the grainstones. The studied carbonates have not been affected by a
considerable post-depositional alteration based on their geochemistry
characteristics.
Keywords: Baturaja Formation; geochemistry; grainstones;
limestone; wackestones
Abstrak
Ahli batu kapur Formasi Baturaja di rentas Rambangnia di
Sumatera dikelaskan kepada batu wak, batu padat, batu butir dan batu terapung
berdasarkan diskriminasi mikrofasies. Kajian ini membandingkan ciri-ciri
geokimia batu wak dan batu butir pada rentas untuk menentukan asal bahan dan
persekitaran pemendapan. Sebanyak sepuluh sampel telah dianalisis menggunakan
XRF untuk 11 oksida dan 12 komposisi unsur surih. Sampel adalah karbonat dengan
pecahan minimum dolomit atau magnesit. Bahan klastik Formasi Kikim yang
terhakis adalah asal kekotoran utama dalam batu kapur tanpa kandungan sulfat
yang banyak. Batu wak menandakan kadar input detrital yang lebih tinggi dan
mengandungi lebih banyak tanah liat yang meningkat semasa pemisahan CaO
daripada batu butir. Besi dalam batu wak telah hilang melalui diagenesis
manakala natrium dalam batu kikir daripada air laut secara terus. Menurut
nisbah V/Cr dan Cu/Zn, batu wak telah dimendapkan dalam keadaan oksik yang
lebih banyak daripada batu butir. Karbonat yang dikaji tidak terjejas oleh
perubahan pasca pemendapan yang besar berdasarkan ciri geokimia mereka.
Kata
kunci: Batu butir; batu kapur; batu wak; geokimia; Formasi Baturaja
RUJUKAN
Abedini, A. & Calagari, A.A.
2015. Rare earth element geochemistry of the Upper Permian limestone: The
Kanigorgeh mining district, NW Iran. Turkish
Journal of Earth Sciences 24(4): 365-382.
Abedini, A., Azizi, M.R. & Dill,
H.G. 2020. Formation mechanisms of lanthanide tetrad effect in limestones: An
example from Arbanos district, NW Iran. Carbonates and Evaporites 35(1): 1.
Adenan, N.B., Ali, C.A. &
Mohamed, K.R. 2017. Diagenetic history of the Chuping limestone at Bukit Tungku
Lembu, Perlis, Malaysia. Sains
Malaysiana 46(6): 887-895.
Al-Dabbas, M.A., Awadh, S.M. &
Zaid, A.A. 2014. Facies analysis and geochemistry of the Euphrates Formation in
Central Iraq. Arabian Journal of
Geosciences 7(5): 1799-1810.
Asis, J. & Jasin, B. 2015.
Miocene larger benthic foraminifera from the Kalumpang Formation in Tawau,
Sabah. Sains Malaysiana 44(10):
1397-1405.
Aswan, Abdurrachman, M., Fitriana,
B.S., Mustofa, M.F., Santoso, W.D., Rudyawan, A., Rahayu, W.D., Hamdani, A.,
Rohiman, Y. & Oo, T.Z. 2017. Paleoenvironmental study of miocene sediments
from JTB-1 and NRM-1 wells, in West Ogan Komering block, Meraksa area, South
Sumatra Basin. In IOP Conference
Series: Earth and Environmental Science 71(1): 012033.
Babu, K., Prabhakaran, R.,
Subramanian, P. & Selvaraj, B. 2014. Geochemical characterization of
Garudamangalam limestone cretaceous of Ariyalur Tamilnadu, India. International Journal of Geology,
Agriculture and Environmental Sciences 2: 17-22.
Bamrah, R.K., Vijayan, P., Karunakaran,
C., Muir, D., Hallin, E., Stobbs, J., Goetz, B., Nickerson, M., Tanino, K.
& Warkentin, T.D. 2019. Evaluation of x-ray fluorescence spectroscopy as a
tool for nutrient analysis of pea seeds. Crop Science 59(6): 2689-2700.
Coimbra, R. & Olóriz, F. 2012.
Geochemical evidence for sediment provenance in mudstones and fossil‐poor wackestones (upper Jurassic, Majorca Island). Terra Nova 24(6): 437-445.
