Sains Malaysiana 51(1)(2022): 27-38

http://doi.org/10.17576/jsm-2022-5101-03

 

Super- or Single Infection: Wolbachia Supergrouping of Wild Mosquito Populations from Varied Location Types in Peninsular Malaysia

(Jangkitan Super atau Tunggal: Superkumpulan Wolbachia Populasi Nyamuk Liar dari Pelbagai Jenis Lokasi di Semenanjung Malaysia)

 

NOOR SHAZLEEN HUSNIE MOHD MOHTAR1, EMELIA OSMAN1, MOHD FARIHAN MD YATIM2 & AISHAH HANI AZIL1*

 

1Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

2Institute for Public Health, Centre for Communicable Diseases Research, National Institutes of Health

Ministry of Health, 40170 Shah Alam, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 1 Disember 2020/Diterima: 2 Mei 2021

 

ABSTRACT

Wolbachia has the ability to cause reproductive abnormalities in infected hosts including cytoplasmic incompatibility (CI). CI is activated when there are multiple Wolbachia supergroups or strains infection present in insect populations. Wolbachia-transinfected mosquitoes have been used widely in some countries as a biological control agent. In order to ensure a successful Wolbachia establishment, it is important to determine the diversity of natural Wolbachia present in the wild mosquito populations. The adults and immature stages of mosquitoes were collected from urban, suburban and rural areas and were reared into adults and identified to species before being subjected to molecular analysis. We found that 22% out of 222 males and 34.6% of 543 females tested were carrying Wolbachia based on PCR amplification of the Wolbachia 16S rDNA genes technique. PCR digestion for Wolbachia supergrouping showed that most of the Ae. albopictus were superinfected with Wolbachia (52.41%), whereas 21% and 28% of the positive samples were singly infected with supergroup A and B, respectively. There is an indication that prevalence of Wolbachia varies between mosquito populations in different areas. However, further studies to incorporate both PCR amplication of the Wolbachia 16S rDNA and wsp genes with bigger sample size should be performed to measure exact infection of Wolbachia in Malaysia. The baseline data on diversity of Wolbachia supergroups is expected to facilitate Wolbachia strategy by helping us to better understand the patterns and impact of the bacteria’s transmission in the environment.

 

Keywords: 16S rDNA; Culicidae; PCR digestion; Wolbachia supergroup

 

ABSTRAK

Wolbachia berkebolehan menyebabkan keabnormalan reproduktif kepada perumah yang dijangkitinya, antaranya ketidakserasian sitoplasma (CI). CI diaktifkan apabila terdapat kepelbagaian jangkitan daripada superkumpulan atau strain Wolbachia yang hadir di dalam sesuatu populasi. Nyamuk transjangkitan Wolbachia ini telah digunakan secara meluas di sesetengah negara sebagai agen kawalan biologi. Namun bagi memastikan keberjayaan Wolbachia untuk bermandiri, adalah penting untuk mengenal pasti kepelbagaian Wolbachia yang hadir secara semula jadi di dalam populasi nyamuk liar. Nyamuk peringkat dewasa dan pra-matang disampel daripada kawasan bandar, pinggir bandar dan pedalaman yang kemudiannya dibiak sehingga dewasa dan spesiesnya dikenal pasti sebelum diteruskan dengan analisis molekul. Berdasarkan kaedah amplifikasi PCR yang menyasarkan gen 16S rDNA, kajian mendapati 22% daripada 222 nyamuk jantan dan 34.6% daripada 543 betina membawa Wolbachia. Pencernaan produk PCR dilakukan bagi menentukan super-kumpulan Wolbachia dan hasilnya majoriti Aedes albopictus dijangkiti Wolbachia daripada kedua-dua superkumpulan A dan B (52.41%) manakala 21% dan 28% daripadanya masing-masing terjangkit secara tunggal, superkumpulan A dan B. Ini menandakan taburan kumpulan Wolbachia adalah berbeza antara populasi nyamuk di kawasan yang berbeza. Namun, kajian lanjutan yang melibatkan sampel saiz yang lebih besar serta gabungan penggunaan dua gen Wolbachia 16S rDNA dan wsp amat diperlukan bagi mengukur kadar jangkitan Wolbachia di Malaysia. Data garis dasar mengenai kepelbagaian superkumpulan Wolbachia yang hadir dijangka dapat membantu mempermudahkan untuk memahami taburannya dan kesan penyebarannya pada persekitaran.

