Sains Malaysiana 50(9)(2021): 2591-2602
http://doi.org/10.17576/jsm-2021-5009-08
In-silico Characterization and Expression Analysis of NB-ARC Genes in Response to Erwinia
mallotivora in Carica papaya
(Pencirian In-silico dan Analisis Pengekspresan Gen NB-ARC sebagai Gerak Balas
kepada Erwinia mallotivora pada Carica papaya)
NUR SYAZANA ABU BAKAR1,
NOOR BAITY SAIDI1,3, LINA ROZANO2, MOHD PUAD ABDULLAH1 & SUHAINA SUPIAN2*
1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Biotechnology and
Nanotechnology Research Centre, Malaysian Agricultural Research and Development
Institute (MARDI), 43400 Serdang, Selangor Darul Ehsan, Malaysia
3Biodiversity
Unit, Institute of Biosciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Diserahkan: 20 Oktober 2020/Diterima: 21
Januari 2021
ABSTRACT
Disease resistance
in plants is commonly associated with resistance (R) genes that encode
nucleotide binding site-leucine rich repeat (NBS-LRR) domains that are
essential for pathogen recognition and defence signalling. In this study, we identified and analyzed the sequence of
putative pathogen-responsive NB-ARC transcripts from Carica
papaya transcriptome database, carried out
the structural and phylogenetic analysis, and determined the expression profile of the transcripts in C. papaya challenged with Erwinia mallotivora. The findings
indicate CpNBS1, the only
pathogen-responsive NB-ARC protein identified in this study belongs to the
CC-NBS-LRR group. Semi-quantitative PCR showed CpNBS1 was
differentially expressed in response to E. mallotivora.
Structural analysis of the 4993-Eksotika and 4993-Viorica translated proteins
showed striking differences in terms of the number of β-sheets and α-helixes as well their ligand-binding surface,
suggesting the role of the LRR domain in determining the specificity of
recognition of E. mallotivora effector. Collectively, this study provides new insights into the role of
NBS-LRR genes in C. papaya and its implications for enhancing of
plant disease resistance through genetic engineering.
Keywords: E. mallotivora; nucleotide binding site-leucine rich repeat;
resistance gene
ABSTRAK
Kerintangan
penyakit pada tumbuhan sering dikaitkan dengan gen kerintangan (R) yang
mempunyai domain tapak pengikat
nukleotida-ulangan kaya leusina(NBS-LRR) yang berperanan untuk mengenal pasti patogen dan isyarat pertahanan. Dalam kajian
ini, kami mengenal pasti dan menganalisis jujukan daripada pangkalan data
transkriptom Carica papaya, menjalankan analisis struktur dan filogenetik
serta memprofil pengekspresan transkrip C. papaya yang telah dicabar dengan Erwinia mallotivora. Keputusan kajian ini menunjukkan bahawa CpNBS1 adalah satu-satunya
protein yang bergerak balas terhadap patogen dan berada dalam kumpulan CC-NBS-LRR.
Analisis separa-kuantitatif PCR menunjukkan bahawa CpNBS1 telah diungkapkan
secara berbeza sebagai gerak balas kepada E. mallotivora. Analisis
struktur pula menunjukkan perbezaan yang nyata daripada segi bilangan kepingan beta dan heliks alfa serta permukaan ikatan
ligan, yang mencadangkan peranan domain LRR dalam menentukan ketepatan
pengecaman efektor E. mallotivora. Secara keseluruhannya, kajian ini mendedahkan pandangan baharu
fungsi gen NBS-LRR dalam C. papaya dan kesannya kepada
penambahbaikan kerintangan penyakit dalam tumbuhan melalui kejuruteraan
genetik.
Kata kunci: E. mallotivora; gen kerintangan; tapak pengikat
nukleotida-ulangan kaya leusina
RUJUKAN
Baggs, E., Dagdas, G. & Krasileva, K.V. 2017. NLR diversity, helpers
and integrated domains: Making sense of the NLR identity. Current Opinion in
Plant Biology 38: 59-67.
Balint-Kurti,
P. 2019. The plant hypersensitive response: Concepts, control and consequences. Molecular Plant Pathology 20: 1163-1178.
Bayless, A.M. & Nishimura, M.T. 2020. Enzymatic functions for
Toll/Interleukin-1 receptor domain proteins in the plant immune system. Frontiers
in Genetics 11: 539.
