Sains Malaysiana 51(11)(2022): 3703-3714

http://doi.org/10.17576/jsm-2022-5111-15

 

Angiotensin-I-Converting Enzyme Inhibitory (ACE-I) Peptide from Germinated Lamtoro Gung (Leucaena leucocephala ssp. glabrata (Rose) S. Zarate) Flour

(Angiotensin-I-Converting Enzyme Inhibitory (ACE-I) Peptida daripada Percambahan Tepung Lamtoro Gung (Leucaena leucocephala ssp. glabrata (Rose) S. Zarate))

 

APRILIA FITRIANI1,2, RETNO INDRATI1, YUSTINUS MARSONO1& SUPRIYADI SUPRIYADI1,*

 

1Department of Food Technology and Agricultural Products, Faculty of Agricultural, Technology, Universitas Gadjah Mada, Flora Street 1, Depok, Sleman, Special District of Yogyakarta, 55281, Indonesia

2Food Technology, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Jenderal Ahmad Yani Street, Banguntapan, Bantul, Special District of Yogyakarta, Indonesia

 

Diserahkan: 17 Disember 2021/Diterima: 18 Julai 2022

 

Abstract

Hypertension is a significant public health problem worldwide, a leading risk factor for cardiovascular disease and cause of premature death. Angiotensin-I-converting enzyme (ACE) activity is one of the causes of hypertension. Lamtoro Gung has potential as an Angiotensin-I-converting Enzyme Inhibitory (ACE-I) due to the presence of peptide that able to inhibit its activity to prevent hypertension. The germination process was carried out to hydrolyse storage proteins and produce peptides that have a low molecular weight. This study investigated ACE-I activity from Lamtoro Gung seed during germination and evaluated the blanching effect on it. This experiment was conducted with a Completely Randomised Design (CRD), and the factor is the differences in germination duration (0, 12, 24, 36, 48, 60, and 72 h). Proteolytic activity and the degree of hydrolysis during germination were studied to know the correlation between germination and ACE-I activity. The highest ACE-I activity sample was blanched with three different durations (2, 4, and 6 s). The 48 h germinated Lamtoro Gung had the highest ACE-I activity (70.62%). This result was supported by the proteolytic activity (168.79 U/g protein dry matter) and degree of hydrolysis (23.26%). Forty-eight hours of germination of Lamtoro Gung resulted in the highest ACE-I activity. Blanching of germinated Lamtoro Gung for 2 s could hold the ACE-I activity, but the longer duration decreased it.

 

Keywords: ACE-I; blanching; germination; Lamtoro Gung

 

Abstrak

Hipertensi adalah masalah kesihatan awam utama di seluruh dunia, faktor risiko utama penyakit kardiovaskular dan punca kematian pramatang. Aktiviti Angiotensin-I-converting Enzyme (ACE) adalah salah satu punca hipertensi. Lamtoro Gung berpotensi sebagai Angiotensin-I-converting Enzyme Inhibitory (ACE-I) kerana kehadiran peptida yang mampu menghambat aktivitinya untuk mencegah hipertensi. Proses percambahan boleh dijalankan untuk menghidrolisis protein simpanan dan menghasilkan peptida ringkas. Penyelidikan ini mengkaji aktiviti ACE-I daripada biji Lamtoro Gung semasa percambahan dan menilai kesan kukus kepadanya. Uji kaji ini dijalankan dengan Reka Bentuk Rawak Sepenuhnya (CRD) dan faktor penelitian yang digunakan iaitu perbezaan dalam tempoh percambahan (0, 12, 24, 36, 48, 60 dan 72 jam). Aktiviti proteolitik dan tahap hidrolisis semasa percambahan dikaji untuk mengetahui perkaitan antara percambahan dan aktiviti ACE-I. Sampel aktiviti ACE-I tertinggi kemudian dikukus dengan tiga tempoh didih yang berbeza (2, 4 dan 6 s). Lamtoro Gung yang bercambah 48 jam mempunyai aktiviti ACE-I tertinggi (70.62%). Keputusan ini disokong oleh aktiviti proteolitik (168.79 U/g protein bahan kering) dan tahap hidrolisis (23.26%). Lamtoro Gung yang bercambah dan dikukus selama 2 s boleh menahan aktiviti ACE-I, tetapi tempoh yang lebih lama mengurangkannya.

 

Kata kunci: ACE-I; Lamtoro Gung; pengukusan; percambahan

 

RUJUKAN

Aderibigbe, S.A., Adetunji, O.A. & Odeniyi, M.A. 2011. Antimicrobial and pharmaceutical properties of the seed oil of Leucaena leucocephala (Lam.) De Wit (Leguminosae). African Journal of Biomedical Research 14 (January): 63-68.

