Sains Malaysiana 50(6)(2021): 1609-1620

http://doi.org/10.17576/jsm-2021-5006-09

 

Characterization of Indoor Air Quality in Relation to Ventilation Practices in Hospitals of Lahore, Pakistan

(Pencirian Kualiti Udara Dalam Ruang dengan Hubungan kepada Amalan Ventilasi di Hospital Lahore, Pakistan)

 

AFZAL NIMRA1*, ZULFIQAR ALI1, ZAHEER AHMAD NASIR2, SEAN TYRREL2 & SAFDAR SIDRA3

 

1Environmental Health and Wildlife, Department of Zoology, University of the Punjab, Lahore, Pakistan

 

2School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom

 

3Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan

 

Diserahkan: 26 Mei 2020/Diterima: 6 November 2020

 

ABSTRACT

Temporal variations of particulate matter (PM) and carbon dioxide (CO2 ) in orthopedic wards and emergency rooms of different hospitals of Lahore, Pakistan were investigated. Hospitals were classified into two groups, I (centrally air-conditioned) and II (non-central air-conditioned) based on the ventilation system. Statistical analysis indicated significantly lower PM and CO2 levels in centrally air-conditioned hospitals in comparison to non-central air-conditioned. The low indoor-outdoor (I/O)  ratio of PM2.5 in the ward and emergency rooms of group I (0.62, 0.45) as compared to group II (0.70, 0.83), respectively, suggested that indoor spaces equipped with central air-conditioning systems efficiently filter particulates as compared to non- central air conditioning systems. Apart from the ventilation type, increased visitor and doctors’ activities, and cleaning sessions were observed to contribute significantly to indoor air quality. This study adds up to the understanding of temporal variations in PM emissions and the role of ventilation systems in context of hospitals in the urban centers in Pakistan. The findings can inform the development of intervention strategies to maintain the appropriate air quality in health care built environment in developing countries.

 

Keywords: Central air conditioning systems; CO2; HVAC; indoor air; particulate matter; split air conditioning systems

 

ABSTRAK

Variasi temporal jirim zarah (PM) dan karbon dioksida (CO2 ) di wad ortopedik dan bilik kecemasan daripada hospital yang berbeza di Lahore, Pakistan telah dikaji. Hospital telah dikelaskan kepada dua kumpulan, I (hawa dingin berpusat) dan II (hawa dingin tidak berpusat) berdasarkan daripada sistem ventilasi. Analisis statistik menunjukkan tahap PM dan CO2 adalah ketara rendah dalam hawa dingin berpusat jika dibandingkan dengan hawa dingin tidak berpusat. Nisbah dalaman-luaran (I/O) masing-masing daripada PM2.5 di dalam wad dan bilik kecemasan daripada kumpulan I (0.62, 0.45) dan kumpulan II (0.70, 0.83), menunjukkan bahawa ruang dalam yang dilengkapi dengan sistem hawa dingin berpusat menapis zarah secara cekap jika dibandingkan dengan sistem hawa dingin tidak berpusat. Selain daripada jenis ventilasi, peningkatan pelawat dan aktiviti para doktor serta sesi pembersihan telah diperhati memberi sumbangan besar terhadap kualiti udara ruang dalam. Kajian ini menambah pemahaman terhadap variasi temporal pengeluaran PM dan peranan sistem ventilasi dalam konteks hospital di kawasan pusat bandar Pakistan. Penemuan ini dapat memaklumkan pembangunan strategi intervensi untuk menjaga kualiti udara yang sesuai bagi pusat penjagaan kesihatan di negara yang membangun.

 

Kata kunci: Bahan zarah; CO2; HVAC; sistem hawa dingin berpusat; sistem udara hawa dingin terpisah; udara dalam ruang

 

RUJUKAN

Ahmad, H.R., Mehmood, K., Sardar, M.F., Maqsood, M.A., Rehman, M.Z.U., Zhu, C. & Li, H. 2019. Integrated risk assessment of potentially toxic elements and particle pollution in urban road dust of megacity of Pakistan. Human and Ecological Risk Assessment: An International Journal 26(7): 1810-1831.

