Sains
Malaysiana 50(6)(2021): 1775-1786
http://doi.org/10.17576/jsm-2021-5006-23
Pembentukan Fasa dan Suhu Genting Superkonduktor (Tl0.5Pb0.5)Sr2Ca(Cu2-xCrx)O7-δ (x = 0 - 0.100)
(Phase Formation and Critical Temperature of (Tl0.5Pb0.5)Sr2Ca(Cu2-xCrx)O7-δ (x = 0 to 0.100) Superconductor)
E. YUSRIANTO1,
A.N. JANNAH2 & R. ABD-SHUKOR1*
1Department
of Applied Physics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Faculty
of Applied Sciences, Universiti Teknologi MARA, Negeri Sembilan Branch, Kuala
Pilah Campus, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
Diserahkan: 13 September 2020/Diterima: 23 Oktober 2020
ABSTRAK
Superkonduktor fasa (Tl0.5Pb0.5)Sr2Ca(Cu2-xCrx)O7-δ (Tl-1212) bagi x = 0 hingga 0.100 telah disediakan menggunakan kaedah tindak
balas keadaan pepejal. Tujuan kajian ini ialah menentukan suhu optimum untuk
pembentukan fasa Tl-1212 dengan komposisi ini. Sampel telah disediakan dalam aliran gas oksigen dalam tiga suhu
berlainan iaitu 850 °C dalam kerajang perak selama 5 jam dan 950 °C dan 1000 °C
selama 4 min. Bahan telah diciri menggunakan kaedah pembelauan sinar-X untuk
mengenal pasti fasa dan pengukuran rintangan elektrik (R) untuk menentukan suhu
genting. Sampel yang dipanaskan pada 950 °C menunjukkan pecahan isi padu fasa
Tl-1212 yang tertinggi (94% bagi x = 0). Sampel yang dipanaskan pada 1000 °C
menunjukkan suhu genting yang tertinggi dengan x = 0.100 menunjukkan suhu
genting mula, Tc mula tertinggi iaitu 102 K. Terbitan rintangan
melawan suhu (T), dR/dT menunjukkan sampel yang dipanaskan pada 1000 °C (x =
0.015 - 0.100) mempunyai puncak yang hampir sama iaitu Tp1 = Tp2.
Ini menunjukkan suhu kesuperkonduksian intrabutiran (Tp1) dan antara
butiran (Tp2) berlaku adalah sama. Hasil kajian ini menunjukkan suhu
pemanasan 950 °C adalah suhu optimum untuk pembentukan fasa Tl-1212 sementara
1000 °C adalah suhu optimum untuk mendapatkan suhu genting tertinggi.
Kata kunci: Pembelauan
sinar-X; pembentukan fasa; rintangan
elektrik; suhu pemanasan
ABSTRACT
The (Tl0.5Pb0.5)Sr2Ca(Cu2-xCrx)O7-δ (Tl-1212) phase with x = 0 to 0.100 was prepared using the solid state reaction
method. The objective of this work was to determine the optimum temperature for
the formation of the Tl-1212 phase with the above composition. The samples were heated in oxygen flow with
three different temperatures of 850 °C in silver foil for 5 h, and 950 °C and
1000 °C for 4 min. The materials were characterized using X-ray diffraction
methods to identify phase and electrical resistance (R) measurements to the
determine critical temperature. Samples heated at 950 °C showed the highest
Tl-1212 phase volume fraction (94 % for x = 0). The samples heated at 1000 °C
showed the highest critical temperature with x = 0.100 exhibited the highest
onset critical temperature, Tc onset of 102 K. The derivative of resistance with respect to
temperature (T), dR/dT of the samples heated at 1000 °C (x = 0.015 - 0.100)
showed almost the same peak temperature where Tp1 = Tp2.
This indicated that superconductivity for intragrain (Tp1) and
between grains (Tp2) occurred at the same temperature. These results
showed that 950 °C was the optimum temperature for the formation of the Tl-1212
phase and heat treatment at 1000 °C showed the highest critical temperature.
Keywords: Electrical resistance; heating temperature; phase
formation; X-ray diffraction
RUJUKAN
Abd-Shukor, R. & Azah Nik Jaafar, A. 1999.
Formation and superconductivity of Pr and Nd-substituted Tl-1212 phase Tl0.85Cr0.15Sr2CaCu2O7. Journal of Materials Science: Materials
in Electronics 10(9): 677-681.
Akimov, A.I., Ksenofontov, V., Lebedev, S.A.
& Tkachenka, T.M. 2006. Effect of fluorine and cerium substitutions on the
properties of the Tl2Ba2CaCu1. 98Fe0.02O8 superconductor. Physica C:
Superconductivity 443(1-2): 29-32.
Al-Sharabi, A. & Abd-Shukor, R. 2013.
Formation of (Tl1-xCrx)Sr2CaCu2O7-d (Tl-1212) superconducting phase using Cr2S3. International Journal of Electrochemical
Science 8: 7825-7830.
Bakar, I.P.A., Muhammad-Aizat, K., Nur-Akasyah,
J., Mohd-Syahmi, M. S., Suib, N.R.M., Chiu, W.S. & Abd-Shukor, R. 2019. AC
susceptibility and electrical properties of rare-earth- and alkali
metal-substituted (Tl0.7M0.3)Sr2CaCu2O7 with M = Er, Gd, La, Na, K and Rb. Applied Physics A 125(1): 21.
Elmasroub, H.S. & Abd-Shukor, R. 2017.