Ahn, C.B., Jeon, Y.J., Kim, Y.T. & Je, J.Y. 2012. Angiotensin-I-converting enzyme (ACE) inhibitory peptides from salmon byproduct protein hydrolysate by alcalase hydrolysis. Process Biochemistry 47(12): 2240-2245. https://doi.org/10.1016/j.procbio.2012.08.019

Ali, A.S. & Elozeiri, A.A. 2017. Metabolic processes during seed germination. In Advances in Seed Biology, Jimenez-Lopez, J.C. DOI: 10.5772/intechopen.70653

Aluko, R.E. 2015. Structure and function of plant protein-derived antihypertensive peptides. Current Opinion in Food Science 4(5): 44-50. https://doi.org/10.1016/j.cofs.2015.05.002

Bamdad, F., Dokhani, S., Keramat, J. & Zareie, R. 2009. The impact of germination and in vitro digestion on the formation of angiotensin converting enzyme (ACE) inhibitory peptides from lentil proteins compared to whey proteins. International Journal of Biological and Life Science 5: 2.

Basha, S.M.M. & Beevers, L. 1975. The development of proteolytic activity and protein degradation during the germination of Pisum sativum L. Planta 124(1): 77-87. https://doi.org/10.1007/BF00390070

Bower, J.A. 2013. Statistical Methods for Food Science: Introductory Proecedures for the Food Practitioner. 2nd ed. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118541593

Bünning, P. & Riordan, J.F. 1983. Activation of angiotensin converting enzyme by monovalent anions. Biochemistry 22(1): 110-116. https://doi.org/10.1021/bi00270a016

Charoenphun, N., Cheirsilp, B., Sirinupong, N. & Youravong, W. 2013. Calcium-binding peptides derived from tilapia (Oreochromis niloticus) protein hydrolysate. European Food Research and Technology 236: 57-63. https://doi.org/10.1007/s00217-012-1860-2

Cupp-Enyard, C. 2008. Sigma’s non-specific protease activity assay - Casein as a substrate. Journal of Visualized Experiments 19: 4-5. https://doi.org/10.3791/899

Cushman, D.W. & Cheung, H.S. 1971. Spectrophotometric assay and properties of the angiotensin-Converting enzyme of rabbit lung. Biochemical Pharmacology 20(7): 1637-1648. https://doi.org/10.1016/0006-2952(71)90292-9

de Castro, R.J.S. & Sato, H.H. 2015. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International 74(5): 185-198. https://doi.org/10.1016/j.foodres.2015.05.013

Durak, A., Baraniak, B., Jakubczyk, A. & Świeca, M. 2013. Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds. Food Chemistry 141(3): 2177-2183. https://doi.org/10.1016/j.foodchem.2013.05.012

Escudero, E., Mora, L. & Toldrá, F. 2014. Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion. Food Chemistry 161: 305-311. https://doi.org/10.1016/j.foodchem.2014.03.117

Fan, H., Liao, W. & Wu, J. 2018. Molecular interactions, bioavailability, and cellular mechanisms of angiotensin-converting enzyme inhibitory peptides. Journal of Food Biochemistry 43(1): 1-8. https://doi.org/10.1111/jfbc.12572

Fellows, P. 2000. Food Processing Technology. 2nd ed. Woodhead Publishing Limited and CRC Press LLC.

Fitriani, A., Santoso, U. & Supriyadi, S. 2021a. Conventional processing affects nutritional and antinutritional components and in vitro protein digestibility in Kabau (Archidendron bubalinum). International Journal of Food Science 2021: Article ID. 3057805.

Fitriani, A., Supriyadi, S., Rachma, Y.A., Maharani, P., Ardianto, C., Khoirunnissa, R., Muzakki, W.A. & Fajarini, L.D.R. 2021b. Proses pembuatan tepung kecambah Lamtoro Gung (Leucaena leucocephala ssp. Glabrata (Rose) S. Zarate) sebagai antihipertensi.

Gepstein, S. & Ilan, I. 1980. Evidence for the involvement of cytokinins in the regulation of proteolytic activity in cotyledons of germinating beans. Plant and Cell Physiology 21(March): 57-63.

Gonçalves, R.N., Duarte, S., Barbosa, G. & Silva-López, R.E. 2016. Proteases from Canavalia ensiformis: Active and thermostable enzymes with potential of application in biotechnology. Biotechnology Research International 2016: 3427098.

