Sains Malaysiana 51(11)(2022): 3607-3619
http://doi.org/10.17576/jsm-2022-5111-08
Cadmium Toxicity Alleviation through Exogenous
Application of Gibberellic Acid (GA3) in Mustard (Brassica juncea (L.) Czern.) and Rapeseed (Brassica rapa L.)
(Pengurangan Ketoksikan Kadmium melalui Penggunaan Eksogen Asid Giberelik
(GA3) dalam Mustard (Brassica juncea (L.) Czern.) dan Biji
Ragam (Brassica rapa L.))
MUHAMMAD SAJJAD IQBAL1,*, FAIZA BASHIR1, MUHAMMAD AKBAR1, KHAWAJA SHAFIQUE AHMAD2, MUHAMMAD AZHAR ALI1, SYED ATIQ HUSSAIN1, NOSHIA ARSHAD1, HAJRA MASOOD1, SABA MUNIR1, TAHIRA AHMAD1 & MUHAMMAD ISLAM3
1Biodiversity Informatics, Genomics
and Post Harvest Biology Laboratory, Department of
Botany, University of Gujrat, Gujrat, 50700, Pakistan
2Department of Botany, University of Poonch Rawalakot, 12350,
Azad Jammu & Kashmir, Pakistan
3Department of Biotechnology and
Genetic Engineering, Hazara University, Mansehra, Pakistan
Diserahkan: 21 Oktober 2021/Diterima: 22 Jun 2022
ABSTRACT
An
experiment was carried out by considering adverse impact of heavy metals on
human health through consumption of crops. To alleviate the adverse effects of
cadmium (Cd) toxicity through foliar application of gibberellic acid (GA3),
two varieties of Brassica including Indian mustard (Brassica juncea (L.) Czern.)
commonly known as ‘Raya’ and rapeseed (Brassica rapaL.) as ‘Toria’
were studied. The Completely Randomized Design (CRD) was used with eight
treatments including control in four replicates. Treatments were as following,
T0 (control), T1 (150 μM CdCl2), T2
(50 mg/L GA3), T3 (75 mg/L GA3), T4 (100 mg/L GA3),
T5 (150 μM CdCl2 + 50 mg/L GA3),
T6 (150 μM CdCl2 + 75 mg/L GA3),
and T7 (150 μM CdCl2 + 100 mg/L GA3).
Gibberellic acid (GA3), a plant growth regulator applied
exogenously. The concentration of cadmium (150 µM CdCl2) resulted in
Cd toxicity affected adversely the morphological and biochemical parameters.
Foliar application of GA3 (50 mg, 75 mg and 100 mg) positively
influenced the various growth parameters as root length (30 cm), shoot length
(129.75 cm), number of leaves (14.5), pods per plant (88) and biochemical
parameters like total chlorophyll (0.19 mg/g), protein content (0.70 mg/mL),
carbohydrates (0.37 mg/mL) and CAT (0.56 units/mg). Outcome indicated that GA3 reduces the harmful effects of Cd stress in both varieties. It was concluded
that all growth and yield parameters of variety ‘Raya’ were better as compared
to variety ‘Toria’, hence Raya recommended for large
scale cultivation with GA3 under Cd stress.
Keywords: Cadmium
stress; gibberellic acid; mustard; toxicity
Abstrak
Satu uji kaji telah dijalankan
dengan mempertimbangkan kesan buruk logam berat terhadap kesihatan manusia
melalui penggunaan tanaman. Untuk mengurangkan kesan buruk ketoksikan kadmium
(Cd) melalui penggunaan daun asid giberelik (GA3), dua jenis
Brassica termasuk mustard India (Brassica juncea (L.) Czern.) yang biasanya
dikenali sebagai 'Raya' dan biji sesawi (Brassica
rapa L.) 'Toria' dikaji. Reka Bentuk Rawak Sepenuhnya (CRD) digunakan
dengan lapan rawatan termasuk kawalan dalam empat replikasi. Rawatan adalah
seperti berikut, T0 (kawalan), T1
(150 μM CdCl2), T2 (50 mg/L GA3),
T3 (75 mg/L GA3), T4 (100 mg/L GA3), T5 (150 μM CdCl2 + 50 mg/L GA3), T6 (150 μM CdCl2 + 75 mg/L GA3) dan T7 (150 μM CdCl2 + 100 mg/L GA3). Asid
giberelik (GA3), pengawal selia pertumbuhan tumbuhan digunakan
secara eksogen. Kepekatan kadmium (150 µM CdCl2) mengakibatkan
ketoksikan Cd memberi kesan buruk kepada parameter morfologi dan biokimia.
