Sains
Malaysiana 51(1)(2022): 27-38
http://doi.org/10.17576/jsm-2022-5101-03
Super-
or Single Infection: Wolbachia Supergrouping of Wild Mosquito Populations from Varied Location Types in
Peninsular Malaysia
(Jangkitan
Super atau Tunggal: Superkumpulan Wolbachia Populasi Nyamuk Liar dari Pelbagai Jenis Lokasi di Semenanjung Malaysia)
NOOR SHAZLEEN HUSNIE MOHD MOHTAR1,
EMELIA OSMAN1, MOHD FARIHAN MD YATIM2 & AISHAH HANI
AZIL1*
1Department of Parasitology and Medical
Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras,
Kuala Lumpur, Wilayah Persekutuan, Malaysia
2Institute for Public Health, Centre for
Communicable Diseases Research, National Institutes of Health
Ministry of Health,
40170 Shah Alam, Selangor Darul Ehsan, Malaysia
Diserahkan: 1 Disember
2020/Diterima: 2 Mei 2021
ABSTRACT
Wolbachia has the ability to cause reproductive abnormalities in infected hosts
including cytoplasmic incompatibility (CI). CI is activated when there are
multiple Wolbachia supergroups or
strains infection present in insect populations. Wolbachia-transinfected mosquitoes have been used
widely in some countries as a biological control agent. In order to ensure a
successful Wolbachia establishment,
it is important to determine the diversity of natural Wolbachia present in the wild mosquito populations.
The adults and immature stages of mosquitoes were collected from urban,
suburban and rural areas and were reared into adults and identified to species
before being subjected to molecular analysis. We found that 22% out of 222
males and 34.6% of 543 females tested were carrying Wolbachia based on PCR amplification of the Wolbachia 16S rDNA genes technique. PCR
digestion for Wolbachia supergrouping
showed that most of the Ae. albopictus were superinfected with Wolbachia (52.41%), whereas 21% and 28% of the positive samples were singly infected with
supergroup A and B, respectively. There is an indication that prevalence of Wolbachia varies between mosquito populations
in different areas. However, further studies to incorporate both PCR
amplication of the Wolbachia 16S rDNA
and wsp genes with bigger sample size
should be performed to measure exact infection of Wolbachia in Malaysia. The
baseline data on diversity of Wolbachia supergroups is expected to facilitate Wolbachia strategy by helping us to better understand the patterns and impact of
the bacteria’s transmission in the environment.
Keywords: 16S rDNA; Culicidae; PCR digestion; Wolbachia supergroup
ABSTRAK
Wolbachia berkebolehan menyebabkan keabnormalan reproduktif kepada perumah yang
dijangkitinya, antaranya ketidakserasian sitoplasma (CI). CI diaktifkan
apabila terdapat kepelbagaian jangkitan daripada superkumpulan atau strain Wolbachia yang hadir di dalam sesuatu
populasi. Nyamuk transjangkitan Wolbachia ini telah digunakan secara meluas di sesetengah negara sebagai agen
kawalan biologi. Namun bagi memastikan keberjayaan Wolbachia untuk bermandiri, adalah penting untuk
mengenal pasti kepelbagaian Wolbachia yang hadir secara semula jadi di dalam populasi nyamuk liar. Nyamuk peringkat
dewasa dan pra-matang disampel daripada kawasan bandar, pinggir bandar dan
pedalaman yang kemudiannya dibiak sehingga dewasa dan spesiesnya dikenal pasti
sebelum diteruskan dengan analisis molekul. Berdasarkan kaedah amplifikasi PCR
yang menyasarkan gen 16S rDNA, kajian mendapati 22% daripada 222 nyamuk jantan
dan 34.6% daripada 543 betina membawa Wolbachia. Pencernaan produk PCR dilakukan bagi menentukan super-kumpulan Wolbachia dan hasilnya majoriti Aedes
albopictus dijangkiti Wolbachia daripada kedua-dua superkumpulan A dan B
(52.41%) manakala 21% dan 28% daripadanya masing-masing terjangkit secara
tunggal, superkumpulan A dan B. Ini menandakan taburan kumpulan Wolbachia adalah berbeza antara populasi nyamuk di
kawasan yang berbeza. Namun, kajian lanjutan yang melibatkan sampel saiz yang
lebih besar serta gabungan penggunaan dua gen Wolbachia 16S rDNA dan wsp amat
diperlukan bagi mengukur kadar jangkitan Wolbachia di Malaysia. Data garis dasar mengenai kepelbagaian superkumpulan Wolbachia yang hadir dijangka dapat
membantu mempermudahkan untuk memahami taburannya dan kesan penyebarannya pada
persekitaran.