Gulewicz, P., Martínez-Villaluenga, C., Frias, J., Ciesiołka, D., Gulewicz, K. & Vidal-Valverde, C. 2008. Effect of germination on the protein fraction composition of different lupin seeds. Food Chemistry 107(2): 830-844. https://doi.org/10.1016/j.foodchem.2007.08.087

Harifah, C.S. 2017. Perubahan zat gizi, senyawa antigizi, serta nilai cerna protein secara in vitro serta profil asam amino biji Lamtoro Gung (Leucaena Leucocephala) kukus dan rebus. Thesis. Universitas Gadjah Mada (Unpublished).

Harifah, C.S., Supriyadi, S. & Santoso, U. 2018. Antinutrient and in vitro protein digestibility Lamtoro Gung seed Leucaena leucocephala steamed and boiled. In Seminar Nasional PATPI 2017. pp. 539-545.

Hartree, E.F. 1972. Determination of potein: A modification of the lowry method that gives a linear photometric response. Analytical Biochemistry 48: 422-427. https://doi.org/10.1007/BF01412567

Hwang, J-S. 2010. Impact of processing on stability of angiotensin I-converting enzyme (ACE) inhibitory peptides obtained from tuna cooking juice. Food Research International 43(3): 902-906. https://doi.org/10.1016/j.foodres.2009.12.012

Kesari, V. & Rangan, L. 2011. Coordinated changes in storage proteins during development and germination of elite seeds of Pongamia pinnata, aversatile biodiesel legume. AoB PLANTS 11(1): 1-16. https://doi.org/10.1093/aobpla/plr026

Kırmızı, S. & Güleryüz, G. 2006. Protein mobilization and proteolytic enzyme activities during seed germination of broad bean (Vicia faba L.). Journal of Biosciences 61(3-4): 222-226.

Kuo, Y.H., Rozan, P., Lambein, F., Frias, J. & Vidal-Valverde, C. 2004. Effects of different germination conditions on the contents of free protein and non-protein amino acids of commercial legumes. Food Chemistry 86(4): 537-545. https://doi.org/10.1016/j.foodchem.2003.09.042

Lee, J.K., Jeon, J-K. & Byun, H-G. 2011. Effect of angiotensin I converting enzyme inhibitory peptide purified from skate skin hydrolysate. Food Chemistry 125(2): 495-499. https://doi.org/10.1016/j.foodchem.2010.09.039

Li, G.H., Qu, M.R., Wan, J.Z. & You, J.M. 2007. Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin i-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pacific Journal of Clinical Nutrition 16(SUPPL.1): 275-280. https://doi.org/10.6133/apjcn.2007.16.s1.52

Lichtenfeld, C., Manteuffel, R., Müntz, K., Neumann, D., Scholz, G. & Weber, E. 1979. Protein degradation and proteolytic activities in germinating field beans (Vicia faba L., var. minor). Biochemie Und Physiologie Der Pflanzen 174(4): 255-274. https://doi.org/10.1016/s0015-3796(17)30587-5

Mamilla, R.K. & Mishra, V.K. 2017. Effect of germination on antioxidant and ACE inhibitory activities of legumes. LWT - Food Science and Technology 75(1): 51-58. https://doi.org/10.1016/j.lwt.2016.08.036

Mariod, A.A., Edris, Y.A., Cheng, S.F. & Abdelwahab, S.I. 2012. Effect of germination periods and conditions on chemical composition, fatty acids and amino acids of two black cumin seeds. Acta Scientiarum Polonorum 11(4): 401-410.

Mayer, A.M. & Poljakoff-Mayber, A. 1979. The structure of seeds and seedlings. In The Germination of Seed. 3rd ed. New York: Pergamon Press. pp. 1-9. https://doi.org/10.1016/B978-0-08-028853-6.50008-5

Miguel, M. & Aleixandre, A. 2006. Antihypertensive peptides derived from egg proteins. Recent Advances in Nutritional Sciences 136(6): 1457-1460.

Natesh, R., Schwager, S.L.U., Sturrock, E.D. & Acharya, K.R. 2003. Crystal structure of the human angiotensin-converting enzyme – lisinopril complex. Nature Publishing Group 421(1): 551-554.

Noviyanti, E., Supriyadi, A., Arum, L.S., Akbar, R.R. & Siswoyo, T.A. 2020. Effect of germination on free radical scavenging activities and angiotensin i-converting enzyme inhibitory of melinjo (Gnetum gnemon L.) seed proteins. Journal of Microbiology, Biotechnology and Food Sciences 9(4): 809-812. https://doi.org/10.15414/JMBFS.2020.9.4.809-812

Nursiwi, A., Dwikiputra, B.I., Ishartani, D. & Sari, A.M. 2019. Changes on microbial growth during mlanding tempeh (Leucaena leucocephala) over fermentation. IOP Conference Series: Earth and Environmental Science 379(1): 1-6. https://doi.org/10.1088/1755-1315/379/1/012001

Nursiwi, A., Ishartani, D., Sari, A.M. & Nisyah, K. 2018. Study on Leucaena leocochepala seed during fermentation: Sensory characteristic and changes on anti nutritional compounds and mimosine level. IOP Conference Series: Earth and Environmental Science 102: 012093.