 

Kata kunci: 16S rDNA gen; Culicidae; pencernaan PCR; superkumpulan Wolbachia

 

RUJUKAN

Afizah, A.N., Vythilingam, I., Lim, Y.A., Zabari, N.Z.A.M. & Lee, H.L. 2017. Detection of Wolbachia in Aedes albopictus and their effects on chikungunya virus. The American Journal of Tropical Medicine and Hygiene 96(1): 148-156.

Afizah, A.N., Roziah, A., Nazni, W.A. & Lee, H.L. 2015. Detection of Wolbachia from field collected Aedes albopictus Skuse in Malaysia. Indian Journal of Medical Research 142(2): 205-210.

Ahantarig, A., Trinachartvanit, W. & Kittayapong, P. 2008. Relative Wolbachia density of field collected Aedes albopictus mosquitoes in Thailand. Journal of Vector Ecology 33(1): 173-177.

Ant, T.H. & Sinkins, S.P. 2018. A Wolbachia triple-strain infection generates self-incompatibility in Aedes albopictus and transmission instability in Aedes aegyptiParasites and Vectors 11(1): 295.

Blagrove, M.S., Arias-Goeta, C., Failloux, A.B. & Sinkins, S.P. 2012. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. In Proceedings of the National Academy of Sciences. pp. 255-260.

Brelsfoard, CL. & Dobson, S.L. 2009. Wolbachia-based strategies to control insect pests and disease vectors. Asia-Pacific Journal of Molecular Biology and Biotechnology 17(3): 55-63.

Calvitti, M., Marini, F., Desiderio, A., Puggioli, A. & Moretti, R. 2015. Wolbachia density and cytoplasmic incompatibility in Aedes albopictus: Concerns with using artificial Wolbachia infection as a vector suppression tool. PLoS ONE 10(3): e0121813.

Carvajal, T.M., Hashimoto, K., Harnandika, R.K., Amalin, D.M. & Watanabe, K. 2019. Detection of Wolbachia in field-collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines. Parasites and Vectors 12(1): 361.

Chen, C.D., Seleena, B., Nazni, W.A., Lee, H.L., Mohd Masri, S.M., Chiang, Y.F. & Sofian Azirun, M. 2006. Dengue vectors surveillance in endemic areas in Kuala Lumpur city centre and Selangor state, Malaysia. Dengue Bulletin 30: 197-203.

de Albuquerque, A.L., Magalhães, T. & Ayres, C.F.J. 2011. High prevalence and lack of diversity of Wolbachia pipientis in Aedes albopictus populations from northeast Brazil. Memórias do Instituto Oswaldo Cruz 106(6): 773-776.

Dobson, S.L., Rattanadechakul, W. & Marsland, E.J. 2004. Fitness advantage and cytoplasmic incompatibility in Wolbachia single and superinfected Aedes albopictus. Heredity 93(2): 135-142.

Fu, Y., Gavotte, L., Mercer, D.R. & Dobson, S.L. 2010. Artificial triple Wolbachia infection in Aedes albopictus yields a new pattern of unidirectional cytoplasmic incompatibility. Applied and Environmental Microbiology 76(17): 5887-5891.

Gonçalves, D., Hooker, D.J., Dong, Y., Baran, N., Kyrylos, P., Iturbe-Ormaetxe, I., Simmons, C.P. & O’Neill, S.L. 2019. Detecting wMel Wolbachia in field-collected Aedes aegypti mosquitoes using loop-mediated isothermal amplification (LAMP). Parasites & Vectors 12(1): 1-5.

Gulraiz, M., Alvi, F.M., Mustafa, T., Razzaq, A. & Latif, H.S. 2019. Distribution of Aedes aegypti, Aedes albopictus and Culex sp. and detection of Wolbachia among them in city district Lahore. Journal of Fatima Jinnah Medical University 13(2): 55-58.

Hamdan, H., Sofian-Azirun, M., Nazni, W.A. & Lee, H.L. 2005. Insecticide resistance development in Culex quinquefasciatus (Say), Aedes aegypti (L.) and Aedes albopictus (Skuse) larvae against malathion, permethrin and temephos. Tropical Biomedicine 22: 45-52.

Hoffmann, A.A., Montgomery, B.L., Popovici, J., Iturbe-Ormaetxe, I., Johnson, P.H., Muzzi, F., Greenfield, M., Durkan, M., Leong, Y.S., Dong, Y. & Cook, H. 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476(7361): 454-457.

Keller, G.P., Windsor, D.M., Saucedo, J.M. & Werren, J.H. 2004. Reproductive effects and geographical distributions of two Wolbachia strains infecting the Neotropical beetle, Chelymorpha alternans Boh. (Chrysomelidae, Cassidinae).     Molecular Ecology 13(8): 2405-2420.