Ahwah, T.F., Yuan-Gao, W., Ansah, O. & Menu, E.O.E. 2015. Assessment of indoor particulate matter in hospital environment a case study in China. International Journal of Modern Engineering Research 5(12) Version 1: 1-9.

Ali, M.Y., Hanafiah, M.M., Khan, M.F. & Latif, M.T. 2017a. Quantitative source apportionment and human toxicity of indoor trace metals at university buildings. Building and Environment 121: 238-246.

Ali, M.U., Rashid, A., Yousaf, B. & Kamal, A. 2017b. Health outcomes of road-traffic pollution among exposed roadside workers in Rawalpindi City, Pakistan. Human and Ecological Risk Assessment: An International Journal 23(6): 1330-1339.

Armadans-Gil, L., Rodríguez-Garrido, V., Campins-Martí, M., Gil-Cuesta, J. & Vaqué-Rafart, J. 2013. Particle counting and microbiological air sampling: Results of the simultaneous use of both procedures in different types of hospital rooms. Enfermedades Infecciosasy Microbiologia Clinica 31(4): 217-221.

ASHRAE. 2017. Ventilation of Health Care Facilities. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Customer Service.

Asif, A., Zeeshan, M., Hashmi, I., Zahid, U. & Bhatti, M.F. 2018. Microbial quality assessment of indoor air in a large hospital building during winter and spring seasons. Building and Environment 135: 68-73.

Baurès, E., Blanchard, O., Mercier, F., Surget, E., Le Cann, P., Rivier, A. &  Florentin, A. 2018. Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants. Science of The Total Environment 642: 168-179.

Beggs, C.B., Kerr, K.G., Noakes, C.J., Hathway, E.A. & Sleigh, P.A. 2008. The ventilation of multiple-bed hospital wards: Review and analysis. American Journal of Infection Control 36(4): 250-259.

Bessonneau, V., Mosqueron, L., Berrubé, A., Mukensturm, G., Buffet-Bataillon, S., Gangneux, J.P. & Thomas, O. 2013. VOC contamination in hospital, from stationary sampling of a large panel of compounds, in view of healthcare workers and patients exposure assessment. PloS ONE 8(2): e55535.

Bucur, E. & Danet, A. 2019. Indoor/outdoor correlations regarding indoor air pollution with particulate matter. Environmental Engineering & Management Journal 18(2): 425-432.

Capolongo, S. 2016. Social aspects and wellbeing for improving healing processes’ effectiveness. Ann. Ist Super Sanita 52(1): 11-44.

Cavallo, D., Alcini, D., De Bortoli, M., Carrettoni, D., Carrer, P., Bersani, M. & Maroni, M. 1993. Chemical contamination of indoor air in schools and office buildings in Milan, Italy. Proceedings of Indoor Air 93: 45-49.

Chamseddine, A., Alameddine, I., Hatzopoulou, M. & El-Fadel, M. 2019. Seasonal variation of air quality in hospitals with indoor-outdoor correlations. Building and Environment 148: 689-700.

Chen, C. & Zhao, B. 2011. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment 45(2): 275-288.

Diapouli, E., Chaloulakou, A. & Koutrakis, P. 2013. Estimating the concentration of indoor particles of outdoor origin: a review. Journal of the Air & Waste Management Association 63(10): 1113-1129.

Doğan, T.R. 2019. Investigation of indoor air quality in a hospital: A case study from Şanlıurfa, Turkey. Doğal Afetler ve Çevre Dergisi 5(1): 101-109.

Ediagbonya, T.F., Tobin, A.E. & Legemah, M. 2013. Indoor and outdoor air quality in hospital environment. Chemistry and Materials Research 3(10): 72-78.

El-Sharkawy, F.M. & Noweir, M.E. 2014. Indoor air quality levels in a University Hospital in the Eastern Province of Saudi Arabia. Journal of Family & Community Medicine 21(1): 39-47.

Escombe, A.R., Oeser, C.C., Gilman, R.H., Navincopa, M., Ticona, E., Pan, W. & Moore, D.A. 2007. Natural ventilation for the prevention of airborne contagion. PLoS Medicine 4(2): e68.

