Sains Malaysiana 50(9)(2021): 2499-2510
http://doi.org/10.17576/jsm-2021-5009-01
Influence
of Various Gauge Lengths, Root Spacing and Root Numbers on Root Tensile
Properties of Herbaceous Plants
(Pengaruh Pelbagai Panjang Tolok, Jarak Akar dan Nombor Akar pada Sifat Tegangan Akar Tumbuhan Herba)
CHAOBO
ZHANG*, XIAOYU MA, YATING LIU & JING JIANG
College
of Water Resources Science and Engineering, Taiyuan University of Technology,
Taiyuan 030024, China
Diserahkan: 5 April 2020/Diterima: 2 Januari 2021
Abstract
The
mechanical properties of root system play an important role in soil
reinforcement by plants. Root tensile properties are affected by many factors.
It is necessary to explore the mechanical properties of root system and the
influencing factors. In this study, tensile tests were conducted on roots of Kochia scoparia (L.) Schrad and Artemisia sacrorum Ledeb to study
root tensile properties, including maximum tensile force, tensile strength and
elastic modulus under the three factors, gauge length (50, 100, 150, and 200
mm), root spacing (0, 1, and 2 cm) and root number (single root, double roots,
and triple roots). The results showed that the maximum tensile force, tensile
strength, and elastic modulus of the roots decreased with increasing gauge
length in power functions. Under 100 mm gauge length, the maximum tensile
force, tensile strength and elastic modulus decreased with increasing root
spacing, but the effect of root spacing considered in this study on the maximum
tensile force and tensile strength was not significant. Besides, with
increasing root number, the maximum tensile force increased, tensile strength,
and elastic modulus decreased. These findings stretched our understanding of
the relationship between gauge length, root spacing and root number on root
tensile characteristics, and provided the necessary data basis for root tensile
properties and soil reinforcement by plants.
Keywords: Gauge length; root mechanical properties; root number; root
reinforcement; root spacing
Abstrak
Sifat mekanik sistem akar memainkan peranan
penting dalam pengukuhan tanah oleh tanaman. Sifat tegangan akar dipengaruhi
oleh banyak faktor. Adalah perlu untuk mengkaji sifat mekanik sistem akar dan
faktor yang mempengaruhinya. Dalam kajian ini, ujian tegangan dilakukan pada
akar Kochia scoparia (L.) Schrad
dan Artemisia sacrorum Ledeb untuk mengkaji sifat tegangan akar,
termasuk daya tegangan maksimum, kekuatan tegangan dan modulus elastik di bawah
tiga faktor, panjang tolok (50, 100, 150 dan 200 mm), jarak akar (0, 1 dan 2
cm) dan nombor akar (akar tunggal, akar berganda dan akar tiga). Hasil kajian
menunjukkan bahawa daya tegangan maksimum, kekuatan tegangan dan modulus
elastik akar menurun dengan peningkatan panjang pengukur dalam fungsi daya. Di
bawah panjang tolok 100 mm, daya tarik maksimum, kekuatan tegangan dan modulus
elastik menurun dengan peningkatan jarak akar, tetapi pengaruh jarak akar yang
dipertimbangkan dalam kajian ini terhadap daya tegangan maksimum dan kekuatan
tegangan tidak signifikan. Selain itu, dengan bertambahnya bilangan akar, daya
tarik maksimum meningkat, kekuatan tegangan dan modulus elastik menurun.
Penemuan ini meluaskan pemahaman kami tentang hubungan antara panjang tolok,
jarak jarak dan nombor akar pada ciri tegangan akar dan menyediakan asas data
yang diperlukan untuk sifat tegangan akar dan pengukuhan tanah oleh tanaman.
Kata kunci: Jarak akar; nombor akar; panjang
tolok; peneguhan akar; sifat mekanikal akar
RUJUKAN
Abdi, E. 2018. Root tensile force and
resistance of several tree and shrub species of Hyrcanian Forest, Iran. Croatian Journal of Forest Engineering 39(2):
255-270.
Bischetti, G.B.,
Chiaradia, E.A., D’Agostino, V. & Simonato, T. 2010. Quantifying the effect
of brush layering on slope stability. Ecological
Engineering 36(3): 258-264.
Boldrin, D., Leung, A.K.