Kittayapong, P., Baisley, K., Sharpe, R., Baimai, V. & O’Neill, S. 2002. Maternal transmission efficiency of Wolbachia superinfections in Aedes albopictus populations in Thailand. American Journal Tropical Medicine Hygiene 66(1): 103-107.

Kittayapong, P., Baisley, K.J., Baimai, V. & O’Neill, S.L. 2000. Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae). Journal of Medical Entomology 37: 340-345.

KKM 2020. Kenyataan Akhbar Ketua Pengarah Kesihatan Malaysia Mengenai Situasi Denggi, Zika dan Chikungunya di Malaysia - ME 45.2020. Malaysia: Kementerian Kesihatan Malaysia (KKM). Accessed on 22 November 2020.

KKM 2019. I-Dengue: Statistik Denggi. Malaysia: Kementerian Kesihatan Malaysia (KKM). Accessed on 22 November 2020.

Kulkarni, A., Yu, W., Jiang, J., Sanchez, C., Karna, A.K., Martinez, K.J., Hanley, K.A., Buenemann, M., Hansen, I.A., Xue, R.D. & Ettestad, P. 2019. Wolbachia pipientis occurs in Aedes aegypti populations in New Mexico and Florida, USA. Ecology and Evolution 9(10): 6148-6156.

Lau, Y.L., Fong, M.Y., Mahmud, R., Chang, P.Y., Palaeya, V., Cheong, F.W., Chin, L.C., Anthony, C.N., Al-Mekhlafi, A.M. & Chen, Y. 2011. Specific, sensitive and rapid detection of human Plasmodium knowlesi infection by loop-mediated isothermal amplification (LAMP) in blood samples. Malaria Journal 10(1): 1-6.

Loke, S.R., Andy-Tan, W.A., Benjamin, S., Lee, H.L. & Sofian-Azirun, M. 2010. Susceptibility of field-collected Aedes aegypti (L.) (Diptera: Culicidae) to        Bacillus thuringiensis israelensis and temephos. Tropical Biomedicine 27: 493-450.

Luo, L., Jiang, L.Y., Xiao, X.C., Di, B., Jing, Q.L., Wang, S.Y., Tang, J.L., Wang, M., Tang, X.P. & Yang, Z.C. 2017. The dengue preface to endemic in mainland China: The historical largest outbreak by Aedes albopictus in Guangzhou, 2014. Infectious Diseases of Poverty 6(1): 148.

Marcon, H.S., Coscrato, V.E., Selivon, D., Perondini, A.L.P. & Marino, C.L. 2011. Variations in the sensitivity of different primers for detecting Wolbachia in Anastrepha (Diptera: Tephritidae). Brazilian Journal of Microbiology 42(2): 778-785.

Mousson, L., Zouache, K., Arias-Goeta, C., Raquin, V., Mavingui, P., Failloux, A.B. & Lambrechts, L. 2012. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Neglected Tropical Diseases 6(12): e1989.

Nazni, W.A., Hoffmann, A.A., Noor Afizah, A., Cheong, Y.L., Mancini, M.V., Golding, N., Kamarul, G.M., Arif, M.A., Thohir, H., Nur Syamimi, H. & Zatil Aqmar, M.Z. 2019. Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Current Biology 29(24): 4241-4248.

Noor-Shazleen-Husnie, M.M., Emelia, O., Ahmad-Firdaus, M.S., Zainol-Ariffin, P. & Aishah-Hani, A. 2018. Detection of Wolbachia in wild mosquito populations from selected areas in Peninsular Malaysia by loop-mediated isothermal amplification (LAMP) technique. Tropical Biomedicine 35(2): 330-346.

Notomi, T., Mori, Y., Tomita, N. & Kanda, H. 2015. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. Journal of Microbiology 53(1): 1-5.

Nugapola, N.N.P., De Silva, W.P.P. & Karunaratne, S.P. 2017. Distribution and phylogeny of Wolbachia strains in wild mosquito populations in Sri Lanka. Parasites and Vectors 10(1): 230.

Pourali, P., Roayaei, A.M., Jolodar, A. & Razi, J.M.H. 2009. PCR screening of the Wolbachia in some arthropods and nematodes in Khuzestan province. Iranian Journal of Veterinary Research 10(3): 216-222.

Rasgon, J.L. & Scott, T.W. 2004. An initial survey for Wolbachia (Rickettsiales: Rickettsiaceae) infections in selected California mosquitoes (Diptera: Culicidae). Journal of Medical Entomology 41(2): 255-257.

Ricci, I., Valzano, M., Ulissi, U., Epis, S., Cappelli, A. & Favia, G. 2012. Symbiotic control of mosquito borne disease. Pathogens and Global Health 106(7): 380-385.