Ferro, A.R., Kopperud, R.J. & Hildemann, L.M. 2004. Source strengths for indoor human activities that resuspend particulate matter. Environmental Science & Technology 38(6): 1759-1764.

Fonseca, A., Abreu, I., Guerreiro, M., Abreu, C., Silva, R. & Barros, N. 2019. Indoor air quality and sustainability management - Case study in three portuguese healthcare units. Sustainability 11(1): 101.

Gaidajis, G. & Angelakoglou, K. 2014. Indoor mass concentrations of particulate matter in hospital environment. Global Nest Journal 16(5): 832-839.

Ghio, A. 2014. Particle exposures and infections. Infection 42(3): 459-467.

Gilkeson, C., Camargo-Valero, M., Pickin, L. & Noakes, C. 2013. Measurement of ventilation and airborne infection risk in large naturally ventilated hospital wards. Building and Environment 65: 35-48.

Gola, M., Settimo, G. & Capolongo, S. 2019. Indoor air quality in inpatient environments: A systematic review on factors that influence chemical pollution in inpatient wards. Journal of Healthcare Engineering 2019: 8358306.

Gulshan, T., Ali, Z., Zona, Z., Ansari, B., Ahmad, M., Zainab, M. & Colbeck, I. 2015. State of air quality in and outside of hospital wards in urban centres - A case study in Lahore, Pakistan. Journal of Animal and Plant Sciences 25(3): 666-671.

Health Effects Institute. 2019. State of Global Air 2019. Special Report.

He, K.Q., Yuan, C.G., Yin, L.Q., Zhang, K.G., Xu, P.Y., Xie, J.J. & Shen, Y.W. 2019. A comparative study on arsenic fractions in indoor/outdoor particulate matters: A case in Baoding, China. Environmental Monitoring and Assessment 191(8): 528.

Idris, S.A.A., Hanafiah, M.M., Khan, M.F. & Abd Hamid, H.H. 2020. Indoor generated PM2.5 compositions and volatile organic compounds: Potential sources and health risk implications. Chemosphere 255: 126932.

Jung, C.C., Wu, P.C., Tseng, C.H., Chou, C.C. & Su, H.J. 2018. Contribution of indoor-and outdoor-generated fine and coarse particles to indoor air in Taiwanese hospitals. Aerosol and Air Quality Research 18(12): 3234-3242.

Jung, C.C., Wu, P.C., Tseng, C.H. & Su, H.J. 2015. Indoor air quality varies with ventilation types and working areas in hospitals. Building and Environment 85: 190-195.

Jurado, S.R., Bankoff, A.D. & Sanchez, A. 2014. Indoor air quality in Brazilian universities. International Journal of Environmental Research and Public Health 11(7): 7081-7093.

Kressel, A., Linnenmann, C. & Mayhall, C. 2004. Nosocomial infection in obstetrical patients. In Hospital Epidemiology and Infection Control, edited by Mayhall, C.G. Philadelphia: Lippincott Wiilliams & Wilkins. pp. 927-935.

Ling, S. & Hui, L. 2019. Evaluation of the complexity of indoor air in hospital wards based on PM2.5, real-time PCR, adenosine triphosphate bioluminescence assay, microbial culture and mass spectrometry. BMC Infectious Diseases 19(1): 646.

Lomboy, M.F.T.C., Quirit, L.L., Molina, V.B., Dalmacion, G.V., Schwartz, J.D., Suh, H.H. & Baja, E.S. 2015. Characterization of particulate matter 2.5 in an urban tertiary care hospital in the Philippines. Building and Environment 92: 432-439.

Luksamijarulkul, P., Somjai, N., Nankongnap, N., Pataitiemthong, A., Kongtip, P. & Woskie, S. 2019. Indoor air quality at different sites of a governmental hospital. Nursing and Palliative Care 4: 1-5.

Macher, J.M., Gold, D., Cruz, P., Kyle, J.L., Durrani, T.S. & Shusterman, D. 2019. Evaluation and management of exposure to infectious agents. Handbook of Occupational Safety and Health 3: 147-197.