& Bengough, A.G. 2018. Effects of root dehydration on biomechanical
properties of woody roots of Ulex
europaeus. Plant and Soil 431(1-2): 347-369.
Cohen, D. & Schwarz,
M. 2017. Tree-root control of shallow landslides. Earth Surface Dynamics 5(3): 451-477.
De Baets, S., Poesen, J.,
Reubens, B., Wemans, K., De Baerdemaeker, J. & Muys, B. 2008. Root tensile
strength and root distribution of typical Mediterranean plant species and their
contribution to soil shear strength. Plant
and Soil 305(1-2):
207-226.
Fan, C.C. & Su, C.F.
2008. Role of roots in the shear strength of root-reinforced soils with high
moisture content. Ecological Engineering 33(2):
157-166.
Feng, B., Zong, Q.L., Cai,
H.B., Chen, Z.K. & Wang, J.X. 2019. Calculation of increased soil shear
strength from desert plant roots. Arabian
Journal of Geosciences 12(16): 12.
Ghestem, M., Veylon, G.,
Bernard, A., Vanel, Q. & Stokes, A. 2014. Influence of plant root system
morphology and architectural traits on soil shear resistance. Plant and Soil 377(1-2): 43-61.
Giadrossich, F., Schwarz,
M., Cohen, D., Preti, F. & Or, D. 2012. Mechanical interactions between
neighbouring roots during pullout tests. Plant
and Soil 367(1-2):
391-406.
Hales, T.C. & Miniat,
C.F. 2017. Soil moisture causes dynamic adjustments to root reinforcement that
reduce slope stability. Earth Surface
Processes and Landforms 42(5): 803-813.
Hollis, L.O. & Turner,
R.E. 2019. The tensile root strength of spartina patens varies with soil
texture and atrazine concentration. Estuaries
and Coasts 42(6): 1430-1439.
Hubble, T.C.T., Airey,
D.W., Sealey, H.K., De Carli, E.V. & Clarke, S.L. 2013. A little cohesion
goes a long way: Estimating appropriate values of additional root cohesion for
evaluating slope stability in the Eastern-Australian highlands. Ecological Engineering 61: 621-632.
Hudek, C., Sturrock, C.J.,
Atkinson, B.S., Stanchi, S. & Freppaz, M. 2017. Root morphology and
biomechanical characteristics of high altitude alpine plant species and their
potential application in soil stabilization. Ecological Engineering 109: 228-239.
Ji, X., Cong, X., Dai, X.,
Zhang, A. & Chen, L. 2018. Studying the mechanical properties of the
soil-root interface using the pullout test method. Journal of Mountain Science 15(4): 882-893.
Jiang, M.J., Zhu, Y.G.
& Xi, B.L. 2017. Investigation into the soil-root composites using distinct
element method. In Proceedings of the 7th
International Conference on Discrete Element Methods, edited by Li, X.,
Feng, Y. & Mustoe, G. Singapore: Springer-Verlag Singapore Pte. Ltd. 188:
1075-1083.
Jones, K. & Hanna, E.
2004. Design and implementation of an ecological engineering approach to
coastal restoration at Loyola Beach, Kleberg County, Texas. Ecological Engineering 22(4-5): 249-261.
Liu, S., Li, X., Zhu, X.
& Song, F. 2018. Tensile properties of seminal and nodal roots and their
relationship with the root diameter and planting density of maize (Zea mays). Crop & Pasture Science 69(7): 717-723.
Loades, K.W., Bengough,
A.G., Bransby, M.F. & Hallett, P.D. 2010. Planting density influence on
fibrous root reinforcement of soils. Ecological
Engineering 36(3): 276-284.
Mahannopkul, K. &
Jotisankasa, A. 2019. Influence of root suction on tensile strength of Chrysopogon zizanioides roots and its
implication on bio-slope stabilization. Journal
of Mountain Science 16(2): 275-284.
Moreton, R. 1968. The
effect of gauge length on the tensile strength of R.A.E. carbon fibres Fibre Science and Technology 1(4): 273-284.
Ng, C.W.W., Ni, J.J.,
Leung, A.K., Zhou, C. & Wang, Z.J. 2016. Effects of planting density on
tree growth and induced soil suction. Geotechnique 66(9): 711-724.