Ricci, I., Cancrini, G., Gabrielli, S., D’amelio, S. & Favia, G. 2002. Searching for Wolbachia (Rickettsiales: Rickettsiaceae) in mosquitoes (Diptera: Culicidae): Large polymerase chain reaction survey and new identifications. Journal of Medical Entomology 39(4): 562-567.

Ross, P.A., Callahan, A.G., Yang, Q., Jasper, M., Arif, M.A., Afizah, A.N., Nazni, W.A. & Hoffmann, A.A. 2019a. An elusive endosymbiont: Does Wolbachia occur naturally in Aedes aegyptiEcology and Evolution 10(3): 1581-1591.

Ross, P.A., Ritchie, S.A., Axford, J.K. & Hoffmann, A.A. 2019b. Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions. PLoS Neglected Tropical Diseases 13(4): e0007357.

Rossi, P., Ricci, I., Cappelli, A., Damiani, C., Ulissi, U., Mancini, M.V., Valzano, M., Capone, A., Epis, S., Crotti, E. & Chouaia, B. 2015. Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors. Parasites and Vectors 8(1): 278.

Rozilawati, H., Tanaselvi, K., Nazni, W.A., Masri, S.M., Zairi, J., Adanan, C.R. & Lee, H.L. 2015. Surveillance of Aedes albopictus Skuse breeding preference in selected dengue outbreak localities, Peninsular Malaysia. Tropical Biomedicine 32(1): 49-64.

Sinkins, S.P. 2004. Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochemistry and Molecular Biology 34(7): 723-729.

Teo, C.H.J., Lim, P., Voon, K. & Mak, J.W. 2017. Detection of dengue viruses and Wolbachia      in Aedes aegypti and Aedes albopictus larvae from four urban localities in Kuala Lumpur, Malaysia. Tropical Biomedicine 34(3): 583-597.

Tortosa, P., Charlat, S., Labbe, P., Dehecq, J.S., Barré, H. & Weill, M. 2010. Wolbachia age sex-specific density in Aedes albopictus: A host evolutionary response to cytoplasmic incompatibility? PLoS ONE 5(3): e9700.

Werren, J.H. & Windsor, D.M. 2000. Wolbachia infection frequencies in insects: Evidence of a global equilibrium? In Proceedings of the Royal Society of London. Series B: Biological Sciences. pp. 1277-1285.

Wiwatanaratanabutr, I. 2013. Geographic distribution of wolbachial infections in mosquitoes from Thailand. Journal of Invertebrate Pathology 114(3): 337-340.

WMP 2019. The World Mosquito Program’s Wolbachia Method is Helping Communities Around the World Prevent the Spread of Mosquito-Borne Disease. Sri Lanka: World Mosquito Program (WMP).

Wong, M.L., Liew, J.W.K., Wong, W.K., Pramasivan, S., Hassan, N.M., Sulaiman, W.Y.W., Jeyaprakasam, N.K., Leong, C.S., Low, V.L. & Vythilingam, I. 2020. Natural Wolbachia infection in field-collected Anopheles and other mosquito species from Malaysia. Parasites and Vectors 13(1): 1-15.

Xu, G., Dong, H., Shi, N., Liu, S., Zhou, A., Cheng, Z., Chen, G., Liu, J., Fang, T., Zhang, H. & Gu, C. 2007. An outbreak of dengue virus serotype 1 infection in Cixi, Ningbo, People’s Republic of China, 2004, associated with a traveler from Thailand and high density of Aedes albopictusThe American Journal of Tropical Medicine and Hygiene 76(6): 1182-1188.

Zainol, A.P., Ahmad, Z.Z., Norhayati, S., Umi, A., Osman, H., Awaluddin, M.A., Abdul, H., Omar, H. & Mohd, H.M. 2009. Using mosquito larvae trapping device as an additional tool for dengue fever control in Kuala Lumpur. Malaysian Journal of Public Health Medicine 9(Suppl. 2): 34.

Zhang, D., Lees, R.S., Xi, Z., Bourtzis, K. & Gilles, J.R.L. 2016. Combining the sterile insect technique with the incompatible insect technique: III-robust mating competitiveness of irradiated triple Wolbachia infected Aedes albopictus males under semi-field conditions. PLoS ONE 11(3): e0151864.

Zhou, W., Rousset, F. & O’Neil, S. 1998. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society of London. Series B: Biological Sciences 265: 509-515.

 

*Pengarang untuk surat-menyurat; email: aishah.azil@ppukm.ukm.edu.my

 

 

   

sebelumnya