Penggunaan daun GA3 (50 mg, 75 mg dan 100 mg) secara positif
mempengaruhi pelbagai parameter pertumbuhan seperti panjang akar (30 cm),
panjang pucuk (129.75 cm), bilangan daun (14.5), buah setiap tumbuhan (88) dan
biokimia parameter seperti jumlah klorofil (0.19 mg/g), kandungan protein (0.70
mg/mL), karbohidrat (0.37 mg/mL) dan CAT (0.56 unit/mg). Keputusan menunjukkan
bahawa GA3 mengurangkan kesan berbahaya tekanan Cd dalam kedua-dua
varieti. Disimpulkan bahawa semua parameter pertumbuhan dan hasil varieti
'Raya' adalah lebih baik berbanding varieti 'Toria', justeru Raya disyorkan
untuk penanaman berskala besar dengan GA3 di bawah tekanan Cd.
Kata kunci: Asid giberelik; ketoksikan; mustard; tekanan kadmium
RUJUKAN
Aghbolaghi, M.A., Sedghi, M., Sharifi, R.S. & Dedicova, B. 2022. Germination and the
biochemical response of pumpkin seeds to different concentrations of humic acid under cadmium stress. Agriculture 12(3):
374.
Ahmad, P., Sarwat, M.,
Bhat, N.A., Wani, M.R., Kazi,
A.G. & Tran, L.S. 2015. Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by
calcium application involves various physiological and biochemical strategies. PLoS ONE 10(1): e0114571.
Al-Mahmud, J., Hasanuzzaman, M., Nahar, K., Rahman, A. & Fujita, M.
2019. EDTA reduces cadmium toxicity in mustard (Brassica juncea L.) by enhancing metal
chelation, antioxidant defense and glyoxalase systems. Acta Agrobotanica 72(2):
1-17.
Alyemeni, M.N., Ahanger,
M.A., Wijaya, L., Alam, P., Bhardwaj, R. & Ahmad,
P. 2018. Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and
antioxidant system. Protoplasma 255(2): 459-469.
Aprile, A., Sabella, E., Vergine, M., Genga, A., Siciliano, M., Nutricati, E., Rampino, P., De Pascali, M., Luvisi, A., Miceli, A., Negro, C. & De Bellis, L. 2018. Activation of a gene network in durum wheat roots
exposed to cadmium. BMC Plant Biology 18:
238.
Asgher, M., Khan, M.I.R., Anjum, N.A. & Khan, N.A. 2015. Minimising toxicity of cadmium in plants-role of
plant growth regulators. Protoplasma 252(2): 399-413.
Aziz,
R., Rafiq, M.T., He, Z., Liu, D., Sun, K. & Xiaoe,
Y. 2015. In vitro assessment of cadmium bioavailability in Chinese
cabbage grown on different soils and its toxic effects on human health. BioMed Research International 2015:
285351.
Benhamdi, A., Kandouli, C., Cherfia, R., Chelouche, S., Boumissa, Z., Benniou, M.E., Hafdi, R. & Mechakra, A. 2021. Effect of zinc on the growth and the
antioxidant system of Lens culinaris cultivated on agar medium. Journal of Ecological Engineering 22(9):
13-20.
Guo, B., Liu, C., Liang, Y., Li, N. & Fu, Q. 2019. Salicylic
acid signals plant defense against cadmium toxicity. International Journal of Molecular Sciences 20(12): 2960.
Haider, F.U., Liqun, C., Coulter, J.A., Cheema, S.A., Wu, J., Zhang, R., Wenjun, M.
& Farooq, M. 2021. Cadmium toxicity in plants: Impacts and remediation
strategies. Ecotoxicology and
Environmental Safety 211: 111887.
Hasan,
S., Sehar, Z. & Khan, N.A. 2020. Gibberellic acid
and sulfur-mediated reversal of cadmium-inhibited photosynthetic performance in Mungbean (Vigna
radiata L.) involves nitric oxide. Journal
of Plant Growth Regulation 39: 1605-1615.
Hou,
L.L., Tong, T., Tian, B. & Xue, D.W. 2019.