Boyes, D.C., Nam, J. & Dangl, J.L. 1998. The Arabidopsis
thaliana RPM1 disease resistance gene product is a peripheral plasma
membrane protein that is degraded coincident with the hypersensitive response. Proceedings
of National Academy of Sciences USA 95: 15849-15854.
Cheong, Y.H., Chang, H-S., Gupta, R., Wang, X., Zhu, T. &
Luan, S. 2002. Transcriptional profiling reveals novel interactions between
wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129: 661-677.
Costanzo,
S. & Jia, Y. 2009. Alternatively spliced transcripts of Pi-ta blast
resistance gene in Oryza sativa. Plant Science 177: 468-478.
Couto,
D. & Zipfel, C. 2016. Regulation of pattern recognition receptor signaling
in plants. Nature Reviews Immunology 16: 537-522.
Cui, Y., Jiang, J., Yang, H., Zhao, T.,
Xu, X. & Li, J. 2018. Virus-induced gene silencing (VIGS) of the NBS-LRR
gene SLNLC1 compromises Sm-mediated disease resistance to Stemphylium lycopersici in tomato. Biochemical and Biophysical Research Communications 503: 1524-1529.
Dang, P.M., Lamb, M.C., Bowen, K.L. & Chen, C.Y. 2019.
Identification of expressed R-genes associated with leaf spot diseases in
cultivated peanut. Molecular Biology Reports 46: 225-239.
Deller, M.C., Kong, L. & Rupp, B.
2016. Protein stability: A crystallographer's perspective. Acta Crystallographica Section
F, Structural Biology Communications 72(Part 2): 72-95.
Goyal, N., Bhatia, G., Sharma, S., Garewal, N., Upadhyay, A.,
Upadhyay, S.K. & Singh, K. 2020. Genome-wide characterization revealed role
of NBS-LRR genes during powdery mildew infection in Vitis vinifera. Genomics 112(1): 312-322.
Hall, T.A. 1999. BioEdit: A user-friendly biological sequence
alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids.
Symp. Ser. 41: 95-98.
He, S.L., Jiang, J.Z., Chen, B.H., Kuo, C.K. & Ho, S.L. 2018.
Overexpression of a constitutively active truncated form of OsCDPK1 confers
disease resistance by affecting OsPR10a expression in rice. Scientific
Reports 8: 403.
Kim, S.B., Lee, H.Y., Choi, E.H., Park, E., Kim, J.H., Moon, K.B.,
Kim, H.S. & Choi, D. 2018. The coiled-coil and leucine-rich repeat domain
of the potyvirus resistance protein Pvr4 has a distinct role in
signaling and pathogen recognition. Molecular Plant-Microbe Interactions 31(9):
906-913.
Kumar,
S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: Molecular
evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549.
Lai, Y. & Eulgem, T. 2017. Transcript-level expression control
of plant NLR genes. Molecular Plant Pathology 19(5): 1267-1281.
Lee, J., Konc, J., Janežič, D. &
Brook, B.R. 2017. Global organization of a binding site network gives insight
into evolution and structure-function relationships of proteins. Scientific Reports 7: 11652.
Lozano,
R., Hamblin, M.T., Prochnik, S. & Jannick, J.L. 2015. Identification and
distribution of the NBS-LRR gene family in the cassava genome. BMC Genomics 16(360): 1-14.
Lupas, A., Van Dyke, M. & Stock, J.
1991. Predicting coiled coils from protein sequences. Science 252: 1162-1164.
Marone, D., Russo, M.A., laido, G., DeLeonardis, A.M. &
Mastrangelo, A.M. 2013. Plant nucleotide binding site-leucine-rich repeat
(NBS-LRR) genes: Active guardians in host defense responses. International
Journal of Molecular Sciences 14: 7302-7326.
Mat Amin, N., Bunawan, H., Redzuan, R.A.
& Jaganath, I.B.S. 2011. Erwinia
mallotivora sp., a new pathogen of papaya (Carica papaya) in Peninsular Malaysia. Int. J. Mol. Sci. 12: 39-45.
McHale, L., Tan, X., Koehl, P. & Michelmore, R.W. 2006. Plant
NBS-LRR proteins: Adaptable guards. Genome Biology 7: 212.
Meunier, E. & Broz, P. 2017. Evolutionary convergence and divergence
in NLR function and structure. Trends Immunology 38(10): 744-757.
Mohd
Azhar, H., Johari, S., Nur Sulastri, J., Razali, M., Muhammad Zulfa, M.R., Noor
Faimah, G. & Mariatulqabtiah, A.R. 2020. Field performance of selected
papaya hybrids for tolerance to dieback disease. Journal of Tropical
Agriculture and Food Sciences 48(1): 25-33.