Milton, D.K., Fabian, M.P., Cowling, B.J., Grantham, M.L. & McDevitt, J.J. 2013. Influenza virus aerosols in human exhaled breath: Particle size, culturability, and effect of surgical masks. PLoS Pathogens 9(3): 1-7.

Mohammadyan, M., Keyvani, S., Bahrami, A., Yetilmezsoy, K., Heibati, B. & Pollitt, K.J.G. 2019. Assessment of indoor air pollution exposure in urban hospital microenvironments. Air Quality, Atmosphere & Health 12(2): 151-159.

Mohammadyan, Keyvani, S., Yazdani-Charati, J., Bahrami, A. & Yousefi-Nejad, R. 2017. Indoor and ambient air concentrations of respirable particles between two hospitals in Kashan (2014-2015). Feyz Journal of Kashan University of Medical Sciences 21(1): 66-73.

Mohammadyan, M., Keyvani, S., Charati, J.Y., Bahrami, A. & Nejad, R.Y. 2016. An assessment of indoor and outdoor particulate matters concentrations at two hospitals in Kashan, Iran. Journal of Disease and Global Health 8(2): 55-59.

Montgomery, J.F., Storey, S. & Bartlett, K. 2015. Comparison of the indoor air quality in an office operating with natural or mechanical ventilation using short-term intensive pollutant monitoring. Indoor and Built Environment 24(6): 777-787.

Morawska, L. & He, C. 2014. Indoor particles, combustion products and fibres. In Indoor Air Pollution, edited by Pluschke, P. & He, C. Germany: Springer. pp. 117-147.

Morakinyo, O.M., Mokgobu, M.I., Mukhola, M.S. & Godobedzha, T. 2019. Biological composition of respirable particulate matter in an industrial vicinity in South Africa. International Journal of Environmental Research and Public Health 16(4): 629.

Moscato, U., Borghini, A. & Teleman, A.A. 2017. HVAC management in health facilities. In Indoor Air Quality in Healthcare Facilities, edited by Stefano, C., Gaetano, S. & Gola, M. Germany: Springer. pp. 95-106.

Nimra, A., Ali, Z., Khan, M.N., Gulshan, T., Sidra, S., Gardezi, J.R. & Colbeck, I. 2015. Comparative ambient and indoor particulate matter analysis of operation theatres of government and private (trust) hospitals of Lahore, Pakistan. Journal of Animal and Plant Sciences 25(3): 628-635.

Pankhurst, L., Taylor, J., Cloutman-Green, E., Hartley, J. & Lai, K. 2012. Can clean-room particle counters be used as an infection control tool in hospital operating theatres. Indoor and Built Environment 21(3): 381-391.

Peng, Z., Deng, W. & Tenorio, R. 2017. Investigation of indoor air quality and the identification of influential factors at primary schools in the North of China. Sustainability 9(7): 1180.

Pereira, M., Knibbs, L., He, C., Grzybowski, P., Johnson, G., Huffman, J. & Dominski, F. 2017. Sources and dynamics of fluorescent particles in hospitals. Indoor Air 27(5): 988-1000.

Qian, J., Peccia, J. & Ferro, A.R. 2014. Walking-induced particle resuspension in indoor environments. Atmospheric Environment 89: 464-481.

Radaideh, J.A., Alazba, A.A., Amin, M.N., Shatnawi, Z.N. & Amin, M.T. 2016. Improvement of indoor air quality using local fabricated activated carbon from date stones. Sains Malaysiana 45(1): 59-69.

Rasli, N.B.I., Ramli, N.A., Ismail, M.R. & Shith, S. 2019. Dependency of biological contaminants on temperature and relative humidity within praying halls of mosques. Sains Malaysiana 48(8): 1575-1581.

Rudnick, S. & Milton, D. 2003. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air 13(3): 237-245.

Sari, K.A.M., Mastaza, K.F.A., Rahman, M.A.A., Saji, N., Muslim, R., Mustafa, M.S.S. & Ghing, T.Y. 2019. Assessment of indoor air quality parameters at Ambulatory Care Centre XYZ, Malaysia. IOP Conference Series: Earth and Environmental Science 373(1): 012013.