Kata kunci: 16S rDNA gen; Culicidae; pencernaan PCR;
superkumpulan Wolbachia
RUJUKAN
Afizah,
A.N., Vythilingam, I., Lim, Y.A., Zabari, N.Z.A.M. & Lee, H.L. 2017.
Detection of Wolbachia in Aedes albopictus and their effects on
chikungunya virus. The American
Journal of Tropical Medicine and Hygiene 96(1): 148-156.
Afizah, A.N., Roziah, A., Nazni,
W.A. & Lee, H.L. 2015. Detection of Wolbachia from field collected Aedes albopictus Skuse in Malaysia. Indian Journal of
Medical Research 142(2): 205-210.
Ahantarig,
A., Trinachartvanit, W. & Kittayapong, P. 2008. Relative Wolbachia density of field collected Aedes albopictus mosquitoes in
Thailand. Journal of Vector Ecology 33(1): 173-177.
Ant, T.H. & Sinkins, S.P. 2018. A Wolbachia triple-strain infection generates self-incompatibility in Aedes albopictus and transmission
instability in Aedes aegypti. Parasites and Vectors 11(1): 295.
Blagrove, M.S., Arias-Goeta, C., Failloux, A.B. &
Sinkins, S.P. 2012. Wolbachia strain wMel induces cytoplasmic incompatibility
and blocks dengue transmission in Aedes
albopictus. In Proceedings of
the National Academy of Sciences. pp. 255-260.
Brelsfoard, CL. & Dobson, S.L. 2009. Wolbachia-based strategies to control
insect pests and disease vectors. Asia-Pacific
Journal of Molecular Biology and Biotechnology 17(3): 55-63.
Calvitti, M., Marini, F., Desiderio, A., Puggioli, A.
& Moretti, R. 2015. Wolbachia density and cytoplasmic incompatibility in Aedes
albopictus: Concerns with using artificial Wolbachia infection as a vector suppression tool. PLoS ONE 10(3): e0121813.
Carvajal, T.M., Hashimoto, K., Harnandika, R.K., Amalin,
D.M. & Watanabe, K. 2019. Detection of Wolbachia in field-collected Aedes aegypti mosquitoes in metropolitan Manila, Philippines. Parasites and Vectors 12(1): 361.
Chen, C.D., Seleena, B., Nazni,
W.A., Lee, H.L., Mohd Masri, S.M., Chiang, Y.F. & Sofian Azirun, M. 2006.
Dengue vectors surveillance in endemic areas in Kuala Lumpur city centre and
Selangor state, Malaysia. Dengue Bulletin 30: 197-203.
de Albuquerque, A.L.,
Magalhães, T. & Ayres, C.F.J. 2011. High prevalence and lack of diversity
of Wolbachia pipientis in Aedes albopictus populations from northeast Brazil. Memórias
do Instituto Oswaldo Cruz 106(6): 773-776.
Dobson, S.L., Rattanadechakul, W. & Marsland, E.J.
2004. Fitness advantage and cytoplasmic incompatibility in Wolbachia single and superinfected Aedes albopictus. Heredity 93(2): 135-142.
Fu, Y., Gavotte, L.,
Mercer, D.R. & Dobson, S.L. 2010. Artificial triple Wolbachia infection in Aedes
albopictus yields a new pattern of unidirectional cytoplasmic
incompatibility. Applied and
Environmental Microbiology 76(17): 5887-5891.
