Sains Malaysiana 50(1)(2021): 123-133
http://dx.doi.org/10.17576/jsm-2021-5001-13
Micro-Solid Phase Extraction
of Polycyclic Aromatic Hydrocarbons in Water using either C18 or Molecularly Imprinted Polymer Membranes: Analytical Merits and Limitations
(Pengekstrakan Fasa Pepejal-Mikro bagi Hidrokarbon Aromatik Polisiklik dalam Air Menggunakan Sama Ada Membran C18 atau Polimer Molekul Teraan: Kebaikan dan Kelemahan Analisis)
SITI NURUL UMIRA MOHD SABARI1,
SAW HONG LOH1*, SAZLINDA KAMARUZAMAN2, NOORFATIMAH YAHAYA3 & WAN MOHD AFIQ WAN MOHD KHALIK1
1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu,
Terengganu Darul Iman, Malaysia
2Department
of Chemistry, Faculty of Science, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Integrative
Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam Kepala Batas, Pulau Pinang,
Malaysia
Diserahkan: 22
Mac 2020/Diterima: 1 Julai 2020
ABSTRACT
Sample pre-treatment is often the bottleneck
in an analytical process. Due to the drawbacks of conventional sample
pre-treatment methods, microextraction utilizing lower amounts of adsorbents
and organic solvents are therefore favoured. A micro-solid phase extraction (μ-SPE) technique coupled with gas
chromatography-flame ionization detection (GC-FID) was successfully developed
for the analysis of selected polycyclic aromatic hydrocarbons (PAHs), namely
phenanthrene, fluoranthene, and pyrene, in environmental water. In this study, μ-SPE techniques using C18 and molecularly imprinted
polymer (MIP) membranes were optimized, validated, and applied to the analysis
of selected PAHs in environmental water samples. The analytical merits were compared,
and the two methods were evaluated in terms of linearity, repeatability, and
relative recovery. Under the optimal extraction conditions, both μ-SPE techniques using either C18 or MIP membranes as the adsorbents offered comparable
ultratrace analysis of the selected PAHs in the range of 0.003 to 0.01 µg L–1.
The
extraction strength of C18 membranes was superior to that of MIP membranes for the extraction of low molecular weights PAHs from water in
the presence of humic acid as a matrix factor. The C18 membranes overcome the non-covalence interaction between PAHs and humic acid and thus achieve better recovery.
Keywords:
C18; humic acid; micro-solid phase
extraction; MIP; polycyclic aromatic hydrocarbons
ABSTRAK
Pra-rawatan sampel selalu menjadi halangan
dalam satu proses analisis. Disebabkan kelemahan yang timbul dalam kaedah
pra-rawatan sampel yang konvensional, mikro pengekstrakan yang menggunakan
amaun penjerap dan pelarut organik yang lebih rendah adalah lebih disukai. Satu
teknik pengekstrakan fasa mikro pepejal (μ-SPE) bergabungan kromatografi gas-pengesanan pengionan nyala
(GC-FID) telah berjaya dibangunkan untuk analisis hidrokarbon aromatik
polisiklik (PAHs) terpilih, iaitu fenantrena, fluorantena dan pirena, dalam air
alam sekitar. Dalam kajian ini, teknik μ-SPE
menggunakan C18 dan polimer molekul teraan telah
dioptimum, divalidasi dan diaplikasi dalam analisis PAHs terpilih dalam sampel
air alam sekitar. Kebaikan analitikal dibandingkan dan kedua-dua teknik dinilai
daripada segi kelinearan, kebolehulangan dan perolehan semula secara relatif. Di
bawah keadaan pengekstrakan yang optimum, kedua-dua teknik μ-SPE yang menggunakan sama ada membran C18 atau MIP sebagai
penjerap menawarkan analisis ultra-surih PAHs terpilih yang setanding dalam
lingkungan 0.003 hingga 0.01 µg L–1. Kekuatan mengekstrak membran C18adalah terunggul jika dibandingkan
dengan membran MIP khususnya dalam mengektrak PAHs berjisim molekul rendah
daripada air dengan kehadiran asik humik sebagai satu faktor matriks. Membran C18 mengatasi interaksi bukan kovalen yang wujud antara PAHs dan asik humik dan seterusnya mencapai perolehan semula yang lebih baik.
Kata kunci: Asid humik;
C18; hidrokarbon aromatik polisiklik; MIP; pengekstrakan fasa mikro pepejal
RUJUKAN
Alexiadou, D.K., Maragou,
N.C., Thomaidis, N.S., Theodoridis,
G.A. & Koupparis, M.A. 2008. Molecularly
imprinted polymers for bisphenol A for HPLC and SPE
from water and milk. Journal of
Separation Science 31(12): 2272-2282.
Brambilla, G., Fiori, M., Rizzo, B., Crescenzi, V. & Masci, G.
2001. Use of molecularly imprinted polymers in the solid-phase extraction of clenbuterol from animal feeds and biological matrices. Journal of Chromatography B 759(1): 27-32.
Chapuis, F., Mullot,
J.U., Pichon, V., Tuffal,
G. & Hennion, M.C. 2006. Molecularly imprinted
polymers for the clean-up of a basic drug from environmental and biological
samples. Journal of Chromatography A 1135(2): 127-134.
Conte, P., Zena,
A., Pilidis, G. & Piccolo, A. 2001. Increased retention of polycyclic aromatic hydrocarbons in
soils induced by soil treatment with humic substances. Environmental
Pollution 112(1): 27-31.
Deng,
D.L., Zhang, J.Y., Chen, C., Hou, X.L., Su, Y.Y.