Devi, K.R. & Duarah, B.P. 2015.
Geochemistry of Ukhrul limestone of Assam-Arakan subduction basin, Manipur,
Northeast India. Journal of the
Geological Society of India 85(3): 367-376.
El-Sorogy, A.S., Almadani, S.A.
& Al-Dabbagh, M.E. 2016. Microfacies and diagenesis of the reefal
limestone, callovian Tuwaiq mountain limestone formation, central Saudi Arabia. Journal of African Earth Sciences 115:
63-70.
Elmagd, A.K., Emam, A., Ali-Bik,
M.W. & Hazem, M. 2018. Geochemical assessment of Paleocene limestones of
Sinn El-Kaddab Plateau, South Western Desert of Egypt, for industrial
uses. Arabian Journal of Geosciences 11(13):
355.
Gafoer, S., Amin, T.C. &
Pardede, R. 1993. Geological Map of the
Baturaja Quadrangle, Sumatera (1: 250,000). Indonesia: Geological
Research and Development Centre.
Ganai, J.A., Rashid, S.A. &
Romshoo, S.A. 2018. Evaluation of terrigenous input, diagenetic alteration and
depositional conditions of Lower Carboniferous carbonates of Tethys Himalaya,
India. Solid Earth Sciences 3(2):
33-49.
Hood, A.S., Planavsky, N.J.,
Wallace, M.W. & Wang, X. 2018. The effects of diagenesis on geochemical paleoredox
proxies in sedimentary carbonates. Geochimica
et Cosmochimica Acta 232: 265-287.
Hussain, H.S., Fayaz, M., Haneef,
M., Hanif, M., Jan, I.U. & Gul, B. 2013. Microfacies and diagenetic-fabric
of the Samana Suk Formation at Harnoi Section, Abbottabad, Khyber Pakhtunkhwa,
Pakistan. Journal of Himalayan Earth
Science 46(2): 79-91.
Irzon, R. 2018. Comagmatic andesite
and dacite in Mount Ijo, Kulonprogo: A geochemistry perspective. Jurnal Geologi dan Sumberdaya Mineral 19(4):
221-231.
Irzon, R. 2017. Geochemistry of late
triassic weak peraluminous a-type Karimun granite, Karimun regency, Riau
Islands Province. Indonesian Journal
on Geoscience 4(1): 21-37.
Irzon, R. & Maryanto, S. 2016.
Geokimia batugamping Formasi Gumai dan Formasi Baturaja di Wilayah Muaradua,
Ogan Komring Ulu Selatan, Wilayah Sumatera Selatan. Jurnal Geologi dan Sumberdaya Mineral 17(3): 125-138.
Irzon, R., Syafri, I., Suwarna, N.,
Hutabarat, J., Sendjaja, P. & Setiawan, V.E. 2021. Geochemistry of
granitoids in Central Sumatra: An identification of plate extension during
triassic. Geologica Acta 19(9):
1-14.
Irzon, R., Kurnia, K. &
Haryanto, A.D. 2020. Presisi pengukuran produk samping tambang timah nudur
menggunakan analisis XRF dan peluang ekonomi produknya. Jurnal Teknologi Mineral dan Batubara 16(2):
69-79.
Jones, B. & Manning, D.A. 1994.
Comparison of geochemical indices used for the interpretation of palaeoredox
conditions in ancient mudstones. Chemical
Geology 111(1-4): 111-129.
Kabir, M.H., Islam, M.S., Tusher,
T.R., Hoq, M.E. & Al Mamun, S. 2020. Changes of heavy metal concentrations
in Shitalakhya River water of Bangladesh with seasons. Indonesian Journal of Science and Technology 5(3):
395-409.
Kuznetsov, A.B., Ovchinnikova, G.V., Semikhatov, M.A., Gorokhov, I.M., Kaurova, O.K., Trupenin, M.T., Vasil'eva, I.M., Gorokhovskii, B.M. & Maslov, A.V. 2008. The Sr isotope characterization and Pb–Pb ages of
carbonates rocks from the Satka Formation, the lower Riphean Burzyan Group of
the Southern Urals. Stratigr. Geol. Correl. 16: 120-137.