Obiazi, C.C. 2015. Hot water enhanced germination of Leucaena leucocephala seeds in light and dark conditions. Current Research in Agricultural Sciences 2(2): 67-72. https://doi.org/10.18488/journal.68/2015.2.2/68.2.67.72

Pebrianti, S.A., Nur Cahyanto, M. & Indrati, R. 2019. Angiotensin I-converting enzyme (ACE) inhibitory activity of ACE inhibitory peptides produced during the fermentation of pigeon pea (Cajanus cajan) tempe. Journal of Indonesian Food and Nutrition Progress 16(2): 47-52. https://doi.org/10.22146/ifnp.46921

Pertiwi, M.G.P., Marsono, Y. & Indrati, R. 2019. In vitro gastrointestinal simulation of tempe prepared from Koro Kratok (Phaseolus lunatus L.) as an angiotensin-converting enzyme inhibitor. Journal of Food Science and Technology 57(5): 1847-1855. https://doi.org/10.1007/s13197-019-04219-1

Puspitojati, E., Nur Cahyanto, M., Marsono, Y. & Indrati, R. 2019. Production of angiotensin-i-converting enzyme (ACE) inhibitory peptides during the fermentation of jack bean (Canavalia ensiformis) tempe. Pakistan Journal of Nutrition 18(5): 464-470. https://doi.org/10.3923/pjn.2019.464-470

Ramakrishna, V. & Rao, P.R. 2005. Purification of acidic protease from the cotyledons of germinating indian bean (Dolichos lablab L. var. lignosus) seeds. African Journal of Biotechnology 4(July): 703-707.

Ratnayani, K., Suter, I.K., Antara, N.S. & Putra, I.N.K. 2019. Angiotensin converting enzyme (ACE) inhibitory activity of peptide fraction of germinated pigeon pea (Cajanus cajan (L.) Millsp.). Indonesian Journal of Chemistry 19(4): 900-906. https://doi.org/10.22146/ijc.37513

Sayudi, S., Herawati, N. & Ali, A. 2015. Potensi biji Lamtoro Gung dan biji Kedelai sebagai bahan baku pembuatan tempe komplementasi. Journal Online Mahasiswa Universitas Riau 2(1): 1-9.

Shutov, A.D. & Vaintraub, I.A. 1987. Degradation of storage proteins in germinating seeds. Phytochemistry 26(6): 1557-1566.

Supriyadi, S., Indrati, R. & Santoso, U. 2021. Peptida bioaktif dari indigenous Indonesian stinky bean sebagai sumber ACE-Inhibitor untuk menekan penyakit hipertensi.

Tavares, T., Del Mar Contreras, M., Amorim, M., Pintado, M., Recio, I. & Xavier Malcata, F. 2011. Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: In vitro effect and stability to gastrointestinal enzymes. Peptides 32(5): 1013-1019. https://doi.org/10.1016/j.peptides.2011.02.005

Urbano, G., Aranda, P., Vílchez, A., Aranda, C., Cabrera, L., Porres, J.M. & López-Jurado. M. 2005. Effects of germination on the composition and nutritive value of proteins in Pisum sativum, L. Food Chemistry 93(4): 671-679. https://doi.org/10.1016/j.foodchem.2004.10.045

Wu, W., Yu, P.P., Zhang, F.Y., Che, H.X. & Jiang, Z.M. 2014. Stability and cytotoxicity of angiotensin-i-converting enzyme inhibitory peptides derived from bovine casein. Journal of Zhejiang University: Science B 15(2): 143-152. https://doi.org/10.1631/jzus.B1300239

Xiao, H.W., Pan, Z., Deng, L.Z., El-Mashad, H.M., Yang, X.H., Mujumdar, A.S., Gao, Z.J. & Zhang, Q. 2017. Recent Developments and trends in thermal blanching – A comprehensive review. Information Processing in Agriculture 4(2): 101-127. https://doi.org/10.1016/j.inpa.2017.02.001

Zhang, Y., Pechan, T. & Chang, S.K.C. 2018. Antioxidant and angiotensin-I converting enzyme inhibitory activities of phenolic extracts and fractions derived from three phenolic-rich legume varieties. Journal of Functional Foods 42: 289-297. https://doi.org/10.1016/j.jff.2017.12.060

 

*Pengarang untuk surat-menyurat; email: suprif248@ugm.ac.id

 

 

 

 

   

sebelumnya