& Wu, L. 2012. Monolithic molecular imprinted polymer fiber for recognition
and solid phase microextraction of ephedrine and
pseudoephedrine in biological samples prior to capillary electrophoresis
analysis. Journal
of Chromatography A 1219:
195-200.
Domingues Nazario, C.E.,
de Lima Gomes, P.C.F. & Lancas, F.M.
2014. Analysis of fluoxetine and norfluoxetine in
human plasma by HPLC-UV using a high purity C18 silica-based SPE sorbent. Analytical Methods 6(12): 4181-4187.
Gauthier, T.D., Shane, E.C., Guerin, W.F.,
Seitz, W.R. & Grant, C.L. 1986. Fluorescence quenching method for
determining equilibrium constants for polycyclic aromatic hydrocarbons binding
to dissolved humic materials. Environmental Science & Technology 20(11): 1162-1166.
Ge, D. & Lee, H.K. 2011. Water stability of zeolite imidazolate framework 8 and application to porous membrane-protected micro-solid-phase
extraction of polycyclic aromatic hydrocarbons from environmental water
samples. Journal
of Chromatography A 1218(47): 8490-8495.
Laor, Y. & Rebhun,
M. 2002. Evidence for nonlinear binding of PAHs to dissolved humic acids. Environmental
Science & Technology 36(5): 955-961.
Lhotská, I., Gajdošová,
B., Solich, P. & Šatínský,
D. 2018. Molecularly imprinted vs. reversed-phase extraction for the
determination of zearalenone: A method development
and critical comparison of sample clean-up efficiency achieved in an on-line
coupled SPE chromatography system. Analytical
and Bioanalytical Chemistry 410(14): 3265-3273.
Liu, H.H. & Dasgupta,
P.K. 1996. Analytical chemistry in a drop. Solvent
extraction in a microdrop. Analytical Chemistry 68(11): 1817-1821.
Jeannot, M.A. & Cantwell, F.F. 1996. Solvent microextraction into a single drop. Analytical Chemistry 68(13): 2236-2240.
Madikizela, L.M., Tavengwa,
N.T. & Chimuka, L. 2018. Applications of
molecularly imprinted polymers for solid-phase extraction of non-steroidal
anti-inflammatory drugs and analgesics from environmental waters and biological
samples. Journal of Pharmaceutical and
Biomedical Analysis 147: 624-633.
Maier, N.M., Buttinger,
G., Welhartizki, S., Gavioli,
E. & Lindner, W. 2004. Molecularly imprinted polymer-assisted sample
clean-up of ochratoxin A from red wine: Merits and limitations. Journal
of Chromatography B 804(1): 103-111.
Maragou, N.C., Lampi,
E.N., Thomaidis, N.S. & Koupparis,
M.A. 2006. Determination of bisphenol A in milk by
solid phase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography A 1129(2):
165-173.
Martin, P.D., Jones, G.R., Stringer, F. &
Wilson, I.D. 2004. Comparison of extraction of a β-blocker from plasma
onto a molecularly imprinted polymer with liquid-liquid extraction and solid
phase extraction methods. Journal of Pharmaceutical and Biomedical Analysis 35(5): 1231-1239.
Meseguer Lloret, S., Molins Legua, C.
& Campins Falco, P. 2002. Preconcentration and dansylation of aliphatic amines using C18 solid-phase packings: Application to the screening analysis in environmental water samples. Journal of Chromatography A 978(1-2):
59-69.
Naing, N.N., Li, S.F.Y. & Lee, H.K. 2016.
Micro-solid phase extraction followed by thermal
extraction coupled with gas chromatography-mass selective detector for the
determination of polybrominated diphenyl ethers in
water. Journal of Chromatography 1458:
25-34.
Naveena, B., Armshaw,
P. & Tony Pembroke, J. 2015. Ultrasonic intensification as a tool for enhanced microbial biofuel yields. Biotechnology for Biofuels 8(1): 1-13.
See, H.H., Sanagi,
M.M., Wan Ibrahim, W.A. & Naim, A.A. 2010.
Determination of triazine herbicides using
membrane-protected carbon nanotubes solid phase membrane tip extraction prior
to micro-liquid chromatography. Journal
of Chromatography A 1217(11): 1767-1772.
Shen, H.Y., Zhu, Y., Wen, X.E. &
Zhuang, Y.M. 2007. Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup
properties for organophosphorous pesticides. Analytical and Bioanalytical Chemistry 387(6): 2227-2237.
Shen, J.X., Tama, C.I. & Hayes, R.N.
2006. Evaluation of automated micro solid phase extraction tips (µ-SPE) for the
validation of a LC-MS/MS bioanalytical method. Journal of Chromatography B 843(2): 275-282.
Thurman, E.M. 1986. Aquatic Humic Substances. InOrganic Geochemistry of Natural Waters. edited by Hijhof, W. & Junk, W. USA: Kluwer Academic.
Turner, A. 2003. Salting out of chemicals
in estuaries: Implications for contaminant partitioning and modelling. Science of The Total Environment 314-316: 599-612.
Zhang,
Z., Tan, W., Hu, Y. & Li, G. 2011. Simultaneous determination of trace
sterols in complicated biological samples by gas chromatography-mass
spectrometry coupled with extraction using β-sitosterol magnetic molecularly imprinted polymer beads. Journal of Chromatography A 1218(28): 4275-4283.
Zhao, M., Zhang, C., Zhang,
Y., Guo, X., Yan, H. & Zhang, H. 2014. Efficient synthesis of narrowly dispersed
hydrophilic and magnetic molecularly imprinted polymer microspheres with
excellent molecular recognition ability in the real biological sample. Chemical Communications 50(17):
2208-2210.
*Pengarang untuk surat-menyurat; email: lohsh@umt.edu.my
|