Chapter 1- Crop yield and quality under Cadmium stress. In Cadmium
Tolerance in Plants: Agronomic, Molecular, Signaling, and Omic Approches, edited by Hasanuzzaman,
M., Prasad, M.N.V., Nahar, K. Cambridge: Academic Press. pp. 1-18.
Hu, S., Shinwari, K.I., Song, Y., Xia, J., Xu, H., Du, B., Luo, L. & Zheng, L. 2021. OsNAC300 positively regulates
cadmium stress responses and tolerance in rice roots. Agronomy 11(1):
95.
Iqbal,
M.S. & Akbar, M. 2021. Phenotypic diversity analysis and performance of
elite lines of Brassica napus L. Bangladesh
Journal of Botany 50(1): 1-6.
Irakoze, W., Prodjinoto, H., Nijimbere, S., Rufyikiri, G. & Lutts, S. 2020. NaCl and Na2SO4 salinities
have different impact on photosynthesis and yield-related parameters in Rice (Oryza
sativa L.). Agronomy 10(6):
864.
Irfan,
M., Ahmad, A. & Hayat, S. 2014. Effect of cadmium on the growth and
antioxidant enzymes in two varieties of Brassica juncea. Saudi Journal of Biological Sciences 21(2): 125-131.
Kapoor, D., Kaur, S.
& Bhardwaj, R. 2014. Physiological and biochemical changes in Brassica juncea plants under Cd-induced stress. BioMed Research International 2014:
726070.
Kapoor, D., Singh, M.P.,
Kaur, S., Bhardwaj, R., Zheng, B. & Sharma, A. 2019. Modulation of the
functional components of growth, photosynthesis, and antioxidant stress markers
in Cadmium exposed Brassica junceaL. Plants 8(8): 260.
Khan,
N.A., Asgher, M., Per, T.S., Masood, A., Fatma, M.
& Khan, M.I.R. 2016. Ethylene potentiates sulfur-mediated reversal of
cadmium inhibited photosynthetic responses in mustard. Frontiers in Plant Science 7: 1628.
Kluska, K., Adamczyk,
J. & Krężel, A. 2018. Metal binding properties, stability and reactivity of zinc
fingers. Coordination Chemistry Reviews 367: 18-64.
Kumar, A., Lal, M., Mohan,
N., Kumar, M. & Kumar, N. 2018. Effect of different sowing dates on yield and yield attributes of Indian mustard (Brassica junceaL.) genotypes. International Journal of Pure and Applied Biosciences 6(2): 848.
Lalarukh, I. & Shahbaz, M. 2020.
Response of antioxidants and lipid peroxidation to exogenous application of
alpha-tocopherol in sunflower (Helianthus annuus L.) under salt stress. Pakistan Journal of Botany 52(1): 75-83.
Liu, Y., Xiao, T., Baveye, P.C., Zhu, J., Ning, Z. & Li, H. 2015.
Potential health risk in areas with high naturally occurring cadmium background
in southwestern China. Ecotoxicology and
Environmental Safety 112: 122-131.
Masood,
A., Khan, M.I.R., Fatma, M., Asgher, M., Per, T.S.
& Khan, N.A. 2016. Involvement of ethylene in gibberellic acid-induced
sulfur assimilation, photosynthetic responses and alleviation of cadmium stress
in mustard. Plant Physiology and
Biochemistry 104: 1-10.
Masood,
A. & Khan, N.A. 2013. Ethylene and gibberellic acid interplay in regulation
of photosynthetic capacity inhibition by cadmium. Journal of Plant
Biochemistry and Physiology 1(111):
1-3.
Nagarajan, S., Varatharajan, N.
& Gandhimeyyan, R.V. 2021. Understanding the
responses, mechanism and development of salinity stress tolerant cultivars in
rice. In Integrative Advances in Rice Research, edited by
Min Huang. London: Intech Open. 10.5772/intechopen.99233.
Nouairi, I., Jalali, K., Zribi, F., Barhoumi, F., Zribi, K. & Mhadhbi, H. 2019. Seed priming with calcium chloride
improves the photosynthesis performance of faba bean
plants subjected to cadmium stress. Photosynthetica 57(2): 438-445.
Perveen, S., Iqbal, M., Saeed, M., Iqbal, N., Zafar, S. & Mumtaz, T. 2019. Cysteine-induced
alterations in physicochemical parameters of oat (Avena sativa L. var. Scott and F-411) under drought stress. Biologia Futura 70: 16-24.