Gonçalves,
D., Hooker, D.J., Dong, Y., Baran, N., Kyrylos, P., Iturbe-Ormaetxe, I.,
Simmons, C.P. & O’Neill, S.L. 2019. Detecting wMel Wolbachia in
field-collected Aedes aegypti mosquitoes using loop-mediated isothermal amplification (LAMP). Parasites & Vectors 12(1): 1-5.
Gulraiz, M., Alvi, F.M., Mustafa, T., Razzaq, A. &
Latif, H.S. 2019. Distribution of Aedes
aegypti, Aedes albopictus and Culex sp. and detection of Wolbachia among them in city district
Lahore. Journal of Fatima Jinnah
Medical University 13(2): 55-58.
Hamdan, H., Sofian-Azirun, M., Nazni, W.A. & Lee, H.L.
2005. Insecticide resistance development in Culex
quinquefasciatus (Say), Aedes aegypti (L.) and Aedes albopictus (Skuse)
larvae against malathion, permethrin and temephos. Tropical Biomedicine 22: 45-52.
Hoffmann, A.A., Montgomery, B.L., Popovici, J.,
Iturbe-Ormaetxe, I., Johnson, P.H., Muzzi, F., Greenfield, M., Durkan, M.,
Leong, Y.S., Dong, Y. & Cook, H. 2011. Successful establishment of Wolbachia in Aedes populations to suppress
dengue transmission. Nature 476(7361):
454-457.
Keller, G.P., Windsor,
D.M., Saucedo, J.M. & Werren, J.H. 2004. Reproductive effects and
geographical distributions of two Wolbachia strains infecting the Neotropical beetle, Chelymorpha
alternans Boh. (Chrysomelidae, Cassidinae). Molecular Ecology 13(8): 2405-2420.
Kittayapong, P.,
Baisley, K., Sharpe, R., Baimai, V. & O’Neill, S. 2002. Maternal
transmission efficiency of Wolbachia superinfections in Aedes albopictus populations in Thailand. American Journal
Tropical Medicine Hygiene 66(1): 103-107.
Kittayapong, P., Baisley,
K.J., Baimai, V. & O’Neill, S.L. 2000. Distribution and diversity of Wolbachia infections in Southeast Asian
mosquitoes (Diptera: Culicidae). Journal
of Medical Entomology 37: 340-345.
KKM 2020. Kenyataan Akhbar Ketua Pengarah Kesihatan
Malaysia Mengenai Situasi Denggi, Zika dan Chikungunya di Malaysia - ME 45.2020.
Malaysia: Kementerian Kesihatan Malaysia (KKM). Accessed on 22 November 2020.
KKM 2019. I-Dengue: Statistik Denggi. Malaysia:
Kementerian Kesihatan Malaysia (KKM). Accessed on 22 November 2020.
Kulkarni, A., Yu, W., Jiang, J., Sanchez, C., Karna, A.K.,
Martinez, K.J., Hanley, K.A., Buenemann, M., Hansen, I.A., Xue, R.D. &
Ettestad, P. 2019. Wolbachia pipientis occurs in Aedes aegypti populations in New Mexico and Florida, USA. Ecology and Evolution 9(10):
6148-6156.
Lau, Y.L., Fong, M.Y., Mahmud, R., Chang, P.Y., Palaeya,
V., Cheong, F.W., Chin, L.C., Anthony, C.N., Al-Mekhlafi, A.M. & Chen, Y.
2011. Specific, sensitive and rapid detection of human Plasmodium knowlesi infection by loop-mediated isothermal
amplification (LAMP) in blood samples. Malaria
Journal 10(1): 1-6.
Loke, S.R., Andy-Tan,
W.A., Benjamin, S., Lee, H.L. & Sofian-Azirun, M. 2010. Susceptibility of field-collected Aedes aegypti (L.) (Diptera: Culicidae)
to Bacillus thuringiensis israelensis and temephos. Tropical Biomedicine 27: 493-450.