Ma, L.,
Dang, D.H., Wang, W., Evans, R.D. & Wang, W.X. 2019. Rare earth elements in
the Pearl River Delta of China: Potential impacts of the REE industry on water,
suspended particles and oysters. Environmental
Pollution 244: 190-201.
Madhavaraju, J., Löser, H., Lee,
Y.I., Santacruz, R.L. & Pi-Puig, T. 2016. Geochemistry of lower cretaceous
limestones of the Alisitos Formation, Baja California, Mexico: Implications for
REE source and paleo-redox conditions. Journal
of South American Earth Sciences 66: 149-165.
Maryanto, S. 2014. Limestone
Microfacies of Baturaja Formation along Air Rambangnia Traverse, South OKU,
South Sumatra. Indonesian Journal on
Geoscience 1(1): 21-34.
Maryanto, S. 2007. Petrografi dan
proses diagenesis batugamping Formasi Baturaja di lintasan Air Saka, OKU
Selatan, Sumatera Selatan. Jurnal
Sumber Daya Geologi 17(1): 13-31.
Mir, A.R. 2015. Rare earth element
geochemistry of Post-to Neo-archean shales from Singhbhum mobile belt, Eastern
India: Implications for tectonic setting and paleo-oxidation conditions. Chinese Journal of Geochemistry 34(3):
401-409.
Okuyucu, C., Vachard, D. &
Göncüoğlu, M.C. 2013. Refinements in biostratigraphy of the foraminiferal
zone MFZ11 (late early Viséan, Mississippian) in the Cebeciköy Limestone
(Istanbul Terrane, NW Turkey) and palaeogeographic implications. Bulletin of Geosciences 88(3):
621-645.
Palomares, R.M., Hernández, R.L.
& Frías, J.M. 2012. Mechanisms of trace metal enrichment in submarine,
methane-derived carbonate chimneys from the Gulf of Cadiz. Journal of Geochemical Exploration 112:
297-305.
Phewnil, O.A., Tungkananurak, N.,
Panichsakpatana, S., Pitiyont, B., Siripat, N. & Watanabe, H. 2012. The
residues of atrazine herbicide in stream water and stream sediment in Huay Kapo
Watershed, Phetchabun Province, Thailand. Environment and Natural Resources Journal 10(1): 42-52.
Romero, J.A.S., Lafon, J.M.,
Nogueira, A.C.R. & Soares, J.L. 2013. Sr isotope geochemistry and Pb–Pb
geochronology of the Neoproterozoic cap carbonates, Tangará da Serra, Brazil. International Geology Review 55(2):
185-203.
Todd, T.W. 1966. Petrogenetic
classification of carbonate rocks. Journal
of Sedimentary Research 36(2): 317-340.
Usman, U.A., Abdulkadir, A.B.,
El-Nafaty, J.M., Bukar, M. & Baba, S. 2018. Lithostratigraphy and
geochemical characterization of limestone deposits around Kushimaga Area in
Yobe of North-Eastern Nigeria. Nigerian
Journal of Technology 37(4): 885-897.
Veizer, J. 1983. Trace elements and
isotopes in sedimentary carbonates. Reviews in Mineralogy and
Geochemistry 11(1): 265e299.
Vishnevskaya, I.A., Kochnev, B.B.,
Letnikova, E.F., Kuznetsov, A.B. & Proshenkin, A.I. 2012. Sr isotopic
characteristic of neoproterozoic carbonate sediments from the southern Yenisei
Ridge. Doklady Earth Sciences 443(2):
431-435.
Yousefi, M., Kamkar-Rouhani, A.
& Carranza, E.J.M. 2012. Geochemical mineralization probability index
(GMPI): A new approach to generate enhanced stream sediment geochemical
evidential map for increasing probability of success in mineral potential
mapping. Journal of Geochemical
Exploration 115: 24-35.
Zhang, K.J., Li, Q.H., Yan, L.L.,
Zeng, L., Lu, L., Zhang, Y.X., Hui, J., Jin, X. & Tang, X.C. 2017.
Geochemistry of limestones deposited in various plate tectonic settings. Earth-Science Reviews 167: 27-46.
*Pengarang untuk surat-menyurat;
email: ronaldoirzon18@gmail.com
|