Monteiro, F. & Nishimura, M.T. 2018. Structural, functional,
and genomic diversity of plant NLR proteins: An evolved resource for rational
engineering of plant immunity. Annual Review of Phytopathology 56:
243-267.
Noman, A., Aqeel, M. & Lou, Y. 2019. PRRs and NB-LRRs: From
signal perception to activation of plant innate immunity. International
Journal of Molecular Sciences 20(8): 1882.
Padmanabhan, M., Cournoyer, P. & Dinesh-Kumar, S.P. 2009. The
leucine-rich repeat domain in plant innate immunity: A wealth of possibilities. Cellular Microbiology 11(2): 191-198.
Porter,
B.W., Paidi, M., Ming, R., Alam, M., Nishijima, W.T. & Zhu, Y. 2009.
Genome-wide analysis of Carica papaya reveals a small NBS resistance
gene family. Molecular Genetics and Genomics 281: 609-626.
Sekeli, R., Hamid, M.H., Razak, R.A., Wee, C.Y. & Abdullah,
J.O. 2018. Malaysian Carica papaya L. var. Eksotika: Current research
strategies fronting challenges. Frontiers in Plant Science 9: 1380.
Sharma, R., Rawat, V. & Suresh, C.G. 2017. Genome-wide
identification and tissue-specific expression analysis of nucleotide binding
site-leucine rich repeat gene family in Cicer arietinum (kabuli
chickpea). Genomics Data 14: 24-31.
Sokalingam, S.,
Raghunathan, G., Soundrarajan, N. & Lee, S.G. 2012. A study on the effect
of surface lysine to arginine mutagenesis on protein stability and structure
using green fluorescent protein. PLoS ONE 7: e40410.
Stanger,
H.E., Syud, F.A., Espinosa, J.F., Giriat, I., Muir, T. & Gellman, S.H.
2001. Length-dependent stability and strand length limits in antiparallel
β-sheet secondary structure. PNAS 98: 12015-12020.
Steele, J.F.C., Hughes, R.K. & Banfield, M.J. 2019. Structural
and biochemical studies of an NB-ARC domain from a plant NLR immune receptor. PLoS
ONE 14(8): e0221226.
Strickler,
S.S., Gribenko, A.V., Gribenko, A.V., Keiffer, T.R., Tomlinson, J., Reihle, T.,
Loladze, V.V. & Makhatadze, G.I. 2006. Protein stability and surface
electrostatics: A charged relationship. Biochemistry 45: 2761-2766.
Supian,
S., Saidi, N.B., Wee, C.Y. & Abdullah, M.P. 2017. Antioxidant-mediated
response of a susceptible papaya cultivar to a compatible strain of Erwinia mallotivora. Physiological and Molecular Plant Pathology 98: 37-45.
Tian, S., Yin, X., Fu, P., Wu,
W. & Lu, J. 2020. Ectopic expression of grapevine gene VaRGA1 in Arabidopsis improves resistance to Downy Mildew and Pseudomonas syringae pv. tomato
DC3000 but increases susceptibility to Botrytis cinerea. International
Journal of Molecular Sciences 21(1): 193.
Wang, J., Chen, T., Han, M.,
Qian, L., Li, J., Wu, M., Han, T., Cao, J., Nagalakshmi, U., Rathjen, J.P.,
Hong, Y. & Liu, Y. 2020. Plant NLR immune receptor Tm-22 activation requires NB-ARC domain-mediated self-association of CC domain. PLoS
Pathogens 16(4): e1008475.
Wei, C., Kuang, H., Li, F.
& Chen, J. 2014. The l2 resistance gene homologues in Solanum have
complex evolutionary patterns and are targeted by MiRNAs. BMC Genomics 15: 743.
Zhang, Y., Xia, R., Kuang, H.
& Meyers, B.C. 2016. The diversification of plant NBS-LRR defense genes
direct the evolution of MicroRNAs that target them. Molecular Biology and
Evolution 33(10): 2692-2705.
Zhou, Z., Bar, I., Sambasivam, P.T. &
Ford, R. 2019. Determination of the key resistance gene analogs involved in Ascochyta
rabiei recognition in chickpea. Frontiers in Plant Science 10(644):
1-12.
*Pengarang
untuk surat-menyurat; email: suhaina@mardi.gov.my
|