Luo, L., Jiang, L.Y., Xiao, X.C., Di, B., Jing, Q.L.,
Wang, S.Y., Tang, J.L., Wang, M., Tang, X.P. & Yang, Z.C. 2017. The dengue
preface to endemic in mainland China: The historical largest outbreak by Aedes albopictus in Guangzhou,
2014. Infectious Diseases of Poverty 6(1):
148.
Marcon, H.S., Coscrato, V.E.,
Selivon, D., Perondini, A.L.P. & Marino, C.L. 2011. Variations in the
sensitivity of different primers for detecting Wolbachia in Anastrepha (Diptera: Tephritidae). Brazilian Journal
of Microbiology 42(2): 778-785.
Mousson, L., Zouache, K.,
Arias-Goeta, C., Raquin, V., Mavingui, P., Failloux, A.B. & Lambrechts, L.
2012. The native Wolbachia symbionts
limit transmission of dengue virus in Aedes
albopictus. PLoS Neglected Tropical
Diseases 6(12): e1989.
Nazni,
W.A., Hoffmann, A.A., Noor Afizah, A., Cheong, Y.L., Mancini, M.V., Golding,
N., Kamarul, G.M., Arif, M.A., Thohir, H., Nur Syamimi, H. & Zatil Aqmar,
M.Z. 2019. Establishment of Wolbachia strain wAlbB in Malaysian populations
of Aedes aegypti for dengue
control. Current Biology 29(24):
4241-4248.
Noor-Shazleen-Husnie,
M.M., Emelia, O., Ahmad-Firdaus, M.S., Zainol-Ariffin, P. & Aishah-Hani, A.
2018. Detection of Wolbachia in wild
mosquito populations from selected areas in Peninsular Malaysia by
loop-mediated isothermal amplification (LAMP) technique. Tropical Biomedicine 35(2): 330-346.
Notomi, T., Mori, Y., Tomita, N. & Kanda, H. 2015. Loop-mediated
isothermal amplification (LAMP): principle, features, and future
prospects. Journal of Microbiology 53(1):
1-5.
Nugapola, N.N.P., De Silva, W.P.P. & Karunaratne, S.P.
2017. Distribution and phylogeny of Wolbachia strains in wild mosquito populations in Sri Lanka. Parasites and Vectors 10(1): 230.
Pourali, P., Roayaei,
A.M., Jolodar, A. & Razi, J.M.H. 2009. PCR screening of the Wolbachia in some arthropods and
nematodes in Khuzestan province. Iranian
Journal of Veterinary Research 10(3): 216-222.
Rasgon, J.L. &
Scott, T.W. 2004. An initial survey for Wolbachia (Rickettsiales: Rickettsiaceae) infections in selected California mosquitoes
(Diptera: Culicidae). Journal of Medical
Entomology 41(2): 255-257.
Ricci, I., Valzano, M., Ulissi, U.,
Epis, S., Cappelli, A. & Favia, G. 2012. Symbiotic control of mosquito
borne disease. Pathogens and Global
Health 106(7): 380-385.
Ricci, I., Cancrini, G.,
Gabrielli, S., D’amelio, S. & Favia, G. 2002. Searching for Wolbachia (Rickettsiales:
Rickettsiaceae) in mosquitoes (Diptera: Culicidae): Large polymerase chain
reaction survey and new identifications. Journal
of Medical Entomology 39(4): 562-567.
Ross, P.A., Callahan, A.G., Yang, Q., Jasper, M., Arif,
M.A., Afizah, A.N., Nazni, W.A. & Hoffmann, A.A. 2019a. An elusive
endosymbiont: Does Wolbachia occur
naturally in Aedes aegypti? Ecology and Evolution 10(3): 1581-1591.
Ross, P.A., Ritchie, S.A., Axford, J.K. & Hoffmann,
A.A. 2019b. Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes
aegypti under field conditions. PLoS
Neglected Tropical Diseases 13(4): e0007357.