Qayyum, M.F., Zia ur Rehman, M., Ali, S., Rizwan, M., Naeem, A., Maqsood,
M.A. & Ok, Y.S. 2017. Residual effects of monoammonium phosphate, gypsum
and elemental sulfur on cadmium phytoavailability and
translocation from soil to wheat in an effluent irrigated field. Chemosphere 174: 515-523.
Qi, F., Zha, Z., Du, L., Feng, X., Wang, D., Zhang, D., Fang, Z.D.,
Ma, L.J., Jin, Y.D. & Xia, C. 2014. Impact of
mixed low molecular weight organic acids on uranium accumulation and
distribution in a variant of mustard (Brassica juncea var. tumida). Journal of Radioanalytical and Nuclear
Chemistry 302: 149-159.
Shahzad, K., Hussain, S., Arfan, M., Hussain, S., Waraich, E.A., Zamir, S., Saddique, M., Rauf, A., Kamal, K.Y., Hano, C. & El-Esawi, M.A. 2021. Exogenously applied gibberellic acid enhances growth and salinity
stress tolerance of maize through modulating the morpho-physiological,
biochemical and molecular attributes. Biomolecules 11(7): 1005.
Shankar,
S., Segaran, G., Sundar, R.D.V., Settu,
S. & Sathiavelu, M. 2019. Brassicaceae-a
classical review on its pharmacological activities. International Journal of Pharmaceutical Sciences Review and Research 55(1): 107-113.
Sharma, N., Nehal, N., Singh, M., Singh, P., Rajpoot, P., Pandey, A.K.
& Yadav, R.K. 2017. Effect of plant growth regulators on growth,
biochemical changes and yield of Mustard [Brassica juncea (L.) Czern.
& Coss.]. Plant
Archives 17(1): 33-38.
Sharma, P., Chouhan, R., Bakshi, P., Gandhi, S.G., Kaur, R., Sharma, A. & Bhardwaj, R. 2022. Amelioration
of chromium-induced oxidative stress by combined treatment of selected
plant-growth-promoting rhizobacteria and earthworms via modulating
the expression of genes related to reactive oxygen species metabolism in Brassica juncea. Frontiers of Microbiology 802512.
Sharma, P., Jha,
A.B., Dubey, R.S. & Pessarakli, M.
2012. Reactive
oxygen species, oxidative damage, and antioxidative defense mechanism in plants
under stressful conditions. Journal
of Botany 2012: 217037.
Soengas, P., Sotelo, T., Velasco, P. & Elena, M. 2011. Antioxidant
properties of Brassica vegetables. Functional
Plant Science and Biotechnology 5(2):
43-55.
Stefano, G.,
Bose, J., Hill, C. & Wu, H. 2000. New
insights into salinity sensing, signaling and adaptation in plants. Frontiers
in Plant Science 11(265): 278.
Teas,
H.J. 2012. Physiology and Management of Mangroves. The Hague: Dr W. Junk
Publishers.
Vetrano, F., Moncada, A. & Miceli, A. 2020. Use of gibberellic acid to increase the salt tolerance of leaf lettuce
and rocket grown in a floating system. Agronomy 10(4): 505.
Wang,
B., Yang, W. & Shan, C. 2022. Effects of selenomethionine on the antioxidative enzymes, water physiology and fruit quality
of strawberry plants under drought stress. Horticultural Science (Prague) 49(1): 10-18.
Zhang, D., Du, Y., He, D., Zhou, D., Wu, J., Peng, J., Liu, L., Liu, Z. & Yan, M. 2021. Use of comparative transcriptomics combined with physiological analyses
to identify key factors underlying cadmium accumulation in Brassica juncea L. Frontiers of Genetics 12: 655885.
Zulfiqar, U., Jiang, W., Xiukang, W., Hussain, S., Ahmad, M., Maqsood, M.F., Ali N., Ishfaq, M., Kaleem, M., Haider, F.U., Farooq,
N., Naveed, M., Kucerik, J., Brtnicky, M. & Mustafa, A. 2022. Cadmium phytotoxicity, tolerance, and
advanced remediation approaches in agricultural soils: A comprehensive review. Frontiers of Plant Sciences 2022:
773815.
*Pengarang untuk surat-menyurat; email: drsajjad.iqbal@uog.edu.pk