Superconducting properties of (Tl1-xPbx) Sr2CaCu2O7-d (x = 0.1 – 0.7) prepared using
nano-sized PbO. In AIP Conference
Proceedings. AIP Publishing LLC. 1838(1): 020014.
Gerashchenko, A.P., Verkhovskii, S.V., Mikhalev,
K.N., Piskunov, Y.V. & Anan'ev, A.V. 1998. Effect of doping on the behavior
of spin susceptibility of copper-oxygen layers in Tl2Ba2CaCu2O8-d. Physics of Metals and Metallography 86(1): 43-50.
Hamadneh, I., Kuan, Y.W., Hui, L.T. &
Abd-Shukor, R. 2006. Formation of Tl0. 85Cr0. 15Sr2CaCu2O
7−Δ
superconductor from ultrafine co-precipitated
powders. Materials Letters 60(6):
734-736.
Hassan, B., Alnakhlani, A., Muhammad, A. &
Al-Hajji, M.A. 2016. Influence of KMnO4 substitution on the
structural and transport properties of Tl2Ba2Ca(Cu1-xRx)2Od+6 system. Journal of Physical Science 27(3):
13-24.
Hussain, S., Ali, J., Khan, N.A. & Raza,
K.A. 2020. Effect of Cd intercalation on the superconducting properties of (Cu0.5-yKyTl0.5)Ba2Ca2Cu3-xCdxO10-δ (y = 0, 0.25; x = 0, 0.5,
1.0, 1.5, 2.0) superconductors. Journal
of Alloys and Compounds 817: 152697.
Ibrahim, N., Yusof, M.M. & Salleh, F.M.
2009. Synthesis of Tl0. 85Cr0.15Sr2CaCu2O7-d superconductor from coprecipitation Tl-free precursor. Solid State Science and Technolology 17: 148-154.
Ji, L., Gao, X., Ge, D., Xie, W., Wang, P.,
Zhao, X., Wang, Z., He, M., Zhang, X. & Li, W. 2012. The influence of CeO2 nano-dots decoration on substrates on flux pinning strength in Tl2Ba2CaCu2O8 thin films. IEEE Transactions on Applied
Superconductivity 23(3): 8001505.
Ledésert, M., Maignan, A., Chardon, J., Martin,
C., Labbé, P., Hervieu, M. & Raveau, B. 1994. (Tl,Bi)Sr2CaCu2O7 “1212” superconducting single crystal a structural and magnetic study. Physica C: Superconductivity 232(3-4):
387-395.
Li, S. & Greenblatt, M. 1989. Preparation
and superconducting properties of (Tl,Bi) Sr2CaCu2Oy. Physica C: Superconductivity 157(2):
365-369.
Li, Y.F., Chmaissem, O. & Sheng, Z.Z. 1995.
Crystal structure and Tc of 1212-type cuprate (Tl, Cr)Sr2(Ca,Tl)Cu2O7. Physica C: Superconductivity 248(1-2):
42-48.
Martin, C., Provost, J., Bourgault, D.,
Domengès, B., Michel, C., Hervieu, M. & Raveau, B. 1989. Structural
peculiarities of the “1212” superconductor Tl0.5Pb0.5Sr2CaCu2O7. Physica C: Superconductivity 157(3):
460-468.
Muhammad-Aizat, K. & Abd-Shukor, R. 2018.
Electrical properties and ac susceptibility of CdTe added Tl2Ba2CaCu2O8-d superconductor. Sains Malaysiana 47(7): 1579-1583.
Mumtaz, M., Ali, L., Azeem, S., Ullah, S.,
Hussain, G., Rabbani, M.W., Jabbar, A. & Nadeem, K. 2016. Dielectric
properties of (Zn)x/CuTl-1223
nanoparticle-superconductor composites. Journal
of Advanced Ceramics 5(2): 159-166.
Ranjbar, M.G. & Abd-Shukor, R. 2014.
Formation of Tl-1223 phase in Cr substituted (Tl
1−
xCrx)Ba2Ca2Cu3O
9−Δ
(x =
0.3 to 0.9) superconductor. Ceramics
International 40(9): 13869-13872.
Sahoo, M. & Behera, D. 2013. SCOPF analysis
of YBa2Cu3O
7− δ
+xCr2O3 superconductor composite. Journal of
Physics and Chemistry of Solids 74(7): 950-956.
Sheng, Z.Z., Gu, D.X., Xin, Y., Pederson, D.O.,
Finger, L.W., Hadidiacos, C.G. & Hazen, R.M. 1991. A new 1212-type phase:
Cr-substituted TlSr2CaCu2O7 with Tc up to about 110 K. Modern Physics Letters B 5(9): 635-642.
Subramanian, M.A., Torardi, C.C., Gopalakrishnan,
J., Gai, P.L., Calabrese, J.C., Askew, T.R., Flippen, R.B. & Sleight, A.W.
1988. Bulk superconductivity up to 122 K in the Tl-Pb-Sr-Ca-Cu-O system. Science 242(4876): 249-252.
Wahlbeck, P.G., Peterson, D.E., Willis, J.O.,
Peterson, E.J., Coulter, J.Y., Phillips, D.S. & Salazar, K.V. 1996.
Characterization of superconducting (Tl,Bi)Sr2CaCu2Oy. Physica C: Superconductivity 256(3-4): 358-364.
*Pengarang untuk surat-menyurat;
email: ras@ukm.edu.my
|