Rossi, P., Ricci, I., Cappelli, A.,
Damiani, C., Ulissi, U., Mancini, M.V., Valzano, M., Capone, A., Epis, S.,
Crotti, E. & Chouaia, B. 2015. Mutual exclusion of Asaia and Wolbachia in
the reproductive organs of mosquito vectors. Parasites and Vectors 8(1): 278.
Rozilawati,
H., Tanaselvi, K., Nazni, W.A., Masri, S.M., Zairi, J., Adanan, C.R. & Lee,
H.L. 2015. Surveillance of Aedes
albopictus Skuse breeding preference in selected dengue outbreak
localities, Peninsular Malaysia. Tropical
Biomedicine 32(1): 49-64.
Sinkins, S.P. 2004. Wolbachia and cytoplasmic
incompatibility in mosquitoes. Insect
Biochemistry and Molecular Biology 34(7): 723-729.
Teo, C.H.J., Lim, P., Voon, K. & Mak, J.W. 2017.
Detection of dengue viruses and Wolbachia in Aedes
aegypti and Aedes albopictus larvae from four urban localities in Kuala Lumpur, Malaysia. Tropical Biomedicine 34(3):
583-597.
Tortosa, P., Charlat, S., Labbe, P., Dehecq, J.S., Barré,
H. & Weill, M. 2010. Wolbachia age sex-specific density in Aedes
albopictus: A host evolutionary response to cytoplasmic incompatibility? PLoS ONE 5(3): e9700.
Werren, J.H. & Windsor, D.M. 2000. Wolbachia infection frequencies in
insects: Evidence of a global equilibrium? In Proceedings of the Royal Society of London. Series B: Biological
Sciences. pp. 1277-1285.
Wiwatanaratanabutr, I.
2013. Geographic distribution of wolbachial infections in mosquitoes from
Thailand. Journal of Invertebrate
Pathology 114(3): 337-340.
WMP 2019. The World Mosquito Program’s Wolbachia
Method is Helping Communities Around the World Prevent the Spread of
Mosquito-Borne Disease. Sri Lanka: World Mosquito Program (WMP).
Wong, M.L., Liew, J.W.K., Wong, W.K., Pramasivan, S.,
Hassan, N.M., Sulaiman, W.Y.W., Jeyaprakasam, N.K., Leong, C.S., Low, V.L.
& Vythilingam, I. 2020. Natural Wolbachia infection in field-collected Anopheles and other mosquito species from Malaysia. Parasites and Vectors 13(1): 1-15.
Xu, G., Dong, H., Shi, N., Liu, S., Zhou, A., Cheng, Z.,
Chen, G., Liu, J., Fang, T., Zhang, H. & Gu, C. 2007. An outbreak of dengue
virus serotype 1 infection in Cixi, Ningbo, People’s Republic of China, 2004,
associated with a traveler from Thailand and high density of Aedes albopictus. The American Journal of Tropical Medicine
and Hygiene 76(6): 1182-1188.
Zainol, A.P., Ahmad,
Z.Z., Norhayati, S., Umi, A., Osman, H., Awaluddin, M.A., Abdul, H., Omar, H.
& Mohd, H.M. 2009. Using mosquito larvae trapping device as an additional
tool for dengue fever control in Kuala Lumpur. Malaysian Journal of Public Health Medicine 9(Suppl. 2): 34.
Zhang, D., Lees, R.S., Xi, Z., Bourtzis, K. & Gilles,
J.R.L. 2016. Combining the sterile insect technique with the incompatible
insect technique: III-robust mating competitiveness of irradiated triple Wolbachia infected Aedes albopictus males under semi-field conditions. PLoS ONE 11(3): e0151864.
Zhou, W., Rousset, F. & O’Neil, S. 1998. Phylogeny and
PCR-based classification of Wolbachia strains using wsp gene sequences. Proceedings
of the Royal Society of London. Series B: Biological Sciences 265: 509-515.
*Pengarang untuk
surat-menyurat; email: aishah.azil@ppukm.ukm.edu.my
|