| Sains Malaysiana 50(4)(2021): 1101-1111
          
         http://doi.org/10.17576/jsm-2021-5004-20
            
           
             
           Coherent
            Mortality Model in A State-Space Approach
            
           (Model Kemortalan Koheren dalam Pendekatan Keadaan-Ruang)
              
           
             
           SITI ROHANI MOHD
            NOR*, FADHILAH YUSOF & SITI MARIAM NORRULASHIKIN
  
           
             
           Department of
            Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul Takzim, Malaysia
  
           
             
           Diserahkan: 27 Januari 2020/Diterima: 9
            September 2020
            
           
             
           ABSTRACT
            
           Mortality improvements that have recently
            become apparent in most developing countries have significantly shaped queries
            on forecast divergent between populations in recent years. Therefore, to ensure
            a more coherent way of forecasting, previous researchers have proposed
            multi-population mortality model in the form of independent estimation
            procedures. However, similar to single-population mortality model, such
            independent approaches might lead to inaccurate prediction interval. As a
            result of this inaccurate mortality forecasts, the life expectancies and the
            life annuities that the mortality model aims to generate is underestimated. In
            this study, we propose another new extension of the multi-population mortality
            model in a joint estimation approach by recasting the model into a state-space
            framework. A combination of augmented Li-Lee and O’Hare-Li methods are
            employed, before we transform the proposed model into a state-space
            formulation. In addition, this study incorporates the quadratic age effect
            parameter to the proposed model to better capture the younger ages mortality.
            We apply the method to gender and age-specific data for Malaysia. The results
            show that our latter framework brings a significant contribution to the
            multi-population mortality model due to the incorporation of joint-estimate and
            quadratic age effect parameters into the model’s structure. Consequently, the
            proposed model improves the mortality forecast accuracy.
  
           
             
           Keywords: Coherent mortality model;
            multi-population; state-space
            
           
             
           ABSTRAK
            
           Kadar kematian yang semakin menurun di kebanyakan negara membangun telah menimbulkan beberapa persoalan penting terhadap perbezaan jurang ramalan antara populasi bagi tahun-tahun kebelakangan ini. Oleh itu, untuk memastikan hasil ramalan yang lebih koheren, penyelidik sebelum ini telah mengemukakan model kemortalan berbilang penduduk dalam bentuk prosedur anggaran yang dibuat secara berasingan antara populasi. Walau bagaimanapun, sebagaimana model kemortalan penduduk tunggal, pendekatan berasingan mungkin menyebabkan ramalan yang tidak tepat. Akibat ramalan kemortalan yang tidak tepat ini, jangkaan hayat dan anuiti hayat yang dihasilkan oleh model kemortalanakan menjadi lebih rendah daripada yang sepatutnya. Dalam kajian ini,
            kami mencadangkan satu lagi model kemortalan yang mengintegrasikan maklumat antara populasi dengan cara menggabungkan model tersebut dalam rangka keadaan-ruang. Gabungan kaedah Li-Lee dan
            O'Hare-Li digunakan dan kemudian kami mengubah model yang dicadangkan ke dalam formulasi keadaan-ruang. Di samping itu, kajian ini menggabungkan parameter kesan usia kuadratik kepada model yang dicadangkan untuk menganggar kematian yang berlaku pada usia muda dengan lebih baik. Kami menggunakan kaedah tersebut ke atas data jantina dan data khusus umur bagi Malaysia. Keputusan menunjukkan bahawa rangka kerja ini membawa sumbangan penting kepada model kemortalan pelbagai penduduk kerana menggabungkan parameter kesan umur dan kuadratik parameter ke dalam struktur model. Hasilnya, model yang dicadangkan dapat meningkatkan lagi ketepatan ramalan kematian.
            
           
             
           Kata kunci: Keadaan-ruang; kepelbagaian penduduk; model kemortalan koheren
                
           
             
           RUJUKAN
            
           Booth,
            H., Hyndman, R.J., Tickle, L. & De Jong, P. 2006. Lee-Carter mortality
            forecasting: A multi-country comparison of variants and extensions. Demographic
              Research 15(9): 289-310.
  
           Cairns,
            A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., Ong, A. & Balevich, I. 2009. A quantitative comparison of stochastic
            mortality models using data from England & Wales and the United States. North
              American Actuarial Journal 13(1): 1-35.
  
           Coelho,
            E. 2013. Modelling and forecasting mortality patterns. Ph.D. Thesis, Nova
            University of Lisbon, Portugal (Unpublished).
            
           Fung,
            M.C., Peters, G.W. & Shevchenko, P.V. 2018. Cohort effects in mortality
            modelling: A Bayesian state-space approach. Annals of Actuarial Science 13(1):
            109-144.
  