Seppänen, O. & Kurnitski, J. 2009. Moisture control and ventilation. In WHO Guidelines for Indoor Air Quality: Dampness and Mould. World Health Organization.

Shrestha, P.M., Humphrey, J.L., Carlton, E.J., Adgate, J.L., Barton, K.E., Root, E.D. & Miller, S.L. 2019. Impact of outdoor air pollution on indoor air quality in low-income homes during wildfire seasons. International Journal of Environmental Research and Public Health 16(19): 3535.

Sidra, S., Ali, Z., Nasir, Z.A. & Colbeck, I. 2015. Seasonal variation of fine particulate matter in residential micro-environments of Lahore, Pakistan. Atmospheric Pollution Research 6(5): 797-804.

Śmiełowska, M., Marć, M. & Zabiegała, B. 2017. Indoor air quality in public utility environments - A review. Environmental Science and Pollution Research 24(12): 66-76.

Sribanurekha, V., Wijerathne, S., Wijepala, L. & Jayasinghe, C. 2016. Effect of different ventilation conditions on indoor CO2 levels. International Conference on Disaster Resilienence at Kandalama Sri Lanka.

Sturm, R. 2016. Local lung deposition of ultrafine particles in healthy adults: Experimental results and theoretical predictions. Annals of Translational Medicine 4(21): 420-428.

Su, F.C., Friesen, M.C., Stefaniak, A.B., Henneberger, P.K., LeBouf, R.F., Stanton, M.L. & Virji, M.A. 2018. Exposures to volatile organic compounds among healthcare workers: Modeling the effects of cleaning tasks and product use. Annals of Work Exposures and Health 62(7): 852-870.

Tang, C.S., Chung, F.F., Lin, M.C. & Wan, G.H. 2009. Impact of patient visiting activities on indoor climate in a medical intensive care unit: A 1-year longitudinal study. American Journal of Infection Control 37(3): 183-188.

Tellier, R., Li, Y., Cowling, B.J. & Tang, J.W. 2019. Recognition of aerosol transmission of infectious agents: A commentary. BMC Infectious Diseases 19(1): 101.

Verkkala, K., Eklund, A., Ojajärvi, J., Tiittanen, L., Hoborn, J. & Mäkelä, P. 1998. The conventionally ventilated operating theatre and air contamination control during cardiac surgery-bacteriological and particulate matter control garment options for low level contamination. European Journal of Cardio-Thoracic Surgery 14(2): 206-210.

Verma, N. & Taneja, A. 2011. Particulate matter exposure in hospitals of urban city located in northern central India. The Indian Journal of Environment 31(8): 624-634.

Wang, X., Bi, X., Chen, D., Sheng, G. & Fu, J. 2006a. Hospital indoor respirable particles and carbonaceous composition. Building and Environment 41(8): 992-1000.

Wang, X., Bi, X., Sheng, G. & Fu, J. 2006b. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China. Science of The Total Environment 366(1): 124-135.

WHO. 2016. Ambient air pollution: A global assessment of exposure and burden of disease. https://www.who.int/phe/publications/air-pollution-global-assessment/en/.

Yang, Z., Shen, J. & Gao, Z. 2018. Ventilation and air quality in student dormitories in China: A case study during summer in Nanjing. International Journal of Environmental Research and Public Health 15(7): 1328.

Yau, Y.H., Chandrasegaran, D. & Badarudin, A. 2011. The ventilation of multiple-bed hospital wards in the tropics: A review. Building and Environment 46(5): 1125-1132.

Zhou, Q., Lyu, Z., Qian, H., Song, J. & Möbs, V.C. 2015. Field-measurement of CO2 level in general hospital wards in Nanjing. Procedia Engineering 121: 52-58.

Zuraimi, M.S. & Tham, K.W. 2008. Effects of child care center ventilation strategies on volatile organic compounds of indoor and outdoor origins. Environmental Science & Technology 42(6): 2054-2059.

 

*Pengarang untuk surat-menyurat; email: nimraafzal90@gmail.com

 

         

 

sebelumnya