Ni, J.J., Leung, A.K.
& Ng, C.W.W. 2019. Influences of plant spacing on root tensile strength of Schefflera
arboricola and soil shear strength. Landscape
and Ecological Engineering 15(2): 223-230.
Ni, J.J., Leung, A.K., Ng,
C.W.W. & So, P.S. 2017. Investigation of plant growth and
transpiration-induced matric suction under mixed grass-tree conditions. Canadian Geotechnical Journal 54(4): 561-573.
Pallewattha, M., Indraratna,
B., Heitor, A. & Rujikiatkamjorn, C. 2019. Shear strength of a vegetated
soil incorporating both root reinforcement and suction. Transportation Geotechnics 18: 72-82.
Pollen, N. 2007. Temporal
and spatial variability in root reinforcement of streambanks: Accounting for
soil shear strength and moisture. Catena 69(3):
197-205.
Saifuddin, M., Osman, N.,
Rahman, M.M. & Boyce, A.N. 2015. Soil reinforcement capability of two
legume species from plant morphological traits and mechanical properties. Current Science 108(7): 1340-1347.
Sanchez-Castillo, L.,
Kubota, T., Cantu-Silva, I., Yanez-Diaz, M., Hasnawir & Pequeno-Ledezma, M.
2017. Comparisons of the root mechanical properties of three native Mexican
tree species for soil bioengineering practices. Botanical Sciences 95(2): 259-269.
Stokes, A., Douglas, G.B.,
Fourcaud, T., Giadrossich, F., Gillies, C., Hubble, T., Kim, J.H., Loades,
K.W., Mao, Z., McIvor, I.R., Mickovski, S.B., Mitchell, S., Osman, N.,
Phillips, C., Poesen, J., Polster, D., Preti, F., Raymond, P., Rey, F.,
Schwarz, M. & Walker, L.R. 2014. Ecological mitigation of hillslope
instability: Ten key issues facing researchers and practitioners. Plant and Soil 377(1-2): 1-23.
Tosi, M. 2007. Root
tensile strength relationships and their slope stability implications of three
shrub species in the northern Apennines (Italy). Geomorphology 87(4): 268-283.
Waldron, L. 1977. The
shear resistance of root‐permeated homogeneous and stratified soil. Soil Science Society of America Journal 41(5):
843-849.
Wang, P., Chen, L. &
Ji, X. 2012. Analysis of stress-strain curves for four common arbor root
systems. Bulletin of Soil and Water
Conservation 32(3): 17-22.
Wu, T.H., McKinnell III.,
W.P. & Swanston, D.N. 1979. Strength of tree roots and landslides on Prince
of Wales Island, Alaska. Canadian
Geotechnical Journal 16(1): 19-33.
Yang, Y., Chen, L. &
Li, N. 2016. How gauge length and loading rate influence the root tensile
strength of Betula platyphylla. Journal of Soil and Water Conservation 71(6):
460-466.
Yao, X., Liu, J., Wang,
L., Liu, A. & Xing, H. 2009. Study on the plant roots to improve shear
characteristics in coal mining subsidence area. 3rd
International Conference on Bioinformatics and Biomedical Engineering, Beijing. pp. 1-5.
Zavala-Gonzalez, R.,
Cantu-Silvan, I., Sanchez-Castillo, L., Gonzalez-Rodriguez, H., Kubota, T.
& Hasnawir. 2019. Ten native tree species for potential use in soil
bioengineering in northeastern mexico. Botanical
Sciences 97(3): 291-300.
Zhang, C., Chen, L.,
Jiang, J. & Zhou, S. 2012. Effects of gauge length and strain rate on the
tensile strength of tree roots. Trees-Structure
and Function 26(5): 1577-1584.
Zhang, C., Zhou, X.,
Jiang, J., Wei, Y., Ma, J. & Hallett, P.D. 2019. Root moisture content
influence on root tensile tests of herbaceous plants. Catena 172: 140-147.
Zhang, X. & Hu, X.
2014. Mechanical multiple root effects of Caragana
korshinskii roots in frigid and arid-semiarid environment. Hubei Agricultural Sciences 53(19): 4632-4637.
*Pengarang untuk surat-menyurat; email: zhangchaobo@tyut.edu.cn
|