           Fung,
            M.C., Peters, G.W. & Shevchenko, P.V. 2017. A unified approach to mortality
            modelling using state-space framework: Characterisation, identification,
            estimation and forecasting. Annals of Actuarial Science 11(2): 343-389.
  
           Fung,
            M.C., Peters, G.W. & Shevchenko, P.V. 2015. A state-space estimation of the
            Lee-Carter Mortality Model and implications for annuity pricing. In MODSIM2015
              - 21st International Congress on Modelling and Simulation, edited by Weber,
            T., McPhee, M.J. & Anderssen, R.S. pp. 952-958.
            http://www.mssanz.org.au/modsim2015/E1/fung.pdf.
  
           Haberman,
            S. & Renshaw, A. 2011. A comparative study of parametric mortality
            projection models. Insurance: Mathematics and Economics 48(1): 35-55.
  
           Hauser,
            R.M. & Weir, D. 2016. Recent developments in longitudinal studies of aging. Demography 23(5): 1079-1084.
  
           Holmes,
            E.E., Ward, E.J. & Wills, K. 2012. MARSS: Multivariate autoregressive
            state-space models for analyzing time-series data. The
              R Journal 4(1): 11-19.
  
           Husin, W.Z.W., Zainol,
            M.S. & Ramli, N.M. 2015. Performance of the Lee-Carter State Space Model in
            forecasting mortality. Proceedings of the World Congress on Engineering.
            pp. 39-52.
  
 Hyndman,
            R.J., Booth, H. & Yasmeen, F. 2013. Coherent mortality forecasting: The
            product-ratio method with functional time series models. Demography 50(1): 261-283.
  
           Lee,
            R.D. & Carter, L.R. 1992. Modeling and forecasting
            U.S. mortality. Journal of the American Statistical Association 87(419):
            659-671.
  
           Li,
            H., O’Hare, C. & Zhang, X. 2015a. A semiparametric panel approach to
            mortality modeling. Insurance: Mathematics and
              Economics 61: 264-270.
  
           Li,
            J. 2013. A Poisson common factor model for projecting mortality and life
            expectancy jointly for females and males. Population Studies 67(1):
            111-126.
  
           Li,
            J.S., Zhou, R. & Hardy, M. 2015b. A step-by-step guide to building
            two-population stochastic mortality models. Insurance: Mathematics and
              Economics 63: 121-134.
  
           Li,
            N. & Lee, R. 2005. Coherent mortality forecasts for a group of populations:
            An extension of the Lee-Carter method. Demography 42(3): 575-594.
  
           Liu,
            Y. & Li, J.S.H. 2016a. The locally linear Cairns-BlakeDowd Model: A note on Delta-Nuga hedging of longevity
            risk. ASTIN Bulletin 47(1): 79-151.
  
           Liu,
            Y. & Li, J.S.H. 2016b. It’s all in the hidden states: A longevity hedging
            strategy with an explicit measure of population basis risk. Insurance:
              Mathematics and Economics 70: 301-319.
  
           Nor,
            S.R.M., Yusof, F. & Bahar, A. 2018.
            Multi-Population mortality model: A practical approach. Sains Malaysiana 47(6): 1337-1347.
  
           O’Hare,
            C. & Li, Y. 2012. Explaining young mortality. Insurance: Mathematics and
              Economics 50(1): 12-25.
  
           Pedroza,
            C. 2006. A Bayesian forecasting model: Predicting U.S. male mortality. Biostatistics 7(4): 530-550.
  
           Plat,
            R. 2009. On stochastic mortality modelling. Insurance: Mathematics and
              Economics 45(3): 393-404. Scherbov, S. & Ediev, D. 2016. Does selection of mortality model make a
            difference in projecting population ageing? Demographic Research 34(2):
            39-62.
  
           Villegas,
            A.M. 2015. Mortality: Modelling, socio-economic differences and basis risk.
            Ph.D. Thesis, Cass Business School, London (Unpublished).
            
           Wan,
            C. & Bertschi, L. 2015. Swiss coherent mortality
            model as a basis for developing longevity de-risking solutions for Swiss
            pension funds: A practical approach. Insurance: Mathematics and Economics 63: 66-75.
  
           Weir,
            D.R. 2010. Grand challenges for the scientific study of ageing. American
              Economic Association, Ten Years and Beyond: Economists Answer NSF's Call for
              Long-Term Research Agendas. Institute for Social Research, Ann Arbor:
            University of Michigan.
  
 
             
           *Pengarang untuk surat-menyurat; email: sitirohani@utm.my
            
           
             
           
             
          
     |